進階搜尋


 
系統識別號 U0026-0812200915103681
論文名稱(中文) 腳踝矯型支架之有限元素分析與設計
論文名稱(英文) Finite Element Analysis and Design on Ankle-Foot Orthosis
校院名稱 成功大學
系所名稱(中) 工程科學系碩博士班
系所名稱(英) Department of Engineering Science
學年度 97
學期 2
出版年 98
研究生(中文) 蔡育銓
研究生(英文) Yuh-Chyuan Tsay
電子信箱 n9695120@mail.ncku.edu.tw
學號 n9695120
學位類別 碩士
語文別 中文
論文頁數 107頁
口試委員 口試委員-洪兆宇
口試委員-李國龍
口試委員-徐建民
口試委員-陳元方
指導教授-潘文峰
中文關鍵字 腳踝矯型支架  田口 
英文關鍵字 Ankle-foot Orthosis  Taghchi method 
學科別分類
中文摘要 垂足是臨床上常見的現象,當踝關節背屈的動作變差時,便會出現垂足的現象,甚至在行走時腳趾會撞擊到地板。使用腳踝矯型支架將有助於舒緩垂足的問題,也就是矯型支架可抑制過度的腳底的彎曲。但患者通常會抱怨腳踝矯型支架過重且悶熱,而減低穿戴意願。到目前為止,關於去除材料的數量及位置,並沒有相關的分析報告揭露。因此本研究提出利用有限元素法,來進行腳踝腳型支架的相關分析,期望在結構無安全的顧慮下,有效的去除矯型支架不必要的材料體積。
理論分析流程將分成四部份進行。第一部份係根據腳踝的形狀及腳踝矯型支架的規格,運用Solid works 3D繪圖軟體,建立起腳踝及不同樣式腳踝矯型支架的3D分析模式及其立體圖。第二部份則根據Solid works 3D繪圖軟體所建立分析模式,轉到有限元素分析軟體ANSYS中,並進行元素的切割。同時根據實際腳踝的行走狀態及腳踝矯型支架穿戴的狀態,建立起相關的負載及邊界條件。第三部份為進行有限元素ANSYS的軟體分析,並進行數值結果的收斂分析。第四部份為利用田口最佳化設計,來進行腳踝矯型支架的最佳化分析,以求得矯型支架的最佳設計形狀。
英文摘要 Drop foot often occurs in clinical phenomenon. The Dorsiflexion of ankle is out of control in drop foot, thus, the toes strike the floor during walking. Using the Ankle-foot Orthosis (AFO) is generally prescribed to alleviate the drop-foot problem and to constrain excessive plantar flexion. Due to the stuffy and heavy of the traditional AFO, the wearing aspiration of the patient reduces. Up to now, there is no information about how to remove the redundant material of the AFO. Therefore, the finite element method is used to analyze the AFO in this study. It is expected that the unnecessary material of the AFO can be removed under the condition of the safety of the AFO’s structure.
The procedure of the theoretical analysis divides into four parts. The first part is to base on the actual shape of the ankle-foot and specification of the AFO and to use the Solid works graphic software to build the 3D analysis model and its solid graphic. The second part is to transfer the analysis model, which is built from the Solid works graphic software, to the finite element method software ANSYS and proceed the element cut and mesh construction. Simultaneously, basing on the motion of the ankle-foot during walking and wearing situation of the AFO, the loading and boundary conditions are built. The third part to proceed the finite element ANSYS analysis and base on the result to proceed the convergence analysis of the AFO. The fourth part is to use the “Taghchi" method to proceed the optimal analysis of the AFO and to obtain the optimal design shape of the AFO.
論文目次 誌 謝 ................................................I
摘 要 ................................................II
Abstract ...............................................III
目 錄 ................................................IV
表 目 錄 ..............................................VIII
圖 目 錄 ................................................X

目錄

頁次
誌 謝 ................................................ I
摘 要 ................................................ II
Abstract ................................................ III
目 錄 ................................................ IV
表 目 錄 ................................................ VIII
圖 目 錄 ................................................ X

第一章 緒論........................................... 1
1-1 前言........................................ 1
1-2 研究動機與目的.............................. 2
1-3 文獻回顧.................................... 4
1-4 研究方法.................................... 8
1-5 章節提要.................................... 9
第二章 理論基礎...................................... 13
2-1 塑性理論基礎................................ 13
2-2 有限元素分析法.............................. 16
2-3 Solid Works繪圖軟體.......................... 19
2-4 ANSYS有限元素分析軟體...................... 21
2-5田口品質工程................................. 23
2-5-1 機能品質特性值......................... 24
2-5-2 直交表................................. 24
2-5-3 自由度................................. 25
2-5-4 損失函數............................... 25
2-5-5 信號雜訊比............................. 26
2-5-6 變異數分析............................. 28
2-5-7 回應表和輔助回應圖..................... 30
2-5-8 信賴區間............................... 31
2-5-9 機能窗法............................... 32
第三章 腳踝支架之建立與分析......................... 37
3-1分析模型之簡介............................... 37
3-1-1腳踝矯型支架之基本假設條件.............. 37
3-1-2腳踝矯型支架模型及尺寸參數.............. 37
3-2腳踝矯型支架模型有限元素分析................. 38
3-2-1 設定元素形式........................... 38
3-2-2 材料性質設定........................... 38
3-2-3 幾何模型之建立......................... 39
3-2-4邊界條件及負載模式...................... 39
3-2-5網格分割及收斂性分析.................... 40
3-3分析流程.................................... 41
3-4分析結果.................................... 42
第四章 腳踝矯型支架單一因子分析.................... 63
4-1控制因子之選擇.............................. 63
4-2單一因子的分析結果........................... 64
第五章 田口品質設計法及區域裁剪最佳化............. 80
5-1田口品質法之實驗規劃........................ 80
5-1-1目標函數的選定......................... 80
5-1-2決定控制因子........................... 81
5-1-3選定適當的田口直交表................... 82
5-2執行實驗.................................... 82
5-3實驗結果與因子效應分析...................... 82
5-4預測與確認實驗.............................. 85
5-5區域裁剪最佳化.............................. 87
第六章 結論與建議..................................... 101
6-1結論........................................ 101
6-2建議........................................ 102
參考文獻 ................................................ 104
自 述 ................................................ 107
參考文獻 [1] DeLisa JA , “ Physical Medicine and Rehabilitation:Principles and Practice”,4th ed, Philadelphia, Lippincott Williams & Wilkins: p.61-104, p.164-166, p.1377-1392, 2005.
[2] Q., Gong, Z., Zhou, Y. Yang and X. Wang, “Design Optimization and Simulation on Microelectromagnetic Pump”, Sensor and Actuator, Vol. 83, p.200 ,2000.
[3] S. Zurn, M. Hsieh, G. Smith, D. Markus, M. Zang, G. Hughes, Y. Nam, M. Arik and D. Polla, “Fabrication and Structural Characteristic of a Resonant Frequency PZT Microcantilever”, Smart Material Structures, Vol. 10, p. 252 ,2001.
[4] K. Jung, J. Lee and B. Choi, “Numerical Analysis of the Micromirror for Projection TV Using FEM”, Microsystem Technologies, Vol. 7, p. 75, 2001.
[5] Y. H. Mu, N. P. Hung and K. A. Ngoi, “Optimisation Design of a Piezoelectric Micropump”, Int. J. Advanced Manufacturing Tech., Vol. 15, p.573, 1999.
[6] L. Zhang and G. Yang, “Design, Simulation and Testing on a Light Modulating Thermal Image Device”, J. Micromechanics and Microengineering, Vol. 11, p. 85, 2001.
[7] H. Gu, A. Chattopudhyay, J. Li and X. Zhou, “A Higher Order Temperature Theory for Coupled Thermo-Piezolectric-Mechanical Modeling of Smart Composites”, Int. J. Solids and Structures, Vol. 37, p. 6479, 2000.
[8] I. Akpinar, N. Anil and L. Parnas, “A Natural Tooth’s Stress Distribution in Occlusion with a Dental Implant”, J. Oral Rehabilitation, Vol. 27, p.538, 2000.
[9] T. Johansson, P. Meier and R. Blickhan, “A Finite-Element Model for the Mechanical Analysis of Skeletal Muscles”, Journal of Theoretical Biology, Vol. 206, p. 131, 2000.
[10] J. Noailles, W. Skalli, C. Tardiea, T. Siguier znd F. Lavaste, “Finite Element Geometrical and Mechanical Modeling of the Knee Joint”, J. Biomechanics, Vol. 31, p.118, 1998.
[11] Bennett J.A.,and Botkin M.E., “Structural Optimization Approach with Geometric Description and Adaptive Mesh Refinement”, AIAA Journal, Vol. 23, pp. 458-464, 1985.
[12] Groth H.L., and Nordlund P., “Shape Optimization of Bonded Joints”, Int. J. Adhesion and Adhesives, Vol. 11, pp. 204-212, 1991.
[13] Kamiya N.,and Kita E., “Boundary Element Method for Quasi-harmonic Differential Equation with Application to Stress Analysis and Shape Optimization of Helical Spring”, Computers and Structures, Vol. 37, pp. 81-86, 1990.
[14] Cheu T.C., “Procedures for Shape Optimization of Gas Turbine Disks”,Computers and Structures, Vol. 34, pp. 1-4, 1990.
[15] Zhu B., Rao B., Jia J.,and Li Y., ”Shape optimization of Arch Dam for Static and Dynamic Loads”, J. Structural Engineering, Vol. 108, pp. 2996-3015, 1992.
[16] A. Mimaroglu, O.F. Yenihayat,and E. Avci, “Numerical analysis of fracture in ceramic coatings subjected to thermal loading”, Materials and Design, Vol. 17, pp. 283-287, 1996.
[17] Mahmood M.S.,and Davood R., “Analysis and optimization of a composite leaf spring”, Composite Structures, Vol. 60, pp. 317-325, 2003.
[18] Hwu C., Kao C.J.,and Chang L.E., “Delamination fracture criteria for composite laminates”, J. Composite Materials, V. 29, pp. 1962-1987, 1995.
[19] Dirk Vollmer, Ulrich Meyer, Ulrich Joos, Andras Vegh,and Jozsef Piffko, “ Experimental and finite element study of a human mandible”, J. Cranio-Maxillofacial Surgery, Vol. 28, pp. 91-96, 2000.
[20] M. Amagai, “ Chip Scale Package (CSP) solder joint reliability and modeling”, J. Microelectronics Reliability, Vol. 39, pp. 463-477, 1999.
[21] Paul J P. Three-dimensional finite element stress analysis of the polypropylene ankle-foot orthoses: static analysis by Chu et al.Med Eng Phys. 18(7): 607-8.1996
[22] Chen W P, Ju C W, and Tang F T. Effects of total contact insoles on
the plantar stress redistribution: a finite element analysis. Clin Biomech. 18(6): S17-24.2003
[23] Liao Y L, Chen S C.Shape Modification of the Boston Brace -A Finite Element Optimization Analysis.National Yang-Ming University Institute of Rehabilitation Science and Technology, 2006.
[24] Zhong Z C, Wei S H, Wang J P, Feng C K, Chen C S, and Yu C H.Finite element analysis of the lumbar spine with a new cage using a topology optimization method. Med Eng Phys. 28(1): 90-8.2006
[25]高金海,畢瑜,“Solid Works使用入門”全華圖書,1998.
[26] 李輝煌, “ANSYS 工程分析基礎與觀念”, 高立圖書, 2005.
[27] 康淵, 陳信吉, “ANSYS入門”, 全華圖書, 2006.
[28] 李輝煌, “田口方法品質設計的原理與實務”,高立圖書, 2000.
[29] 林建中, “高分子材料科學(高分子材料機械性質學)”,新文京開發出版股份有限公司, 2007.
[30] S. Hwang, J. Kim, J. Yi, K. Tae, K. Ryu, Y. Kim , “Development of an Active Ankle Foot Orthosis for the Prevention of Foot Drop and Toe Drag”, Biomedical and Pharmaceutical Engineering, p. 418-423 .2006
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2011-06-25起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2011-06-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw