進階搜尋


 
系統識別號 U0026-0812200915095316
論文名稱(中文) 養殖池水車配置數值模擬研究
論文名稱(英文) Numerical simulation of paddlewheel setup in culture ponds
校院名稱 成功大學
系所名稱(中) 水利及海洋工程學系碩博士班
系所名稱(英) Department of Hydraulics & Ocean Engineering
學年度 97
學期 2
出版年 98
研究生(中文) 郭平巧
研究生(英文) Ping-Chiao Kuo
電子信箱 n8696419@mail.ncku.edu.tw
學號 n8696419
學位類別 碩士
語文別 中文
論文頁數 85頁
口試委員 口試委員-許弘莒
口試委員-劉景毅
口試委員-李忠潘
指導教授-黃煌煇
口試委員-楊錦釧
中文關鍵字 死區  曝氣機  水車  二維水理模式  養殖池 
英文關鍵字 dead zone  hydrodynamic model  aquaculture pond  aerators  paddlewheel 
學科別分類
中文摘要 本研究之目的是應用二維水動力數值模式模擬分析水車擺放位置對養殖池水動力之影響,首先蒐集分析西南海岸養殖池相關資料,選定適當養殖池進行水深與水動力資料調查,以提供作為數值模式驗證之用。並以二維水動力(TW2D1)模式為基礎,在模式中加入水車運轉動力機制。再以量測資料進行模式之校驗,最後將經校驗後的模式應用於模擬分析養殖池水車配置對養殖池流場之影響。

本研究以數值模式分別探討分析同面積下長方形狀與正方形狀養殖池在不同水車數量、配置條件下之養殖池水動力狀況,並依死區(Dead Zone,流速V≤ 0.02m/ sec )佔整個養殖池面積之比例來研判水車配置是否良好。模式模擬結果顯示,在改善現地養殖池水車配置方案中,放置二台與三台水車之較佳方案分別為N2c 與N3f 配置。在相同面積之長方形狀和正方形狀養殖池中,放置一台、二台與三台水車之較佳方案分別為R1g、R2d、R3a、S1f、S2d 與S3a,而正方形養殖池之死區面積遠較狹長長方型養殖池低。在既有面積3450 m^2 下(單位面積)若要降低狹長長方形養殖池之死區面積,其長寬比小於0.47 者,水車至少要兩台以上,然而水車數量增加,電費成本亦將隨之升高。本文之研究成果可提供漁民作為決定養殖池形狀與水車擺放位置之參考依據。
英文摘要 The purpose of this study is to simulate the aquaculture pond hydrodynamics under various quantities and position of paddlewheels using two-dimensional hydrodynamic numerical model(TW2D1). First of all, we analyze the collected information of different ponds in the south-western coast, and then select the appropriate culture pond to measure the water depth and the hydrodynamics which can be used to verify the 2-D hydrodynamic model including a paddlewheel driven circulation module.

The 2-D hydrodynamic model is used to simulate the hydrodynamics of aquaculture pond under the same area of rectangular-shaped and square-shaped culture ponds with different quantities and positions of the paddlewheel, respectively. Dead zone was defined as V≤ 0.02m/ sec. The uniformity of flow field was investigated by the ratio of dead zone. The results show that in the case of the improved distribution of paddlewheel in shrimp culture ponds, it is better to use two sets of paddlewheel (N2c)and three paddlewheel (N3f)compared with the original condition. For the same area of the rectangular-shaped and square-shaped culture ponds, the better cases placed one or two of paddlewheel, and three paddlewheel were R1g, R2d, R3a, S1f, S2d and S3a. The dead zone of the square-shaped culture ponds is lower than the narrow-rectangular culture ponds under the same area. If we want to reduce the ratio of dead zone in the existing narrow-rectangular culture ponds(3450 m^2 ), the aspect ratio less than 0.47,it should be placed at least two or more paddlewheel sets. However, the electricity costs will also rise when the number of paddlewheel increase. The future goal on this model can be used to evaluate the optimum design of the shape of culture pond and optimum position of the paddlewheel.
論文目次 目錄
中文摘要...........................................................................................................I
英文摘要..........................................................................................................II
誌謝.................................................................................................................III
目錄.................................................................................................................IV
表目錄...........................................................................................................VII
圖目錄..........................................................................................................VIII
第一章 緒論......................................................................................................1
1-1 前言............................................................................................................1
1-2 研究目的....................................................................................................2
1-3 文獻回顧....................................................................................................3
1-4 本文組織....................................................................................................9
第二章 基本資料蒐集調查與分析...............................................................10
2-1 養殖池......................................................................................................10
2-1.1 養殖池之形狀與水深...........................................................................10
2-1.1 養殖物種...............................................................................................13
2-2 儀器設備..................................................................................................14
2-2.1 曝氣機...................................................................................................14
2-2.2 電容式波高計.......................................................................................16
2-2.3 電磁式流速儀.......................................................................................18
2-3 量測數據..................................................................................................20
2-3.1 水位.......................................................................................................22
2-3.2 流速.......................................................................................................23
2-3.2 風速.......................................................................................................25
第三章 二維水動力模式...............................................................................26
3-1 水動力模式..............................................................................................26
3-1.1 控制方程式...........................................................................................26
3-2 數值方法..................................................................................................30
3-2.1 差分方程式...........................................................................................31
3-3 模式率定驗證..........................................................................................36
第四章 養殖池水車最佳配置模擬...............................................................43
4-1 現地應用討論..........................................................................................43
4-1.1 一台水車配置.......................................................................................45
4-1.2 二台水車配置.......................................................................................45
4-1.3 三台水車配置.......................................................................................47
4-2 不同形狀養殖池......................................................................................49
4-2.1 長方形養殖池.......................................................................................50
4-2.1.1 一台水車配置....................................................................................51
4-2.1.1 兩台水車配置....................................................................................55
4-2.1.1 三台水車配置....................................................................................57
4-2.2 正方形養殖池.......................................................................................58
4-2.2.1 一台水車配置....................................................................................60
4-2.2.2 兩台水車配置....................................................................................64
4-2.2.3 三台水車配置....................................................................................66
4-3 最佳化配置討論......................................................................................68
第五章 結論與建議.......................................................................................77
5-1 結論..........................................................................................................77
5-2 建議..........................................................................................................78
參考文獻........................................................................................................79
附錄................................................................................................................81
自述................................................................................................................85
參考文獻 參考文獻
1.劉景毅、羅俊雄、郭大方、高天韻、溫進丁,「淡水河系汙染整治計畫-有關模式建立,管理及水質評估」,國立成功大學水工試驗所研究試驗報告第179號,1996。
2.Ahmad, T., Boyd, C.E., “Design and performance of paddle wheel aerators.” Aquacultural Engineering, Vol.7, pp.39-62, 1988.
3.Boyd, C.E., Watten, B.J., “Aeration systems in aquaculture.” Review In Aquativ Sciences. Vol.1, pp.425-472, 1989.
4.Boyd, C.E., Martinson, D.J., “Evaluation of propeller-aspirator-pump aerators.” Aquaculture, Vol.36, pp.283¬¬¬-291, 1984.
5.Boyd, C.E., “Pond water aeration systems.” Aquacultural Engineering, Vol.18, pp.9¬¬¬-40, 1998.
6.Engle, C., Hatch, U., “Economic assessment of alternative aquacultural aeration strategies.” Journal of the World Aquaculture Society, Vol.19, pp.260–269, 1988.
7.Fast, A.W., Shang, Y.C., Liao, I.C., Rogers, G.L., “Description of Taiwan intensive shrimp culture farms, and simulated transfer to Hawaii.” Univ. Hawaii Sea Grant College Program Rep. Ser. UNIHI-SEAGRANT-ME 89-02, Honolulu, HI, 94 pp, 1989.
8.Fast, A.W., Shang, Y.C., Liao, I.C., Rogers, G.L., “Comparative economics of Taiwan-style intensive shrimp culture in Taiwan and Hawaii.” J. Aquacult. Trop. Vol.5, pp.89–99, 1990.
9.Fast, A.W., Boyd, C.E., “Artificial aeration, circulation and other pond management practices.” In: Fast, A.W., Lester, L.J. (Eds.), Marine Shrimp Culture: Principles and Practices. Elsevier, Amsterdam, pp.461–500, 1992.
10.Kang, Y.H., Lee, M.O., Choi, S.D., Sin, Y.S., “2-D hydrodynamic model simulating paddlewheel-driven circulation in rectangular shrimp culture ponds.” Aquacultural, Vol.231, pp.163-179, 2004.
11.Price, K.S., Conway, R.A., Cheely, R.H., “Surface aerator interactions.” Journal of the Environmental Engineering Division : Proceedings of the American Society of Civil Engineers, Vol.99, pp.283-292, 1973.
12.Peterson, E.L., “The effect of aerators on the benthic shear stress in a pond.” PhD Thesis. James Cook University of North Queensland, Townsville, Australia. Chapters in volume 1, pp.291. Appendices in volume 2, 1999.
13.Peterson, E.L., “Benthic shear stress and sediment condition.” Aquacultural Engineering, Vol.21, pp.85-111, 1999.
14.Peterson, E.L., “Observations of pond hydrodynamics.” Aquacultural Engineering, Vol.21, pp.247-269, 2000.
15.Peterson, E.L., Harris, J.A., Wadhwa, L.C., “CFD modelling pond dynamic processes.” Aquacultural Engineering, Vol.23, pp.61-93, 2000.
16.Peterson, E.L., Wadhwa, L.C., Harris, J.A., “Arrangement of aerators in an intensive shrimp growout pond having a rectangular shape.” Aquacultural Engineering, Vol.25, pp.51-65, 2001.
17.Rogers, G.L., “Aeration and circulation for effective aquaculture pond management.” Aquacultural Engineering, Vol.8, pp.349-355, 1989.
18.Ruttanagosrigit, W., Musig, Y., Boyd, C.E., Sukchareon, L., “Effects of salinity on oxygen transfer by propeller-aspirator and paddle wheel aerators used in shrimp farming.” Aquacultural Engineering. Vol.10, pp.121–131, 1991.
19.Shell, G., “Momentum: innovative concept for surface aeration.” Ind. Wastes (May/June), 1979.
20.Tucker, C.S., Steeby, J.A., “Daytime mechanical water circulation of channel catfish ponds.” Aquacultural Engineering, Vol.14, pp.15–28, 1995.
21.Vinatea, L., Carvalho, J.W., “Influence of water salinity on the SOTR of paddlewheel and propeller-aspirator-pump aerators, its relation to the number of aerators per hectare and electricity costs.” Aquacultural Engineering, Vol.37, pp.73-78, 2007.
22.Wyban, J.A, Pruder, G.D., Leber, K.M., “Paddlewheel effects on shrimp growth, production and crop value in commercial earthen ponds.” J. World Aquac. Soc. Vol.20, pp.18–23, 1989.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2009-06-23起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2009-06-23起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw