
系統識別號 
U00260812200915080652 
論文名稱(中文) 
基於模型之醫學影像運動分析 
論文名稱(英文) 
Model Based Motion Estimation in Medical Image Sequences 
校院名稱 
成功大學 
系所名稱(中) 
資訊工程學系碩博士班 
系所名稱(英) 
Institute of Computer Science and Information Engineering 
學年度 
97 
學期 
2 
出版年 
98 
研究生(中文) 
林正賢 
研究生(英文) 
ChengHsien Lin 
學號 
P7888101 
學位類別 
博士 
語文別 
英文 
論文頁數 
118頁 
口試委員 
口試委員林康平 口試委員詹寶珠 口試委員蔡育秀 口試委員鄭國順 口試委員林啟禎 口試委員柯建全 口試委員王明習 口試委員李同益 召集委員曾清秀 指導教授孫永年

中文關鍵字 
標記化磁振造影影像
細胞顯微影像
超音波影像
細胞追蹤
運動偵測

英文關鍵字 
cellular microscopic images
ultrasound images
tagged MRI
cell tracking
motion estimation

學科別分類 

中文摘要 
運動分析在影像處理中，對於目標物的樣式識別經常有著相當重要的幫助。而在現今的研究中，應用於醫學影像的運動分析與物體追蹤也佔有重要的地位。然而，傳統的運動偵測法多是針對剛體運動而設計，因此並不一定適用於醫學影像中的運動分析。在本研究中，我們根據各種醫學影像的影像特性，提出加入以模型為基礎的運動偵測架構，分別針對超音波影像、標記化磁振造影影像以及細胞顯微影像，各自提出適用的運動分析演算法。
一般而言，超音波成像容易受到雜訊干擾、標記化磁振造影會產生影像標記對比衰減現象、而細胞追蹤則須面對細胞分裂時所造成的拓樸改變問題，這些都將造成在運動分析上的困擾。為了解決這些問題，我們必須根據不同的醫學成像特性以及運動物體的物理特性，設計並加入先驗知識與模型來輔助運動偵測的計算，藉以得到正確且穩定的結果。因此，在此篇論文中，我們首先提出利用結合調超音波特徵模型的階層式最大後置機率評量法，作為超音波影像中運動偵測的分析，我們同時也提出結合運動偵測的影像複合技術，藉以強化超音波影像的品質。在標記化磁振造影中，我們則建立心臟收縮的運動模型用來預測心肌運動，並利用預選的方式過濾並得到可靠的追蹤結果。而在顯微影像的細胞追蹤中，我們則提出結合細胞生命周期狀態分析的調變模型，用來分割並追蹤細胞輪廓。
在模擬與臨床實驗中，結果均顯示我們所提出的運動偵測法優於傳統方法，並可得到正確的運動分析結果。藉由我們所設計的運動分析系統，相信對於後續臨床診斷應用，將可得更為準確的量測與分析，以作為醫師診療的參考。

英文摘要 
Motion analysis is very useful for recognizing target patterns from a sequence of images. Applications in motion estimation and target tracking become especially important in medical and biomedical researches nowadays. However, traditional methods which are optimal for rigid body motion are not suitable for medical analysis due to the object deformation and noise problems. In this study, we tried to propose adequate motion estimation methods for several medical motion applications which include motion field estimation from ultrasound images, tag line tracking from tagged magnetic resonance (MR) images, and live cell tracking from microscopic images.
Generally, the usual problems in medical motion analysis include: speckle noises and temporal decorrelation of the speckle patterns in ultrasound images; large motion and tag decaying problems in tagged MR images; and low contrast in pseudopods and topological changes in cellular microscopic images. To overcome these problems, it is necessary to integrate a priori knowledge based on the physical properties into the motion estimation process. In this study, we first designed a hierarchical maximum a posteriori estimator together with an ultrasonic feature model for ultrasound image sequences. A motion compounding method is also proposed to reduce speckle noises and to enhance image quality based on the proposed motion estimation method. To cope with the problems of large motion and tag decaying, we proposed to incorporate a cardiac motion model based prediction scheme and a candidate prescreening technique together with the deformable models to track the tag lines. To segment and track highly deformable cells, we have presented an automatic method based on the framework of modified Tsnakes coupled with the knowledge of cellular life model.
The proposed motion estimation methods were compared with several existing methods via a series of experiments with both simulated and clinical image sequences. Experimental results showed that motion could be accurately assessed in different types of imaging modalities. The proposed systems can help to perform better quantification and analyses in clinical applications. It will certainly help medical doctors to achieve better observation and more accurate assessments, and thus result in better diagnostic quality.

論文目次 
CHAPTER 1 INTRODUCTION 1
1.1 Motivation 1
1.2 Background and Related Works 4
1.2.1 Motion Analysis in Ultrasound Images 4
1.2.2 Cardiac Motion Analysis in Tagged MR Images 6
1.2.3 Cellular Motion Analysis in Microscopic Images 7
1.3 Overview of the Proposed Method and Thesis Organization 9
CHAPTER 2 HIERARCHICAL FEATURE WEIGHTED MOTION ESTIMATION AND MOTION COMPOUNDING 11
2.1 Overview 11
2.2 BlockMatching Algorithm and Maximum Likelihood Motion Estimation 12
2.3 Maximum A Posteriori (MAP) Motion Estimation 17
2.4 Hierarchical MAP Motion Estimation 18
2.5 Vector PostProcessing Using Adaptive Feature Weighted Filtering 22
2.6 Motion Compounding 27
CHAPTER 3 MOTION MODEL BASED TAG LINE TRACKING 32
3.1 Overview 32
3.2 Preprocessing 32
3.3 Active Contour Model for Tag Line Tracking 36
3.4 Temporal Prediction Using Motion Model 38
3.5 Candidate PreScreening 41
3.6 Strain Analysis and Visualization 42
CHAPTER 4 LIVE CELL TRACKING BASED ON CELLULAR STATE RECOGNITION 44
4.1 Overview 44
4.2 Preprocessing 46
4.3 TSnake 49
4.4 Recognition of Cellular State 52
4.5 Division Operator 57
CHAPTER 5 EXPERIMENTAL RESULTS 60
5.1 Motion Estimation Results in Ultrasound Images 60
5.1.1 Synthetic Experiments 60
5.1.2 Clinical Experiments 69
5.2 Motion Compounding Results in Ultrasound Images 73
5.2.1 MotionSimulated Phantom Experiments 73
5.3.2 Clinical Experiments 76
5.3 Motion Estimation Results in Tagged MR Images 84
5.3.1 MotionSimulated Phantom Experiments 84
5.3.2 Clinical Experiments 85
5.4 Motion Estimation Results in Cell Tracking from Microscopic Images 87
CHAPTER 6 DISCUSSION 97
6.1 Hierarchical Feature Weighted Motion Estimation and Motion Compounding 97
6.2 Motion Model Based Tag Line Tracking 99
6.3 Live Cell Tracking Based on Cellular State Recognition 102
CHAPTER 7 CONCLUSION 104
REFERENCES 107
VITA 116

參考文獻 
[1] B.K.P. Horn and B.G. Schunck, “Determining optical flow,” Artif. Intell., vol. 17, pp. 185203, 1981.
[2] H.S. Wang and R.M. Mersereau, “Fast algorithms for the estimation of motion vectors,” IEEE Trans. Image Process., vol. 8, no. 3, pp. 435438, 1999.
[3] H. Gu, Y. Shirai, and M. Asada, “MDLbased segmentation and motion modeling in a long image sequence of scene with multiple independently moving objects,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 18, no. 1, pp. 5864, 1996.
[4] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: active contour models,” Int. J. Comput. Vis., vol. 1, no. 4, pp. 321331, 1988.
[5] L. Gao, K.J. Parker, R.M. Lerner, and Levinson SF, “Imaging of the elastic properties of tissue–a review,” Ultrasound Med. Biol., vo. 22, no. 8, pp. 959977, 1996.
[6] I.A. Hein and W.D. O’Brien, “Current timedomain methods for assessing tissue motion by analysis from reflected ultrasound echoes–a review,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 40, no. 2, pp. 84102, 1993.
[7] G.E. Mailloux, F. Langlois, P.Y. Simard, and M. Bertrand, “Restoration of the velocity field of the heart from twodimensional echocardiograms,” IEEE Trans. Med. Imaging, vol. 8, no. 2, pp. 143153, 1989.
[8] A.J. Healey and S. Leeman, “Speckle reduction methods in ultrasound pulseecho imaging,” in IEE Proc. of Acoustic Sensing and Imaging, pp. 6876, 1993.
[9] A.N. Evans and M.S. Nixon, “Mode filtering to reduce ultrasound speckle for feature extraction,” in IEE Proc. of Vision, Image and Signal Processing, vol. 142, no. 2, pp. 8794, 1995.
[10] M.A. Guttman, E.A. Zerhouni, and E.R. McVeigh, “Analysis of cardiac function from MR images,” IEEE Comput. Graph Appl., vol. 17, no.1, pp. 3038, 1997.
[11] H.B. Hillenbrand, J.A.C. Lima, D.A. Bluemke, G.M. Beache, and E.R. McVeigh, “Assessment of myocardial systolic function by tagged magnetic resonance imaging,” J. Cardiov. Magn. Reson., vol. 2, no. 1, pp. 5766, 2000.
[12] J.C.M. Mombach and J.A. Glazier, “Single cell motion in aggregates of embryonic cells,” Phys. Rev. Lett., vol. 76, pp. 30323035, 1996.
[13] J.P. Rieu, N. Kataoka, and Y. Sawada, “Quantitative analysis of cell motion during sorting in twodimensional aggregates of dissociated hydra cells,” Phys. Rev. E, vol. 57, pp. 924931, 1998.
[14] J.H.C. Wang, P. GoldschmidtClermont, J. Wille, and F.C.P. Yin, “Specificity of endothelial cell reorientation in response to cyclic mechanical stretching,” J. Biomech., vol. 34, pp. 15631572, 2001.
[15] N. Bonnet, M. Matos, M. Polette, J.M. Zahm, B. NawrockiRaby, and P. Birembaut, “A densitybased cellular automaton model for studying the clustering of noninvasive cells,” IEEE Trans. Biomed. Eng., vol. 51, pp. 12741276, 2004.
[16] I. Patras, M. Worring, and R. van den Boomgaard, “Dense motion estimation using regularization constraints on local parametric models,” IEEE Trans. Image Process., vol. 13, no. 11, pp. 14321443, 2004.
[17] C. Bergeron and E. Dubois, “Gradientbased algorithms for blockoriented MAP estimation of motion and application to motioncompensated temporal interpolation,” IEEE Trans. Circuits Syst. Video Technol., vol.1, no. 1, pp. 7285, 1992.
[18] C. Bouman and K. Sauer, “A generalized Gaussian image model for edgepreserving MAP estimation,” IEEE Trans. Image Process., vol. 2, no. 3, pp. 296310, 1993.
[19] E.R. Davies, Machine vision: theory, algorithms, practicalities, 2nd edition, Academic Press, 1997.
[20] B.H. Friemel, L.N. Bohs, and G.E. Trahey, “Relative performance of twodimensional speckletracking techniques: normalized correlation, nonnormalized correlation and sumabsolutedifference,” in Proc. of IEEE Ultrasound Symposium, pp. 14811484, 1995.
[21] M.G. Strintzis and I. Kokkinidis, “Maximum likelihood motion estimation in ultrasound image sequences,” IEEE Signal Process. Lett., vol. 4, no. 6, pp. 156157, 1997.
[22] B. Cohen and I. Dinstein, “New maximum likelihood motion estimation schemes for noisy ultrasound images,” Pattern Recognit., vol. 35, no. 2, pp. 455463, 2002.
[23] A. Boukerroui, J. A. Noble, and M. Brady, “Velocity estimation in ultrasound images: a block matching approach,” in Proc. of 18th Information Processing in Medical Imaging, pp. 586598, 2003.
[24] J. Revell, M. Mirmehdi, and D. McNally, “Ultrasound speckle tracking for strain estimation,” Technical Report CSTR04005, Dept. of Computer Science, Univ. of Bristol, 2003.
[25] J. Revell, M. Mirmehdi, and D. McNally, “Motion trajectories for ultrasound displacement quantification,” in Proc. of 7th Medical Image Understanding and Analysis, pp. 193196, 2003.
[26] C. PellotBarakit, F. Frouin, M.F. Insana, and A. Herment, “Ultrasound elastography based on multiscale estimations of regularized displacement fields,” IEEE Trans. Med. Imaging, vol. 23, no. 2, pp. 153163, 2004.
[27] F. Yeung, S.F. Levinson, and K.J. Parker, “Multilevel and motion modelbased ultrasonic speckle tracking algorithms,” Ultrasound Med. Biol., vol. 24, no. 3, pp. 427441, 1998.
[28] R.L. Maurice and M. Bertrand, “Lagrangian speckle model and tissuemotion estimationtheory,” IEEE Trans. Med. Imaging, vol. 18, no. 7, pp. 593603, 1999.
[29] E.A. Zerhouni, D.M. Parish, W.J. Rogers, A. Yang, and E.P. Shapiro, “Human heart: tagging with MR imaging – a method for noninvasive assessment of myocardial motion,” Radiology, vol. 169, no. 1, pp. 5963, 1988.
[30] L. Axel and L. Dougherty, “MR imaging of motion with spatial modulation of magnetization,” Radiology, vol. 171, no. 3, pp. 841845, 1989.
[31] J.L. Prince and E.R. McVeigh, “Motion estimation from tagged MR image sequences,” IEEE Trans. Med. Imaging, vol. 11, no. 2, pp. 238249, 1992.
[32] L. Dougherty, J.C. Asmuth, A.S. Blom, L. Axel, and R. Kumar, “Validation of an optical flow method for tag displacement estimation,” IEEE Trans. Med. Imaging, vol. 18, no. 4, pp. 35963, 1999.
[33] T.S. Denney, “Estimation and detection of myocardial tags in MR image without userdefined myocardial contours,” IEEE Trans. Med. Imaging, vol. 18, no. 4, pp. 330344, 1999.
[34] A.A. Amini, Y. Chen, R.W. Curwen, V. Mani, and J. Sun, “Coupled bsnake grids and constrained thinplate splines for analysis of 2D tissue deformations from tagged MRI,” IEEE Trans. Med. Imaging, vol. 17, no. 3, pp. 33456, 1998.
[35] A.A. Amini, Y. Chen, M. Elayyadi, and P. Radeva, “Tag surface reconstruction and tracking of myocardial beads from SPAMMMRI with parametric bspline surfaces,” IEEE Trans Med. Imaging, vol. 20, no. 2, pp. 94103, 2001.
[36] M. Stuber, E. Nagel, S.E. Fischer, M.A. Spiegel, M.B. Scheidegger, and P. Boesiger, “Quantification of the local heartwall motion by magnetic resonance myocardial tagging,” Comput. Med. Imaging Graph., vol. 22, no. 3, pp. 21728, 1998.
[37] N.F. Osman, E.R. McVeigh, and J.L. Prince, “Imaging heart motion using harmonic phase MRI,” IEEE Trans. Med. Imaging, vol. 19, no. 3, pp. 186202, 2000.
[38] X. Liu, E. Murano, M. Stone, and J.L. Prince, “HARP tracking refinement using seeded region growing,” In: Proc. of IEEE Int. Symp. on Biomedical Imaging, pp. 372375, 2007.
[39] A.M. Khalifam, A.B.M. Youssef, and N.F. Osman, “Improved harmonic phase (HARP) method for motion tracking a tagged cardiac MR images,” In: Proc. of IEEE Engineering in Medicine and Biology Conf., pp. 42984301, 2005.
[40] P. Dieterich, M. OdenthalSchnittler, C. Mrowietz, M. Krämer, L. Sasse, H. Oberleithner, and H.J. Schnittler, “Quantitative morphodynamics of endothelial cells within confluent cultures in response to fluid shear stress,” Biophys. J., vol. 79, pp. 12851297, 2000.
[41] X. Chen, X. Zhou, and T. C. Wong, “Automated segmentation, classification, and tracking of cancer cell nuclei in timelapse microscopy,” IEEE Trans. Biomed. Eng., vol. 53, pp. 762766, 2006.
[42] H.S. Wu, J. Barba, and J. Gil, “Iterative thresholding for segmentation of cells from noisy images,” J. Microsc., vol. 197, pp. 296304, 2000.
[43] C. Wählby, I.M. Sintorn, F. Erlandsson, G. Borgefors, and E. Bengtsson, “Combining intensity, edge and shape information for 2D and 3D segmentation of cell nuclei in tissue sections,” J. Microsc., vol. 215, pp. 6776, 2004.
[44] F. Leymarie and M.D. Levine, “Tracking deformable objects in the plane using an active contour model,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 15, pp. 617634, 1993.
[45] C. Zimmer, E. Labruyère, V. MeasYedid, N. Guillén, and J.C. OlivoMarin, “Segmentation and tracking of migrating cells in videomicroscopy with parametric active contours: a tool for cellbased drug testing,” IEEE Trans. Med. Imaging, vol. 21, pp. 12121221, 2002.
[46] N. Ray, S.T. Acton, and K. Ley, “Tracking leukocytes in vivo with shape and size constrained active contours,” IEEE Trans. Med. Imaging, vol. 21, pp. 12221235, 2002.
[47] O. Debeir, H.P. Van, R. Kiss, and C. Decaestecker, “Tracking of migrating cells under phasecontrast video microscopy with combined meanshift processes,” IEEE Trans. Med. Imaging, vol. 24, pp. 697711, 2005.
[48] T. McInerney, and D. Terzopoulos, “Tsnake: topologically adaptive snakes,” Med. Image Anal., vol. 4, pp. 7391, 2000.
[49] F.A. Velasco and J.L. Marroquin, “Growing snakes: active contours for complex topologies,” Pattern Recognit., vol. 36, pp. 475482, 2003.
[50] C.B. Burckhardt, “Speckle in ultrasound bmode scans,” IEEE Trans. Sonics Ultrason., vol. 25, no. 1, pp. 16, 1978.
[51] G.E. Sleefe, and P.P. Lele, “Tissue characterization based on scatterer number density estimation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 35, no. 6, pp. 749757, 1988.
[52] H. Liu, T.H. Hong, M. Herman, T. Camus T, and R. Chellapa, “Accuracy vs efficiency tradeoffs in optical flow algorithms,” Comput. Vis. Image Underst., vol. 72, no. 3, pp. 271286, 1998.
[53] C.H. Lee and L.H. Chen, “A fast motion estimation algorithm based on the block sum pyramid,” IEEE Trans. Image Process., vol. 6, no. 11, pp. 15871590, 1997.
[54] Y.S. Chen, Y.P. Hung, and C.S. Fuh, “Fast block matching algorithm based on the winnerupdate strategy,” IEEE Trans. Image Process., vol. 10, no. 8, pp. 12121222, 2001.
[55] W. Li and E. Salari, “Successive elimination algorithm for motion estimation,” IEEE Trans. Image Process., vol. 4, no. 1, pp. 105107, 1995.
[56] K.M. Nam, J.S. Kim, R.H. Park, and Y.S. Shim, “A fast hierarchical motion vector estimation algorithm using mean pyramid,” IEEE Trans. Circuits Syst. Video Technol., vol. 5, no. 4, pp. 344351, 1995.
[57] E. Mémin, P. Pérez, “Dense estimation and objectbased segmentation of the optical flow with robust techniques,” IEEE Trans. Image Process., vol. 7, no. 5, pp. 703719, 1998.
[58] J.Y. Lu, K.S. Wu, and J.C. Lin, “Fast full search in motion estimation by hierarchical use of Minkowski’s inequality (HUMI),” Pattern Recognit., vol. 31, no. 7, pp. 945952, 1998.
[59] R.F. Wagner, S.W. Smith, J.M. Sandrik, and H. Lopez, “Statistics of speckle in ultrasound bscans,” IEEE Trans. Sonics Ultrason., vol. 30, no. 3, pp. 156163, 1983.
[60] T. Loupas, W.N. McDicken, and P.L. Allan, “An adaptive weighted median filter for speckle suppression in medical ultrasonic images,” IEEE Trans. Circuits Syst., vol. 36, no. 1, pp. 129135, 1989.
[61] M. Karaman, M.A. Kutay, and G. Bozdagi, “An adaptive speckle suppression filter for medical ultrasonic imaging,” IEEE Trans. Med. Imaging, vol. 14, no. 2, pp. 283292, 1995.
[62] J. Souquet, “State of the art in digital broadband medical ultrasound imaging,” Comptes Rendus de l’Academie des Sciences Series IV Physics, vol. 2, no. 8, pp. 10911098, 2001.
[63] R. Entrekin, P. Jackson, J.R. Jago, and B.A. Porter, “Real time spatial compound imaging in breast ultrasound: technology and early clinical experience,” Medica mundi, vol. 43, no. 3, pp. 3543, 1999.
[64] A. Rafiee, M.H. Moradi, and M.R. Farzaneh, “A novel geneticneurofuzzy filter for speckle noise reduction from sonographical images,” J. Digit. Imaging, vol. 57, no. 4, pp. 292300, 2004.
[65] R. Rohling, A. Gee, and L. Berman, “Threedimensional spatial compounding of ultrsound images,” Med. Image Anal., vol. 1, no. 3, pp. 177193, 1997.
[66] J.F. Krücker, C.R. Meyer, G.L. LeCarpentier, and J.B. Fowlkes, “3D spatial compounding of ultrasound images using imagebased nonrigid registration,” Ultrasound Med. Biol., vol. 26, no. 9, pp. 14751488, 2000.
[67] U. Techavipoo, Q. Chen, T. Varghese, J.A. Zagzebski, and E.L. Madsen EL, “Noise reduction using spatialangular compounding for elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 51, no. 5, pp. 510520, 2004.
[68] G. Cincotti, G. Loi, and M. Pappalardo, “Frequency decomposition and compounding of ultrasound medical images with wavelet packets,” IEEE Trans. Med. Imaging, vol. 20, no. 8, pp. 176771, 2001.
[69] P.C. Li and C.L. Wu, “Strain compounding: spatial resolution and performance on human images,” Ultrasound Med. Biol., vol. 27, no. 11, pp. 15351541, 2001.
[70] S.K. Jespersen, J.E. Wilhjelm, and H. Sillesen, “In vitro spatial compound scanning for improved visualization of atherosclerosis,” Ultrasound Med. Biol., vol. 26, no. 8, pp. 13571362, 2000.
[71] R.R. Entrekin, B.A. Porter, H.H. Sillesen, A.D. Wong, P.L. Cooperberg, and C.H. Fix, “Realtime spatial compound imaging: application to breast, vascular, and musculoskeletal ultrasound,” Seminar in Ultrasound, CT, and MRI, vol. 22, no. 1, pp. 5064, 2001.
[72] S.C. Kofoed, M.L.M. Grønholdt, and J.E. Wilhjelm, “Realtime spatial compound imaging improves reproducibility in the evaluation of atherosclerotic carotid plaques,” Ultrasound Med. Biol., vol. 27, no. 10, pp. 13111317, 2001.
[73] S. Huber, M. Wagner, M. Mdel, and H. Czembirek, “Realtime spatial compound imaging in breast ultrasound,” Ultrasound Med. Biol., vol. 28, no. 2, pp. 155163, 2002.
[74] K. Xue, P. He, and Y. Wang, “A motion compensated ultrasound spatial compounding algorithm,” in Proc. of 19th Intl. Conf. of IEEE EMBS, vol. 2, pp. 818821, 1997.
[75] A.R. Groves and R.N. Rohling, “Twodimensional spatial compounding with warping,” Ultrasound Med. Biol., vol. 30, no. 7, pp. 929942, 2004.
[76] V. Lukin, N. Ponomarenko, and I. Bunaeva, “Postprocessing of multilook and sequentially formed images in radar and ultrasonic coherent systems,” in Proc. of 46th IEEE Intl. Midwest Symp. on Circuits and Systems, vol. 2, pp. 745751, 2004.
[77] J.E. Wilhjelm, M.S. Jensen, T. Brandt, B. Sahl, K. Martinsen, S.K. Jespersen, and E. Falk, “Some imaging strategies in multiangle spatial compounding,” in Proc. of IEEE Ultrasonics Symp., pp. 16151618, 2000.
[78] C. Kotropoulos, X. Magnisalis, I. Pitas, and M.G. Strintzis, “Nonlinear ultrasonic image processing based on signaladaptive filters and selforganizing neural networks,” IEEE Trans. Image Process., vol. 3, no. 1, pp. 6577, 1994.
[79] P. Clarysse, C. Basset, L. Khouas, P. Croisille, D. Friboulet, C. Odet, and I.E. Magnin, “Twodimensional spatial and temporal displacement and deformfation field fitting from cardiac magnetic resonance tagging,” Med. Image. Anal., vol. 4, pp. 253268, 2000.
[80] D.J. Williams and M. Shah, “A fast algorithm for active contours and curvature estimation,” CVGIP: Image Understanding, vol. 5, no. 1, pp. 1426, 1992.
[81] C.W. Ngo, T.C. Pong, and H.J. Zhang, “Motion analysis and segmentation through spatiaotemporal slices processing,” IEEE Trans. Image Process., vol. 12, no. 3, pp. 34155, 2003.
[82] Y.K. Cheng, Y.T. Lin, and S.Y. Kung, “A feature tracking algorithm using neighborhood relaxation with multicandidate prescreening,” In: Proc. of the Int. Conf. on Image Processing, pp. 513516, 1996.
[83] S.H. Lee, O. Kwon, and R.H. Park, “Motion vector correction based on the patternlike image analysis,” IEEE Trans. Consum. Electron., vol. 49, no. 3, pp. 47984, 2003.
[84] J.M. Bundy and C.H. Lorenz, “TAGASIST: a postprocessing and analysis tools package for tagged magnetic resonance imaging,” Comput. Med. Imaging Graph., vol. 21, no. 4, pp. 225232, 1997.
[85] K. Wu, D. Gauthier, and M.D. Levin, “Live cell image segmentation,” IEEE Trans. Biomed. Eng., vol. 42, pp. 112, 1995.
[86] N. Otsu, “A threshold selection method from gray level histogram,” IEEE Trans. Syst. Man Cybern., vol. SMC9, pp. 6266, 1979.
[87] I.T. Jolliffe, Principal Component Analysis, SpringerVerlag, New York, 2002.
[88] M. Pechenizkiy, A. Tsymbal, and S. Puuronen, “PCAbased feature transformation for classification: issues in medical diagnostics,” in Proc. of 17th IEEE Symp. ComputerBased Medical Systems, pp. 535540, 2004.
[89] M.A. Turk and A. Pentland, “Eigenfaces for recognition,” J. Cogn. Neurosci., vol. 3, pp. 7186, 1991.
[90] P. Zrÿd, “A new plant cell image segmentation algorithm,” in Proc. of the 8th Int. Conf. on Image Analysis and Processing, pp. 229234, 1995.
[91] J.L. Barron, D.J. Fleet, and S.S. Beauchemin, “Performance of optical flow techniques,” Int. J. Comput. Vis., vol. 12, no. 1, pp. 4377, 1994.
[92] P. Brodatz, Textures, Dover Publications, New York, 1966.
[93] J. Meunier and M. Bertrand, “Ultrasonic texture motion analysis: theory and simulation,” IEEE Trans. Med. Imaging, vol. 14, no. 2, pp. 293300, 1995.
[94] C. Xu and J.L. Prince, “Snakes, shapes, and gradient vector flow,” IEEE Trans. Image Process., vol. 7, no. 3, pp. 359369, 1998.
[95] D.S. Fieno, R.J. Kim, E.L. Chen, J.W. Lomasney, F.J. Klocke, and R.M. Judd, “Contrastenhanced magnetic resonance imaging of myocardium at risk: distinction between reversible and irreversible injury throughout infarct healing,” J. Am. Coll. Cardiol., vol. 36, no. 6, pp. 19851991, 2000.
[96] C.L. Ho, T.Y. Mou, P.S. Chiang, C.L. Weng, and N.H. Chow, “Mini chamber system for longterm maintenance and observation of cultured cells,” Biotechniques, vol. 38, pp. 267273, 2005.
[97] S.E. Chen and R.E. Parent, “Shape averaging and its applications to industrial design,” IEEE Comput. Graph. Appl., vol. 9, pp. 4754, 1989.
[98] W. Tvaruskó, M. Bentele, T. Misteli, R. Rudolf, C. Kaether, D.L. Spector, H.H. Gerdes, and R. Eils, “Timeresolved analysis and visualization of dynamic processes in living cells,” in Proc. Natl. Acad. Sci. USA 96, pp. 79507955, 1999.

論文全文使用權限 
同意授權校內瀏覽/列印電子全文服務，於20100601起公開。同意授權校外瀏覽/列印電子全文服務，於20100601起公開。 


