進階搜尋


 
系統識別號 U0026-0812200915034455
論文名稱(中文) 軟性電子觸覺與心跳感測器
論文名稱(英文) Flexible Electronics on Tactile and Heart Beat Sensors
校院名稱 成功大學
系所名稱(中) 工程科學系碩博士班
系所名稱(英) Department of Engineering Science
學年度 97
學期 1
出版年 98
研究生(中文) 張文陽
研究生(英文) Wen-Yang Chang
電子信箱 n9893129@mail.ncku.edu.tw
學號 n9893129
學位類別 博士
語文別 英文
論文頁數 125頁
口試委員 召集委員-羅錦興
口試委員-方得華
指導教授-林裕城
口試委員-黃新鉗
口試委員-洪昭南
口試委員-黃義佑
中文關鍵字 觸覺  感測器  印製  大面積  軟性電子 
英文關鍵字 Printing  Tactile  Sensors  Large area  Flexible electronics 
學科別分類
中文摘要 近幾年來軟性電子為繼半導體與顯示器兩大產業後之被國際上視為未來最具有潛力發展重要技術,其相關技術已處於快速的萌芽階段且普及化。軟性電子主要透過印製製程技術,將電子電路、有機材料或功能性感測材料等印製於軟性材料基板上,以創造出傳統矽晶片與玻璃基板無法提供之應用需求。再者,軟性電子產品是以大面積感測及低成本製作之優勢,同時具有超薄輕巧、可捲繞及快速量產之潛力。然而,現今僅有少數研究針對軟性電子之感測器進行研究與開發,多數採用小單元矽晶感測元件嵌進軟性材料基板中,以間接達成軟性電子感測器。此外,應用於軟性電子之軟性材料基板特性,尚未有完整的分析研究與應用於製程上之特性探討。因此,本研究提供軟性材料特性分析技術及依據此特性尋找最佳之設計與製程參數,開發及製作軟性電子感測器。
軟性材料特性分析以聚偏二氟乙烯(PVDF)與聚醯亞胺(PI)為樣品,主要材料特性分析包括相轉換、薄膜表面粗糙度、光譜特性、熱機械行為、奈米壓印與機械特性之探討。PVDF薄膜分析結果顯示,拉伸倍率在4倍以上具有較佳的相轉換特性及較高熱機械改變,未拉伸膜在紫外光範圍具有較高的吸收光譜特性,近紅外光譜在拉伸倍率3倍以上時具有90%以上穿透效果,薄膜材料硬度及楊式係數分別為0.25 ± 0.01與3.44 ± 0.14 GPa。至於PI薄膜分析結果顯示,紫外光無法穿透PI薄膜且隨著薄厚度增加其不可穿透光譜範圍是逐漸增大,在近紅外光譜的穿透率為隨著薄厚度增加而降低,薄厚度25 μm以下, 有較高之熱機械延長及熱膨脹現象產生,薄膜材料硬度及楊式係數分別為0.181 ± 0.03和3.21 ± 0.06 GPa。故這些材料特性分析結果,可提供接續軟性電子感測器之設計與軟性製程最佳參考依據,以降低軟性材料於製程中容易因應力不均而裂開或熱效應不同而變形。
軟性電子感測器研究主要有觸覺感測器與生理感測器,於軟性電子觸覺感測器是以印製製程技術,設計與製作出可應用於大面積感測與多點觸控之軟性薄膜感測器,此感測器是以PI薄膜為主,且印製觸變性的有機電阻材料、高分子材料的凸塊物及黏膠,並採壓合製程貼附牆狀層,以設計出具有空間效應結構層,從而大幅減少軟性電子觸覺感測器於動態彎曲時之誤動作訊號產生。研究結果顯示於軟性觸覺感測器之上層薄膜,印製凸塊物與有機電阻材料可增加薄膜的撓曲位移量及快速響應特性;乃因薄膜上的凸塊物與有機電阻材料,提昇薄膜撓曲時應力集中效應與增強質量慣性矩特性,此外,亦採用線性演算矩陣及高斯消去法,達到軟性薄膜多點接觸設計之觸控功能。在軟性生理感測器設計上,結合軟性印刷電路技術及熱壓不織布製程封裝技術為主,感測器結構模組的外形設計採取可攜式腕帶貼片槪念,故其具有輕薄、微小化及可撓曲之優勢;封裝後模組的厚度約為2.2 mm、可撓曲之最小曲率半徑約為2.5 cm。生理感測器功能有心跳與體溫之參數量測;心跳是以二電極量測,而體溫是熱敏電阻阻抗變化所得到,其規格範圍分別為50 - 200 bpm與25 - 45℃。
綜合軟性電子感測器之可行性研究顯示,熟諳與善用軟性材料基板之基礎物理特性,並結合相關之印製製程技術,即可設計與製作出具高品質與高良率之軟性電子感測器、亦可實現與開發低成本製作與大面積感測應用之軟性電子產業。
英文摘要 Flexible electronics have developed rapidly in recent years for sensors and actuators due to their large area applications and low cost manufacturing. These flexible devices can be bent, expanded, and manipulated during use. In addition, flexible electronics made with organic materials, carbon-based materials, or transistors could be patterned onto thin films or bendable surfaces using printing technologies. However, there are few practical applications of flexible electronics in passive sensors; most studies have focused on small scale devices or imbedded bulk devices on flexible substrates. Furthermore, the material characteristics of flexible materials have yet to be completely investigated for applications in fabrication processes. Therefore, this study proposes analysis methods for flexible materials, investigates the material characteristics of flexible substrates, and designs and fabricates the flexible sensors.
The material characteristics of flexible substrates, PVDF and PI films, include phase transformation, surface morphologies, optical spectra, thermomechanical, behavior, nanoindentation phenomena, and mechanical properties. Experimental results show that thermomechanical characteristics of PVDF film are greatly influenced at stretching ratios of over 4 in the stretching direction. The hardness is almost uniform and Young’s modulus is about 0.25 ± 0.01 and 3.44 ± 0.14 GPa, respectively. Unstretched PVDF films have a higher absorbance in the UV light range than stretched films do. PVDF with a stretching ratio of over 3 has above 90% transmittance at near infrared light. For PI film, UV light is not transmitted into the films and the transmittance of IR light is about 86%. Nanoindentation experiments show an almost uniform hardness and a reduced Young’s modulus of about 0.181 ± 0.03 and 3.21 ± 0.06 GPa, respectively. Thermomechanical characteristics are greatly influenced for specimens with thicknesses of 8.3 and 25 μm due to the higher relaxation of thin PI films. Thus, the material characteristics analysis provides useful information for the design and fabrication of flexible substrates.
A flexible tactile sensor and a flexible physiological sensor are investigated in this study. Flexible tactile sensors were designed and fabricated using printing technologies for applications in multi-touching and large area sensing. The sensors are based on polyimide substrates, with thixotropy materials used to print novel organic resistance and a bump on the top polyimide. The gap between the bottom electrode layer and the resistance layer provides a buffer distance to reduce erroneous contact during extreme bending. Experimental results show that the top membrane with a bump protrusion and the resistance layer have a large deflection and a quick sensitive response. The bump and resistance layer provide a concentrated force of von Mises stress and inertial force on the top membrane center. Linear algorithm matrixes with Gaussian elimination are used for multi-touching detection.
The flexible physiological sensor is based on a PI substrate for a printed circuit and uses on a non-woven material to package the module with a hot-press. The module is sufficiently thin and light to be pasted on human wrists for monitoring body temperature and heart beat. The thickness of the flexible physiological sensor is about 2 mm and the minimum radius of curvature is about 2.5 cm. The sensor can detect a temperature and heart rate of 25 - 45℃ and 50 - 200 bpm, respectively. The feasibility studies show that printing technology is appropriate for large area applications and that it can be used for the low-cost fabrication of flexible electronics.
論文目次 Contents

Abstract......................................................................................................................... i
Chinese Abstract........................................................................................... iii
Acknowledgement........................................................................................ v
List of Table Captions................................................................................. ix
List of Figure Captions ............................................................................. x
Symbols ........................................................................................................... xvi

Chapter 1 Introduction........................................................................ 1
1.1 Flexible electronics............................................................................ 1
1.2 Literature review............................................................................... 2
1.2.1 Flexible tactile sensors.......................................................... 2
1.2.2 Physiological sensors............................................................. 3
1.3 Motivation and objectives................................................................. 5
1.4 Thesis organization............................................................................ 7

Chapter 2 Fundamental Theories and Designs.................... 9
2.1 Piezoelectric mechanism................................................................... 9
2.2 Membrane deflection......................................................................... 13
2.3 Control frame for tactile multi-touch.............................................. 14
2.4 Physiological signal............................................................................ 17

Chapter 3 Flexible Material Analytical Techniques.......... 24
3.1 Material molecular identification..................................................... 24
3.1.1 X-ray diffraction.................................................................... 24
3.1.2 Fourier transform infrared spectroscopy...........................
26
3.1.3 Spectorphotometer................................................................ 27
3.1.4 TGA and DSC analyses......................................................... 29
3.2 Surface morphological measurement.............................................. 30
3.2.1 Atomic force microscope....................................................... 30
3.2.2 Scanning electron microscope.............................................. 32
3.3 Characteristic measurements of mechanical behaviors................. 33
3.3.1 Dynamic mechanical analysis............................................... 33
3.3.2 Nanoindenter test.................................................................. 34
3.3.3 Microtensile and bending tests............................................. 35

Chapter 4 Material Characteristics Analyses........................ 37
4.1 Phase transformation........................................................................ 37
4.2 Surface morphologies........................................................................ 42
4.3 Optical spectrum................................................................................ 45
4.4 Thermomechanical behaviors.......................................................... 51
4.5 Nanoindentation phenomena............................................................ 59
4.6 Mechanical characteristics................................................................ 63
4.6.1 Tension test............................................................................. 63
4.6.2 Bending test............................................................................ 69
4.6.3 Penetration test...................................................................... 71

Chapter 5 Flexible Electronics Sensors..................................... 73
5.1 Flexible tactile sensor........................................................................ 73
5.1.1 Structural design................................................................... 73
5.1.2 Printed fabrication of tactile sensor.................................... 76
5.1.3 Printed characteristics analysis............................................ 80
5.1.4 Response measurement......................................................... 82
5.2 Flexible physiological sensor............................................................ 87
5.2.1 Physiological modular fabrication....................................... 88
5.2.2 Packaged sensor..................................................................... 91
5.2.3 Propertied calibrations......................................................... 92
5.2.4 Physiological response metrology........................................ 95

Chapter 6 Conclusions and Future Works.............................. 98
6.1 Conclusions........................................................................................ 98
6.2 Future works...................................................................................... 99

References.................................................................................................... 100
Abbreviations............................................................................................ 110
Appendix A.................................................................................................. 111
Biography..................................................................................................... 120
Publications................................................................................................. 121
參考文獻 References
[1] S. Tsuyoshi, T. Makoto, N. Yoshiaki, N. Shintaro, K. Yusaku, S. Takayasu, S. Takao, A large-area wireless power-transmission sheet using printed organic transistors and plastic MEMS switches, Nature Materials, vol. 6, pp. 413-417, 2007.
[2] C. Lungenschmied, G. Dennler, H. Neugebauer, S. N. Sariciftci, M. Glatthaar, Flexible, long-lived, large-area, organic solar cells, Solar Energy Materials and Solar Cells, vol. 91, pp. 379-384, 2007.
[3] R. A. Street, W. S. Wong, S. E. Ready, M. L. Chabinyc, A. C. Arias, S. Limb, A. Salleo, R. Lujan, Jet printing flexible displays, Materials Today, vol. 9, pp. 32-37, 2006.
[4] P. Tehrani, J. Isaksson, W. Mammo, M. R. Andersson, N. D. Robinson, M. Berggren, Evaluation of active materials designed for use in printable electrochromic polymer displays, Thin Solid Films, vol. 515, pp. 2485-2492, 2006.
[5] W. S. Wong, R. Lujan, J. H. Daniel, S. Limb, Digital lithography for large-area electronics on flexible substrates, Journal of Non-Crystalline Solids, vol. 352, pp. 1981-1985, 2006.
[6] S. H. Ko, J. Chung, H. Pan, C. P. Grigoropoulos, D. Poulikakos, Fabrication of multilayer passive and active electric components on polymer using inkjet printing and low temperature laser processing, Sensors and Actuators A: Physical, vol.134, pp. 161-168, 2007.
[7] F. Recart, I. Freire, L. Perez, R. L. Aurrekoetxea, J. C. Jimeno, and G. Bueno, Screen printed boron emitters for solar cells, Solar Energy Materials and Solar Cells, vol. 91, pp. 897-902, 2007.
[8] A. D. Taylor, E. Y. Kim, V. P. Humes, J. Kizuka, and L. T. Thompson, Inkjet printing of carbon supported platinum 3-D catalyst layers for use in fuel cells, Journal of Power Sources, vol. 171, pp. 101-106, 2007.
[9] K. Tsutao, H. Masahiro, S. Masahiro, N. Keizo, and T. Hidekazu, Effect of material internal pressure in curing process of SMC roll forming, Journal of Materials Processing Technology, vol. 155, pp. 1577-1582, 2004.
[10] S. Sanaur, A. Whalley, B. Alameddine, M. Carnes, C. Nuckolls, Jet-printed electrodes and semiconducting oligomers for elaboration of organic thin-film transistors, Organic Electronics, vol. 7, pp. 423-427, 2006.
[11] Y. Tanaka, A. Nakai, E. Iwase, T. Goto, K. Matsumoto, I. Shimoyama, Triaxial tactile sensor chips with piezoresistive cantilevers mountable on curved surface, Asia-Pacific Conference on Transducers and Micro-Nano Technology, Tainan, Taiwan, 2008.
[12] K. Noda, H. Onoe, E. Iwase, K. Matsumoto, I. Shimoyama, Flexible tactile sensor sheet with thin Si piezoresistive cantilevers peeled off from SOI with PDMS sheet, Asia-Pacific Conference on Transducers and Micro-Nano Technology, Tainan, Taiwan, 2008.
[13] A. L. Briseno, S. C. B. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, Z. Bao, Patterning organic single-crystal transistor arrays, Nature, vol. 444, pp. 913-917, 2006.
[14] A. Pecora, L. Maiolo, M. Cuscunà, D. Simeone, A. Minotti, L. Mariucci, G. Fortunato, Low-temperature polysilicon thin film transistors on polyimide substrates for electronics on plastic, Solid-State Electronics, vol. 52, pp. 348-352, 2008.
[15] S. Y. Xiao, L. F. Che, X. X. Li, Y. L. Wang, A novel fabrication process of MEMS devices on polyimide flexible substrates, Microelectronic Engineering, vol. 85, pp. 452-457, 2008.
[16] N. B. Cho, T. H. Lim, Y. M. Jeon, M. S. Gong, Humidity sensors fabricated with photo-curable electrolyte inks using an ink-jet printing technique and their properties, Sensors and Actuators B: chemical, vol. 130, pp. 594-598, 2008.
[17] M. Sohgawa, H. Onishi, Y. M. Huang, T. Kanashima, K. Yamashita, M. Noda, M. Okuyama, M. Ikeda, H. Noma, Detection of normal and shear stresses by tactile sensors with piezoresistive micro-cantilever and elastomer, Asia-Pacific Conference on Transducers and Micro-Nano Technology, Tainan, Taiwan, 2008.
[18] T. V. Papakostas, J. Lima, M. Lowe, A large area force sensor for smart skin applications, IEEE Sensors, vol. 2, pp. 1620-1624, 2002.
[19] J. Engel, J. Chen, Z. Fan, C. Liu, Polymer micromachined multimodal tactile sensors, Sensors and Actuators A : physical, vol. 117, pp. 50-61, 2005.
[20] A. Wisitsoraat, V. Patthanasetakul, T. Lomas, A. Tuantranont, Low cost thin film based piezoresistive MEMS tactile sensor, Sensors and Actuators A: Physical, vol. 139, pp. 17-22, 2007.
[21] K. Takashima, S. Horie, T. Mukai, K. Ishida, K. Matsushige, Piezoelectric properties of vinylidene fluoride oligomer for use in medical tactile sensor applications, Sensors and Actuators A: Physical, vol. 144, pp. 90-96, 2008.
[22] H. Schwenke, F. Wäldele, C. Weiskirch, H. Kunzmann, Opto-tactile Sensor for 2D and 3D measurement of small structures on coordinate measuring machines, CIRP Annals - Manufacturing Technology, vol. 50, pp. 361-364, 2001.
[23] H. K. Lee, S. I. Chang, E. Yoon, A flexible polymer tactile sensor: fabrication and modular expandability for large area deployment, Journal of Microelectromechanical Systems, vol. 15, pp. 1681-1686, 2006.
[24] K. N. Bachus, A. L. DeMarco, K. T. Judd, D. S. Horwitz, D. S. Brodke, Measuring contact area, force, and pressure for bioengineering applications: using Fuji film and TekScan systems, Medical Engineering and Physics, vol. 28, pp. 483-488, 2006.
[25] E. Defay, C. Millon, C. Malhaire, D. Barbier, PZT thin film integration for the realization of a high sensitivity pressure microsensor based on a vibrating membrane, Sensors and Actuators A: Physical, vol. 99, pp. 64-67, 2002.
[26] http://www.tekscan.com/
[27] http://www.xsensor.com/
[28] X. Chen, W. Xie, E. T. Lim, W. Chris, PDA-based portable ECG monitoring for cardiovascular disease patients, Journal of Electrocardiology, vol. 39, pp. 31-32, 2006.
[29] E. A. Crone, R. J. M. Somsen, K. Zanolie, M. W. V. Molen, A heart rate analysis of developmental change in feedback processing and rule shifting from childhood to early adulthood, Journal of Experimental Child Psychology, vol. 95, pp. 99-116, 2006.
[30] F. Axisa, C. Gehin, G. Delhomme, C. Collet, O. Robin, A Dittmar, Wrist ambulatory monitoring system and smart glove for real emotional, sensorial and physiological analysis, Proceedings of the 26th Annual International Conference of the IEEE EMBS, vol. 1, pp. 2161-2164, 2004.
[31] R. Haux C. Kulikowski, S. Schattauer, The agenda of wearable healthcare, IMIA Yearbook of Medical Informatics: Ubiquitous Health Care Systems, vol. 1, pp. 125-138, 2005.
[32] S. Choi, Z. Jiang, A novel wearable sensor device with conductive fabric and PVDF film for monitoring cardiorespiratory signals, Sensors and Actuators A: Physical, vol. 128, pp. 317-326, 2006.
[33] B. S. Lin, B. S. Lin, N. K. Chou, F. C. Chong, S. J. Chen, Real-time wireless physiological monitoring system, IEEE Transactions on Information Technology in Biomedicine, vol.99, pp. 1-9, 2006.
[34] A. Milenkovic, C. Otto, E. Jovanov, Wireless sensor networks for personal health monitoring: issues and an implementation, Computer Communications, vol. 29, pp. 2521-2533, 2006.
[35] S. N. Yu, J. C. Cheng, A wireless physiological signal monitoring system with integrated Bluetooth and WiFi technologies, IEEE-Engineering in Medicine and Biology Society, vol. 1, pp. 2203-2206, 2005.
[36] L. Jones, N. Deo, B. Lockyer, Wireless physiological sensor system for ambulatory use, Wearable and Implantable Body Sensor Networks, BSN International Workshop, April 3-5, 2006.
[37] M. Catrysse, R. Puers, C. Hertleer, L. V. Langenhove, H. V. Egmond, D. Matthys, Fabric sensors for the measurement of physiological parameters, Transducers, Solid-State Sensors, Actuators and Microsystems, 12th International Conference, Boston, USA, June 8-12, 2003.
[38] C. Johan, H. Bart, P. Robert, A portable multi-sensor data-logger for medical surveillance in harsh environments, Sensors and Actuators A: Physical, vol. 123, pp. 423-429, 2005.
[39] K. Montgomery, C. Mundt, G. Thonier, A. Tellier, U. Udoh, V. Barker, R. Ricks, L. Giovangrandi, P. Davies, Y. Cagle, J. Swain, J. Hines, G. Kovacs, Lifeguard - A personal physiological monitor for extreme environments, 26th Annual International Conference of the Engineering in Medicine and Biology Society, San Francisco, USA, Sept. 1-5, 2004.
[40] S. Anandan, S. Pitchumani, B. Muthuraaman, P. Maruthamuthu, Heteropolyacid impregnated PVDF as a solid polymer electrolyte for dye-sensitized solar cells, Solar Energy Materials and Solar Cells, vol. 90, pp. 1715-1720, 2006.
[41] A. Tsuyoshi, K. Takaya, N. Yoshinori, Electrochemical properties of dye-sensitized solar cells fabricated with PVDF-type polymeric solid electrolytes, Journal of Photochemistry and Photobiology A: Chemistry, vol. 164, pp. 111-115, 2004.
[42] A. Mokrini, M. A. Huneault, Proton exchange membranes based on PVDF/SEBS blends, Journal of Power Sources, vol. 154, pp. 51-58, 2006.
[43] H. J. Kim, H. J. Kim, Y. G. Shul, H. S. Han, Nafion–Nafion/polyvinylidene fluoride–Nafion laminated polymer membrane for direct methanol fuel cells, Journal of Power Sources, vol. 135, pp. 66-71, 2004.
[44] W. H. Seol, Y. M. Lee, J. K. Park, Preparation and characterization of new microporous stretched membrane for lithium rechargeable battery, Journal of Power Sources, vol. 163, pp. 247-251, 2006.
[45] P. Periasamy, K. Tatsumi, M. Shikano, T. Fujieda, Y. Saito, T. Sakai, M. Mizuhata, A. Kajinami, S. Deki, Studies on PVdF-based gel polymer electrolytes, Journal of Power Sources, vol. 88, pp. 269-273, 2000.
[46] B. Choi, S. Lee, H. R. Choi, S. Kang, Development of anthropomorphic robot hand with tactile sensor, IEEE/RSJ International Conference on SKKU Hand II Intelligent Robots and Systems, Beijing, China, Oct. 9 to 15, 2006.
[47] C. J. L. Constantino, A. E. Job, R. D. Simoes, J. A. Giacometti, V. Zucolotto, O. N. Oliveira, G. Gozzi, D. L. Chinaglia, Phase transition in poly(vinylidene fluoride) investigated with micro-raman spectroscopy, Applied Spectroscopy, vol. 59, pp. 275-279, 2005.
[48] A. Salimi, A. A. Yousefi, Analysis method-FTIR studies of beta-phase crystal formation in stretched PVDF films, Polymer Testing, vol. 22, pp. 699-704, 2003.
[49] N. S. Mohamed, A. K. Arof, Investigation of electrical and electrochemical properties of PVDF-based polymer electrolytes, Journal of Power Sources, vol. 132, pp. 229-234, 2004.
[50] J. F. Mano, V. Sencadas, A. M. Costa, S. L. Mendez, Dynamic mechanical analysis and creep behaviour of β-PVDF films, Materials Science and Engineering A, vol. 370, pp. 336-340, 2004.
[51] A. M. Vinogradov, F. Holloway, Dynamic mechanical testing of the creep and relaxation properties of polyvinylidene fluoride, Polymer Testing, vol. 19, pp. 131-142, 2000.
[52] B. E. Mohajir, N. Heymans, Changes in structural and mechanical behaviour of PVDF with processing and thermomechanical treatments, Polymer, vol. 42, pp. 5661-5667, 2001.
[53] A. Biswas, R. Gupta, N. Kumar, D. K. Avasthi, J. P. Singh, S. Lotha, D. Fink, S. N. Paul, S. K. Bose, Recrystallization in polyvinylidene fluoride upon low fluence swift heavy ion impact, Applied Physics Letters, vol. 78, pp. 4136-4138, 2001.
[54] B. Edward, P. Roman, S. Yehoshua, H. I. Mordechai, S. Vladimir, S. Semion, S. Avigdor, B. Yelena, Polyvinylidene fluoride piezoelectric polymer for integrated infrared optics applications, Optical Materials, vol. 27, pp. 429-434, 2004.
[55] M. Ryosuke, T. Akira. Wireless flexible capacitive sensor based on ultra-flexible epoxy resin for strain measurement of automobile tires, Sensors and Actuators A: Physical, vol. 140, pp. 32-42, 2007.
[56] S. Briand, A. Colin, E. Gangadharaiah, P. Vela, L. Dubois, N. F. R. Thiery, Micro-hotplates on polyimide for sensors and actuators, Sensors and Actuators A: Physical, vol. 132, pp. 317-324, 2006.
[57] S. A. Dayeh, D. P. Butler, Z. C. Butler, Micromachined infrared bolometers on flexible polyimide substrates, Sensors and Actuators A: Physical, vol. 118, pp. 49-56, 2005.
[58] S. J. Park, H. Y. Lee, Effect of atmospheric-pressure plasma on adhesion characteristics of polyimide film, Journal of Colloid and Interface Science, vol. 285, pp. 267-272, 2005.
[59] C. T. Kuo, M. C. Yip, K. N. Chiang, C. Tsou, Characterization study of time-and temperature-dependent mechanical behavior of polyimide materials in electronic packaging applications, Journal of Electronic Materials, vol. 34, pp. 272-281, 2005.
[60] S. J. Park, H. S. Kim, F. L. Jin, Influence of fluorination on surface and dielectric characteristics of polyimide thin film, Journal of Colloid and Interface Science, vol. 282, pp. 238-240, 2005.
[61] W. J. Park, S. G. Yoon, W. S. Jung, D. H. Yoon, Effect of dielectric barrier discharge on surface modification characteristics of polyimide film, Surface and Coatings Technology, vol. 201, pp. 5017-5020, 2007.
[62] Y. Li, S. Y. Fu, Y. Q. Li, Q. Y. Pan, G. Xu, C. Y. Yue, Improvements in transmittance, mechanical properties and thermal stability of silica-polyimide composite films by a novel sol-gel route, Composites Science and Technology, vol. 67, pp. 2408-2416, 2007.
[63] M. H. Tsai, S. J. Liu, P. C. Chiang, Synthesis and characteristics of polyimide/titania nano hybrid films, Thin Solid Films, vol. 515, pp. 1126-1131, 2006.
[64] J. Huang, Y. Xiao, K. Y. Mya, X. Liu, C. He, J. Daib, Y. P. Siowb, Thermomechanical properties of polyimide-epoxy nanocomposites from cubic silsesquioxane epoxides, Journal of Materials Chemistry, vol. 14, pp. 2858-2863, 2004.
[65] S. Hur, S. I. Hong, D. K. Shin, Mechanical properties of photosensitive polyimide film by nanoindentation and microtensile test, Key Engineering Materials, vol. 297, pp. 237-243, 2005.
[66] J. S. Harrison, Z. Ounaies, Piezoelectric polymer, NASA Langley Research Center, 2001.
[67] Y. Yamada, I. Fujimoto, T. Morizono, Y. Umetani, T. Maeno, D. Yamada, Development of artificial skin surface ridges with vibrotactile sensing elements for incipient slip detection, International Conference on Multisensor Fusion and Integration for Intelligent Systems, Germeny, Baden-Baden, Aug 20-22, 2001.
[68] J. R. Vinson, The behavior of thin walled structures: beams, plates and shells, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1989.
[69] A. Chouaf, C. Malhaire, M. L. Berre, M, Dupeux, F. Pourroy, D. Barbier, Stress analysis at singular points of micromachined silicon membranes, Sensors and Actuators A: Physical, vol. 84, pp. 109-115, 2000.
[70] H. R. Chuang, W. T. Chen, Computer simulation of the human-body effects on a circular-loop-wire antenna for radio-pager communications at 152, 280, and 400 MHz, IEEE Transactions On Vehicular Technology, vol. 46, pp. 544-559, 1997.
[71] A. D. Tinniswood, C. Furse, O. P. Gandhi, Power deposition in the head and neck of an anatomically based human body model for plane wave exposures, Physics in Medicine and Biology, vol. 43, pp. 2361-2378, 1998.
[72] Y. Saito, I. Nagano, H. Haruki, A novel loop antenna for a wristwatch phone, IEICE Transactions on Communications, vol. 5, pp. 1423-1430, 2001.
[73] C. A. Balanis, Antenna theory analysis and design, John Wiley & Sons, vol. 1, New York, 2nd edn., 1997.
[74] V. Sencadas, R. G. Filho, S. L. Mendez, Processing and characterization of a novel nonporous poly(vinilidene fluoride) films in the β phase, Journal of Non-Crystalline Solids, vol. 352, pp. 2226-2229, 2006.
[75] B. Mohammadia, A. A. Yousefi, S. M. Bellaha, Effect of tensile strain rate and elongation on crystalline structure and piezoelectric properties of PVDF thin films, Polymer Testing, vol. 26, pp. 42-50, 2007.
[76] V. Sencadas, M. S. Lanceros, R. G. Filho, D. L. Chinaglia, A. S. Pouzada, Influence of the processing conditions and corona poling on the morphology of β-PVDF, International Symposium on Electrets, vol. 1, pp. 161-164, 2005.
[77] A. M. Jason, L. T. Dana, R. L. Douglas, F. L. Desmond, D. F. Benny, S. W. Leah, The effect of uni-axial stretching on the roughness of microfiltration membranes, Journal of Membrane Science, vol. 280, pp. 712-719, 2006.
[78] R. M. D. Marta, H. M. G. Correia, S. L. Mendez, Atomistic modeling of processes involved in poling of PVDF, Computational Materials Science, vol. 33, pp. 230-236, 2005.
[79] D. F. Bahr, J. W. Hoehn, N. R. Moody, W. W. Gerberich, Adhesion and acoustic emission analysis of failures in nitride films with a metal interlayer, Acta Materialia, vol. 45, pp. 5163-5175, 1997.
[80] J. S. Chen, J. G. Duh, Indentation behavior and Young's modulus evaluation in electroless Ni modified CrN coating on mild steel, Surface and Coatings Technology, vol. 139, pp. 6-13, 2001.
[81] C. H. Du, B. K. Zhu, Y. Y. Xu, A study on the relationship between the crystal structure and hard elasticity of PVDF fibers, Macromolecular Materials and Engineering, vol. 290, pp. 786-791, 2005.
[82] T. H. Fang, W. J. Chang, Nanoindentation characteristics on polycarbonate polymer film, Microelectronics Journal, vol. 35, pp. 595-599, 2004.
[83] S. Yumi, T. Hiroaki, A study on the circular patch antennas using conductive non-woven fiber fabrics, IEEE, Antennas and Propagation Society International Symposium, vol. 1, pp. 282-284, 2000.
[84] T. Gerhard, K. Tunde, L. Paul, Wearable computing: packaging in textiles and clothes, 14th European Microelectronics and Packaging Conference & Exhibition, Friedrichshafen, Germany, June 23-25, 2003.
[85] C. Y. Ryu, S. H. Nam, S. Kim, Conductive rubber electrode for wearable health monitoring, Proceedings IEEE, Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, September 1-4, 2005.
[86] D. J. Harrison, K. Fluri, K. Seiler, Z. Fan, C. S. Effenhauser, A. Manz, Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip, Science, vol. 261, pp. 895-897, 1993.
[87] K. Sato, A. Egami, T. Odake, M. Tokeshi, M. Aihara, T. Kitamori, Monitoring of intercellular messengers released from neuron networks cultured in a microchip, Journal of Chromatography: A, vol. 1111, pp. 228-232, 2006.
[88] B. Michel, S. Christophe, B. Nicolas, P. Laurent, H. Georges, Microfluidic synthesis and assembly of reactive polymer beads to form new structured polymer materials, Chemical Engineering Journal, vol. 135, pp. 93-98, 2008.
[89] Z. W. Zhong, Z. F Wang, Y. H. Tan, Chemical mechanical polishing of polymeric materials for MEMS applications, Microelectronics Journal, vol. 37, pp. 295-301, 2006.
[90] G. Z. Ebrahim, S. Mohamad, T. Daniel, Novel direct-write CMOS-based laboratory-on-chip: Design, assembly and experimental results, Sensors and Actuators A: Physical, vol. 134. pp. 27-36, 2007.
[91] C. Patrick, W. David, A. Bogdan, Applications of ink-jet printing technology to BioMEMS and microfluidic systems, Journal of the Association for Laboratory Automation, vol. 7, pp. 33-39, 2002.
[92] M. Ebara, J. M. Hoffman, P. S. Stayton, A. S. Hoffman, Surface modification of microfluidic channels by UV-mediated graft polymerization of non-fouling and ‘smart’ polymers, Radiation Physics and Chemistry, vol. 76, pp. 1409-1413, 2007.
[93] C. H. Lin, C. H. Chao, C. W. Lan, Low azeotropic solvent for bonding of PMMA microfluidic devices, Sensors and Actuators B: Chemical, vol. 121, pp. 698-705, 2007.
[94] R. Lenigk, R. H. Liu, M. Athavale, Z. Chen, D. Ganser, J. Yang, C. Rauch, Y. Liu, B. Chan, H. Yu, M. Ray, R. Marrero, P. Grodzinski, Plastic biochannel hybridization devices: a new concept for microfluidic DNA arrays, Analytical Biochemistry, vol. 311, pp. 40-49, 2002.
[95] Y. Murakami, T. Endo, S. Yamamura, N. Nagatani, Y. Takamura, E. Tamiya, On-chip micro-flow polystyrene bead-based immunoassay for quantitative detection of tacrolimus, Analytical Biochemistry, vol. 334, pp. 111-116, 2004.
[96] C. Martin, A. Llobera, T. Leichle, G. Villanueva, A. Voigt, V. Fakhfouri, J. Y. Kim, N. Berthet, J. Bausells, G. Gruetzner, L. Nicu, J. Brugger, F. Perez-Murano, Novel methods to pattern polymers for microfluidics, Microelectronic Engineering, vol. 85, pp. 972-975, 2008.
[97] T. Fujii, PDMS-based microfluidic devices for biomedical applications, Microelectronic Engineering, vol. 61, pp. 907-914, 2002.
[98] P. I. Oden, G. Y. Chen, R. A. Steele, R. J. Warmack, T. Thundat, Viscous drag measurements utilizing microfabricated cantilevers, Applied Physics Letters, vol. 68, pp. 3814-3816, 1996.
[99] T. Naik, E. K. Longmire, Dynamic response of a cantilever in liquid near a solid wall, Sensors and Actuators A: Physical, vol. 102, pp. 240-254, 2003.
[100] R. S. Wiederkehr, M. C. Salvadori, J. Brugger, F. T. Degasperi, M. Cattani, The gas flow rate increase obtained by an oscillating piezoelectric actuator on a micronozzle, Sensors and Actuators A: Physical, vol. 144, pp. 154-160, 2008.
[101] S. Takeuchi, Y. Yoshida, D. Ziegler, K. Mabuchi, T. Suzuki, Parylene flexible neural probe with micro fluidic channel, 17th IEEE International Conference on Micro Electro Mechanical Systems, Netherlands, Maastricht, January 25-29, 2004.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2009-12-25起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2009-12-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw