進階搜尋


 
系統識別號 U0026-0812200915033949
論文名稱(中文) 生質柴油於引擎排氣之有害空氣污染物及生物毒性研究
論文名稱(英文) Hazardous air pollutants and biological toxicities of emissions from diesel engines running on biodiesels
校院名稱 成功大學
系所名稱(中) 環境工程學系碩博士班
系所名稱(英) Department of Environmental Engineering
學年度 97
學期 1
出版年 98
研究生(中文) 劉育穎
研究生(英文) Yu-yin Liu
學號 p5893103
學位類別 博士
語文別 中文
論文頁數 138頁
口試委員 口試委員-王應然
指導教授-林達昌
口試委員-陳瑞仁
口試委員-趙木榮
口試委員-李文智
中文關鍵字 生物毒性  醛酮類化合物  多環芳香烴  柴油引擎  生質柴油 
英文關鍵字 Diesel engine emissions  PAHs  Carbonyls  Biodiesel  Toxicity 
學科別分類
中文摘要 本研究使用不同生質柴油進行柴油引擎排氣之化學及生物毒性特徵研究,測試引擎為柴油發電機及引擎動力計,其中燃料油品包含石化柴油、生質柴油(包含市售生質柴油及棕櫚生質柴油),第一部分先以柴油發電機建立毒性測試方法,並評估攙配不同比例生質柴油對排氣中氣相污染物及微粒潛在的生物毒性,後續再利用引擎動力計探討於引擎不同轉速及負載下使用生質柴油的排氣差異,針對各測試油品之引擎排放廢氣進行毒物採樣及分析,包含多環芳香烴(PAHs) 、醛酮類化合物(carbonyls),分析儀器為GC/MS以及HPLC;引擎排氣中生物毒性則以Microtox test、3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide (MTT) assay以及單細胞電泳法 (Single-cell electrophoresis;Comet assay)等三種測試方式評估其急毒性、細胞毒性以及基因毒性。
實驗結果發現,引擎使用不同攙配比例的生質柴油時均發現氣相污染物TUV5值高於微粒,代表此時引擎產生的有害空氣污染物多於引擎以柴油為燃料的排放。相對於各攙配比例的生質柴油,柴油微粒展現較高的單位毒性,也就是說使用生質柴油可以降低引擎排氣中的微粒毒性,惟排氣中微粒排放量的增加可能會削減生質柴油應用的優勢。個別油品對於引擎負載所造成的氣相污染物與微粒毒性差異不同。氣相污染物與微粒相較下,發現氣相污染物會明顯抑制細胞生長的作用,此結果與急毒性實驗結果相同。而除了B100之外,當引擎添加部份生質柴油後,排氣中氣相污染物細胞毒性有提高的現象。基因毒性測試結果顯示柴油、B10、B50及B100的氣相污染物並無明顯造成BEAS-2B細胞DNA損傷的現象。
氣相有害空氣污染物部份,添加生質柴油在引擎轉速1500 rpm時未具PAHs排放濃度減量效果;在引擎轉速提高為2000以上至2500 rpm時,市售生質柴油(油品B1)以及棕櫚生質柴油(PB10)之PAHs排放濃度均低於油品D。Carbonyls排放濃度高於PAHs數百倍且趨勢亦不同,生質柴油的添加對於排氣中Carbonyls減量效果在各引擎轉速測試時並不顯著。當增加柴油輸出馬力時,三種測試油品之Carbonyls總排放濃度均可見遞減之現象,在引擎輸出馬力為20 kW以上時,油品B1以及PB10之PAHs總排放濃度均低於油品D,顯示引擎在較高輸出馬力下,添加生質柴油有降低排氣中Carbonyls以及PAHs總排放濃度的效果。分析柴油引擎排氣中氣相及微粒PAHs毒性當量BaPeq,三種測試油品結果發現氣相PAHs毒性當量高於微粒PAHs毒性當量,此為氣相PAHs排放濃度高於微粒甚多所致。油品D排放PAHs總毒性當量BaPeq高於油品B1以及PB10,顯示添加生質柴油有降低排氣中PAHs總毒性的效果。
比較市售柴油、B1、PB10的細胞毒性,市售柴油及PB10的細胞毒性較低,B1在各種引擎條件操作下均展現最高的細胞毒性。油品B1的氣相污染物基因毒性在大部分的引擎操作條件下高於市售柴油及PB10。不似細胞毒性,市售柴油、B1、PB10的氣相及微粒污染物基因毒性比較結果發現氣相污染物並無明顯高於微粒毒性。
英文摘要 This study elucidates the effect of biodiesel on the emission of hazardous air pollutants (PAHs and Carbonyls) generated from diesel engines, and the related biotoxicity characteristics. Initially, a generator was used to set up the biological toxicity assessments, which included the Microtox test, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay and the Single-cell electrophoresis (Comet assay) for evaluating the acute toxicity, cytotoxicity and genotoxicity, respectively, of gaseous and particulate extracts from diesel engine exhaust. The engine was tested using diesel fuel and biodiesel blends (10, 30, 50, 75 and 100% of biodiesel by volume). The operating conditions of the diesel engine were set as idling, 10, 33 and 55% loads.
A diesel engine connected to a dynamometer was used to generate exhaust, which contained hazardous air pollutants (PAHs and Carbonyls). The gaseous-phase and particulate-phase PAHs in the emissions were collected using XAD-16 resin and glassfiber filter, respectively. They were subsequently analyzed with a GC/MS. The carbonyl compounds in the exhaust were trapped with a 2,4-dinitrophenylhydrazine (2,4-DNPH) solution in an impinger and converted to the corresponding hydrazone derivatives, which were then analyzed using a HPLC with a UV detector.
The Microtox test indicates that the TUVs (toxicity unit per liter exhaust sampled, TU/L-exhaust) in the gaseous extracts were three- to five- fold of the particulate extracts. Diesel particulates had the highest unit toxicity, TUW (toxicity unit per µg soluble organic fraction of particulate, TU/µg particle SOF) of all of the other biodiesel blends. Similar to the Microtox tests result, the effect of biodiesel in MTT assay demonstrated higher cytotoxicity in the gaseous products than the particulates. The comet assay results reveal that no significant genotoxic effects were found for D, B10, B50 and B100.
The toxicity assessments results indicate, B10 had a higher acute toxicity and cytotoxicity than diesel, indicating that blending with boidiesel may have adverse health effects, possibly due to the toxic gases in the emission. At various engine loads, higher toxicities were associated with greater carbonyl emissions in diesel exhaust except B10, indicating that the carbonyls may not be the pollutants that are mainly responsible for the toxicity of emissions from biodiesel.
For the study of chemical and biological toxicitites of emissions from D, B1 and PB10, an engine dynamometer was used. Carbonyls and PAHs emissions from B1 and PB10 at high engine speed and power decreased as compared to D. The BaPeq of gaseous pollutants were higher than that of the particulate, and that of D was found higher than B1 and PB10, indicating that blending biodiesel lowers the toxicity of the exhaust. While B1 contributes the highest cytotoxicity and genotoxicity under most engine operations amid the test fuels. No accordant result was found for the BaPeq and biotoxicity of the test fuels, indicating that some unknown toxics may be dominate in the emissions.
論文目次 總目錄

第一章 前言...................................................................................................1
1-1 研究緣起..................................................................................................1
1-2 研究目的..................................................................................................2

第二章 文獻回顧...........................................................................................3
2-1有害空氣污染物.......................................................................................3
2-1-1 多環芳香烴化合物之性質...........................................................6
2-1-2 多環芳香烴化合物之致癌性及致突變性...................................6
2-1-3 醛、酮化合物性質........................................................................11
2-1-4 醛酮化合物之健康危害性.........................................................14
2-2 柴油引擎污染研究................................................................................19
2-2-1 柴油引擎尾氣污染物特性.........................................................19
2-2-2 柴油引擎多環芳香烴之排放特徵.............................................21
2-2-3 柴油引擎醛酮類之排放特徵.....................................................22
2-3 生質柴油................................................................................................22
2-3-1 生質柴油之製造及特性.............................................................27
2-3-2 生質柴油引擎污染物之排放特徵.............................................30
2-4 生物毒性測試方法................................................................................31
2-4-1 微量空氣生物毒性測試方法.....................................................31
2-5 空氣生物毒性測試相關研究...............................................................33
2-5-1 空氣中微粒特性與細微粒之生物毒性.....................................33
2-5-2 柴油微粒生物毒性.....................................................................36

第三章 實驗方法與設備.............................................................................39
3-1 採樣設備及方法....................................................................................41
3-1-1 柴油引擎發電機及引擎動力計.................................................41
3-1-2 測試油品.....................................................................................41
3-1-3 有害空氣污染物採集設備.........................................................44
3-1-4 引擎尾氣冷凝器及其他周邊設備.............................................45
3-1-5 引擎尾氣採樣方法.....................................................................46
3-2 引擎尾氣分析設備及方法....................................................................48
3-2-1微粒重量及粒徑分布分析...........................................................48
3-2-2 SEM/EDS分析.............................................................................51
3-2-3 PAHs化合物分析.........................................................................52
3-2-4 醛酮類化合物分析.....................................................................53
3-2-5 細菌性毒性測試:MicrotoxTM.....................................................54
3-2-6 細胞存活率試驗(MTT assay)...................................................56
3-2-7 慧星試驗(Comet assay).............................................................61

第四章 實驗品質保證與品質控制...........................................................65
4-1 採樣程序之QA/QC...............................................................................65
4-2 醛酮類化合物分析程序之QA/QC.......................................................65
4-3 PAHs分析程序之QA/QC......................................................................69
4-4 生物毒性分析程序之QA/QC...............................................................74

第五章 結果與討論.....................................................................................79
5-1柴油發電機.............................................................................................79
5-1-1微粒濃度及粒徑分布...................................................................79
5-1-2 微粒顯微結構及元素組成SEM/EDS........................................83
5-1-3 急毒性測試MicrotoxTM..............................................................87
5-1-4 細胞毒性測試MTT assay...........................................................93
5-1-5 基因毒性測試Comet assay.........................................................97
5-2 柴油引擎動力計測試............................................................................99
5-2-1 微粒排放與引擎表現.................................................................99
5-2-2 柴油引擎添加生質柴油排放有害空氣污染物分析...............103
5-2-2-1 不同生質油品添加於引擎之排氣中氣相有害空氣污染物濃度差異....................................................................................103
5-2-2-2 不同生質油品添加於引擎之排氣中微粒有害空氣污染物排放差異....................................................................................105
5-2-2-3 引擎於不同輸出馬力下排放有害空氣污染物差異............106
5-2-2-4 不同生質油品添加於引擎之排氣中有害空氣污染物毒性當量............................................................................................108
5-2-3 柴油引擎動力計急毒性測試....................................................111
5-2-4 柴油引擎動力計細胞毒性測試................................................114
5-2-5 柴油引擎動力計基因毒性測試................................................119

第六章 結論與建議...................................................................................127
6-1 結論......................................................................................................127
6-2 建議......................................................................................................129

參考文獻.....................................................................................................131



表目錄

表2-1 二十一種PAHs之分子量、化學式、結構式.......................................7
表2-2 二十一種PAHs之毒理特性...............................................................9
表2-3 PAHs 毒性當量係數(Toxicology Equivalent Factor) ......................10
表2-4 常見Carbonyls之名稱、分子式及結構式........................................13
表2-5 常見Carbonyls之毒性資料..............................................................17
表2-6 德國生質柴油發展目標...................................................................25
表2-7 我國生質柴油推廣目標規劃表.......................................................27
表3-1 柴油發電機規格...............................................................................42
表3-2 柴油引擎規格表...............................................................................43
表3-3 動力計面板規格...............................................................................42
表3-4 柴油及生質柴油基本資料...............................................................44
表 3-5 MOUDI採樣器各階層截取粒徑範圍.............................................51
表 4-1 十五種醛酮類化合物QA/QC資料................................................67
表 4-2 十六種PAHs化合物低濃度(0.01-0.1 ppm)QA/QC資料..............71
表 4-3 十六種PAHs化合物中濃度(0.01-0.1 ppm)QA/QC資料..............72
表 4-4 十六種PAHs化合物高濃度(0.01-0.1 ppm)QA/QC資料..............73
表5-1-1 柴油及B10於引擎高低負載下的EDS元素分析........................85
表5-1-2 引擎使用生質柴油急毒性測試結果............................................89
表5-1-3 柴油及B10於引擎Idling, 10%, 33% and 55% 負載時的急毒性測試結果........................................................................................92
表5-1-4 柴油及B10於引擎Idling, 10%, 33% and 55% 負載時的細胞毒性測試結果....................................................................................96
表5-1-5 使用生質柴油對BEAS-2B細胞的DNA傷害............................97
表 5-2-1 柴油引擎不同操作情況之微粒排放........................................101
表5-2-2 不同引擎轉速下生質柴油排放氣相有害空氣污染物平均
濃度........................................................................................104
表5-2-3 不同引擎轉速下生質柴油排放微粒有害空氣污染物係數......105
表5-2-4 引擎動力計急毒性測試結果......................................................113
表5-2-5 引擎動力計細胞毒性測試結果..................................................116
表5-2-6 引擎動力計基因毒性測試結果(Comet tail length) ...................124

圖目錄

圖2-1 化學因子致癌之步驟.......................................................................12
圖2-2 典型引擎排放微粒的粒徑分布和重量分布...................................20
圖2-3 歐洲生質柴油2003~2006年產能與產量........................................25
圖2-4 生質柴油之製造程序.......................................................................29
圖2-5 生質柴油之反應原理.......................................................................29
圖 2-6 MTT assay 原理...............................................................................33
圖 3-1 研究流程圖......................................................................................40
圖3-2 柴油引擎發電機尾氣採樣系統配置...............................................49
圖 3-3 柴油引擎動力計及動力計控制面板..............................................50
圖 3-4 Comet Assay 分析時判斷細胞等級的標準...................................63
圖 4-1 BEAS-2B細胞存活率試驗(dose response).....................................77
圖 4-2 BEAS-2B細胞存活率試驗(time response).....................................77
圖 4-3 彗星試驗圖及DNA strand breaks………………………………...78
圖 5-1-1 生質柴油微粒及SOF 排放係數.................................................80
圖 5-1-2 柴油及B10微粒粒徑分布...........................................................82
圖 5-1-3 柴油及生質柴油微粒的掃描式電子顯微鏡圖像......................84
圖 5-1-4 引擎10%負載時柴油及B10的微粒SEM/EDS分析.................85
圖 5-1-5 引擎55%負載時柴油及B10的微粒SEM/EDS分析.................86
圖 5-1-6 使用不同攙配比例生質柴油之急毒性測試..............................90
圖 5-1-7 使用不同攙配比例生質柴油之細胞存活率測試......................94
圖 5-1-8 生質柴油氣相污染物之Comet assay圖像.................................98
圖 5-2-1 引擎使用生質柴油之微粒排放比較........................................101
圖 5-2-2 柴油引擎各轉速之負載與馬力關係圖.............................102
圖5-2-3 柴油引擎輸出馬力與氣相有害空氣污染物濃度關係(a) Carbonyls排放,(b) PAHs排放..............................................107
圖 5-2-4 柴油引擎輸出馬力與微粒有害空氣污染物濃度關係............109
圖 5-2-5 柴油引擎排放微粒有害空氣污染物單位毒性當量關係........109
圖 5-2-6 柴油引擎排放氣固相有害空氣污染物毒性當量濃度............110
圖 5-2-7 引擎轉速及馬力與氣相污染物細胞毒性測試結果................117
圖 5-2-8 引擎轉速及馬力與微粒細胞毒性測試結果............................118
圖 5-2-9 市售柴油氣相、微粒污染物之Comet assay圖像.....................121
圖 5-2-10 B1氣相、微粒污染物之Comet assay圖像...............................122
圖 5-2-11 PB10氣相、微粒污染物之Comet assay圖像...........................123
圖 5-2-12 柴油引擎排氣中氣相污染物之DNA傷害程度比較.............125
圖 5-2-13 柴油引擎排氣中微粒之DNA傷害程度比較.........................126
參考文獻 American Society for Testing and Materials. 1995.Standard test methods for assessing the microbial detoxification of chemically contaminated water and soil using a toxicity test with a luminescent marine bacterium. D5660-95. In Annual Book of ASTM standards. Philadelphia, PA.
Bailey R.A., Clark H.M., Krause S., Strong R.L., “Atmospheric Chemistry”, Chemistry of the Environment, Academic Press, New York, 1978.
Bieler, C. A.; Wiessler, M.; Erdinger, L.; Suzuki, H.; Enya, T.; Schmeiser, H. H., DNA adduct formation from the mutagenic air pollutant 3-nitrobenzanthrone. Mutation Research-Genetic Toxicology and Environmental Mutagenesis 1999, 439, (2), 307-311.
Bottenheim, J. W.; Barrie, L. A.; Atlas, E.; Heidt, L. E.; Niki, H.; Rasmussen, R. A.; Shepson, P. B., Depletion of lower tropospheric ozone during arctic spring – the polar sunrise experiment 1988. Journal of Geophysical Research-Atmospheres 1990, 95, (D11), 18555-18568.
Brown W.H., “Introduction to Organic Chemistry”, Saunders College Publishing, Harcourt Brace & Company, FL, USA, 1997.
Bunger, J.; Krahl, J.; Baum, K.; Schroder, O.; Muller, M.; Westphal, G.; Ruhnau, P.; Schulz, T. G.; Hallier, E., Cytotoxic and mutagenic effects, particle size and concentration analysis of diesel engine emissions using biodiesel and petrol diesel as fuel. Archives of Toxicology 2000, 74, (8), 490-498.
Bunger, J.; Krahl, J.; Franke, H. U.; Munack, A.; Hallier, E., Mutagenic and cytotoxic effects of exhaust particulate matter of biodiesel compared to fossil diesel fuel. Mutation Research-Genetic Toxicology and Environmental Mutagenesis 1998, 415, (1-2), 13-23.
Bunger, J.; Muller, M. M.; Krahl, J.; Baum, K.; Weigel, A.; Hallier, E.; Schulz, T. G., Mutagenicity of diesel exhaust particles from two fossil and two plant oil fuels. Mutagenesis 2000, 15, (5), 391-397.
Buzorius, G.; Hameri, K.; Pekkanen, J.; Kulmala, M., Spatial variation of aerosol number concentration in Helsinki city. Atmospheric Environment 1999, 33, (4), 553-565.
Chen, Y. S.; Sheen, P. C.; Chen, E. R.; Liu, Y. K.; Wu, T. N.; Yang, C. Y., Effects of Asian dust storm events on daily mortality in Taipei, Taiwan. Environmental Research 2004, 95, (2), 151-155.
Clean Air Act Amendments of 1990”, “Emission Standards for Conventional Motor Vehicles”, PL101-549, Section 203 & “Emission Standards for Light-Duty Clean Fuel Vehicles”, PL101-549, Section 243, 1990.
Correa, S. M.; Arbilla, G., Formaldehyde and acetaldehyde associated with the use of natural gas as a fuel for light vehicles. Atmospheric Environment 2005, 39, (25), 4513-4518.
Cotelle, S.; Ferard, J. F., Comet assay in genetic ecotoxicology: A review. Environmental and Molecular Mutagenesis 1999, 34, (4), 246-255.
Davis, C. S.; Fellin, P.; Otson, R., A review of sampling methods for polyaromatic hydrocarbons in air. Japca-the International Journal of Air Pollution Control and Hazardous Waste Management 1987, 37, (12), 1397-1408.
de Abrantes, R.; de Assuncao, J. V.; Pesquero, U. R., Emission of polycyclic aromatic hydrocarbons from light-duty diesel vehicles exhaust. Atmospheric Environment 2004, 38, (11), 1631-1640.
de Almeida, S. C. A.; Belchior, C. R.; Nascimento, M. V. G.; Vieira, L. D. R.; Fleury, G., Performance of a diesel generator fuelled with palm oil. Fuel 2002, 81, (16), 2097-2102.
Delfino, R. J.; MurphyMoulton, A. M.; Burnett, R. T.; Brook, J. R.; Becklake, M. R., Effects of air pollution on emergency room visits for respiratory illnesses in Montreal, Quebec. American Journal of Respiratory and Critical Care Medicine 1997, 155, (2), 568-576.
Dias, J. R. “Handbook of Polycyclic Hydrocarbons: Part A: Benzenoid Hydrocarbons ”, Elsevier, Amsterdam, 1987.
Dockery, D. W.; Pope, C. A.; Xu, X. P.; Spengler, J. D.; Ware, J. H.; Fay, M. E.; Ferris, B. G.; Speizer, F. E., An association between air-pollution and mortality in 6 united-states cities. New England Journal of Medicine 1993, 329, (24), 1753-1759.
DoH, 1995. Non-Biological Particles and Health. Department of Health, Committee on the Medical Effects of Air Pollutants.
Donaldson, K.; Li, X. Y.; MacNee, W., Ultrafine (nanometre) particle mediated lung injury. Journal of Aerosol Science 1998, 29, (5-6), 553-560.
Dwivedi, D.; Agarwal, A. K.; Sharma, M., Particulate emission characterization of a biodiesel vs diesel-fuelled compression ignition transport engine: A comparative study. Atmospheric Environment 2006, 40, (29), 5586-5595.
Dybdahl, M.; Risom, L.; Bornholdt, J.; Autrup, H.; Loft, S.; Wallin, H., Inflammatory and genotoxic effects of diesel particles in vitro and in vivo. Mutation Research-Genetic Toxicology and Environmental Mutagenesis 2004, 562, (1-2), 119-131.
Falbe J., Bach H., “Methodender Organishen Chemie, Band E3, Aldehydes”, Georg Thieme Verlag, ISBN: 3-13-217304-5, Stuttgart Germany, 1983., E. Merck “Chemicals Reagents”, Reagents, Diagnostics Chemical, Merck, Cat. 1999-2000.
Fessenden R.J., Fessenden J.S., Logue M.W., “Organic Chemistry”, 6th Edition, Brooks/Cole Publishing Company, A Division of International Thomson Publishing Inc., ISBN: 0-534-35199-9, CA, USA, 1998.
Grosjean, D., Formaldehyde and other carbonyls in los-angeles ambient air. Environmental Science & Technology 1982, 16, (5), 254-262.
Halinen, A. J.; Komulainen, H.; Salonen, R. O.; Ruotsalainen, M.; Hirvonen, M. R., Diesel particles induce nitric oxide production in murine alveolar macrophages and rat airways. Environmental Toxicology and Pharmacology 1999, 7, (1), 11-18.
Hughes, L. S.; Cass, G. R.; Gone, J.; Ames, M.; Olmez, I., Physical and chemical characterization of atmospheric ultrafine particles in the Los Angeles area. Environmental Science & Technology 1998, 32, (9), 1153-1161.
Hughes, T. J.; Lewtas, J.; Claxton, L. D., Development of a standard reference material for diesel mutagenicity in the Salmonella plate incorporation assay. Mutation Research-Genetic Toxicology and Environmental Mutagenesis 1997, 391, (3), 243-258.
IARC (International Agency for Research on Cancer), http://www.iarc.fr/.
Ichinose, T.; Takano, H.; Sadakane, K.; Yanagisawa, R.; Yoshikawa, T.; Sagai, M.; Shibamoto, T., Mouse strain differences in eosinophilic airway inflammation caused by intratracheal instillation of mite allergen and diesel exhaust particles. Journal of Applied Toxicology 2004, 24, (1), 69-76.
Johnson, B. T.; Long, E. R., Rapid toxicity assessment of sediments from estuarine ecosystems: A new tandem in vitro testing approach. Environmental Toxicology and Chemistry 1998, 17, (6), 1099-1106.
Kaiser, K. L. E., Correlations of Vibrio fischeri bacteria test data with bioassay data for other organisms. Environmental Health Perspectives 1998, 106, 583-591.
Kaiser, K. L. E.; McKinnon, M. B.; Fort, F. L., Interspecies toxicity correlations of rat, mouse and photobacterium-phosphoreum. Environmental Toxicology and Chemistry 1994, 13, (10), 1599-1606.
Kaiser, K.L.E. and V. S. Palabrica. 1991. Photobacterium phosphoreum toxicity data index. Water poll. J. Canada. 26:361-431.
Kalam, M. A.; Masjuki, H. H., Biodiesel from palmoil--an analysis of its properties and potential. Biomass and Bioenergy 2002, 23, (6), 471-479.
Kalligeros, S.; Zannikos, F.; Stournas, S.; Lois, E.; Anastopoulos, G.; Teas, C.; Sakellaropoulos, F., An investigation of using biodiesel/marine diesel blends on the performance of a stationary diesel engine. Biomass & Bioenergy 2003, 24, (2), 141-149.
Kerminen, V. M.; Makela, T. E.; Ojanen, C. H.; Hillamo, R. E.; Vilhunen, J. K.; Rantanen, L.; Havers, N.; VonBohlen, A.; Klockow, D., Characterization of the particulate phase in the exhaust from a diesel car. Environmental Science & Technology 1997, 31, (7), 1883-1889.
Kim, Y. H.; Kim, K. S.; Kwak, N. J.; Lee, K. H.; Kweon, S. A.; Lim, Y., Cytotoxicity of yellow sand in lung epithelial cells. Journal of Biosciences 2003, 28, (1), 77-81.
Kittelson, D. B., Engines and nanoparticles: A review. Journal of Aerosol Science 1998, 29, (5-6), 575-588.
Kleeman, M. J.; Schauer, J. J.; Cass, G. R., Size and composition distribution of fine particulate matter emitted from motor vehicles. Environmental Science & Technology 2000, 34, (7), 1132-1142.
Knudsen, L. E.; Gaskell, M.; Martin, E. A.; Poole, J.; Scheepers, P. T. J.; Jensen, A.; Autrup, H.; Farmer, P. B., Genotoxic damage in mine workers exposed to diesel exhaust, and the effects of glutathione transferase genotypes. Mutation Research-Genetic Toxicology and Environmental Mutagenesis 2005, 583, (2), 120-132.
Kwon, H. J.; Cho, S. H.; Chun, Y.; Lagarde, F.; Pershagen, G., Effects of the Asian dust events on daily mortality in Seoul, Korea. Environmental Research 2002, 90, (1), 1-5.
Lehmann, U.; Niemela, V.; Mohr, M., New method for time-resolved diesel engine exhaust particie mass measurement. Environmental Science & Technology 2004, 38, (21), 5704-5711.
Leonardi, A.; Burtscher, H.; Siegmann, H. C., Size-dependent measurement of aerosol photoemission from particles in diesel exhaust (reprinted from atmospheric-environment, vol 26a, pg 3287-3290, 1992). Atmospheric Environment Part a-General Topics 1993, 27, (8), 1251-1254.
Li, C. S.; Lin, W. H.; Jenq, F. T., Characterization of outdoor submicron particles and selected combustion sources of indoor particles. Atmospheric Environment Part B-Urban Atmosphere 1993, 27, (4), 413-424.
Lin, T.-C.; Chao, M.-R., Assessing the influence of methanol-containing additive on biological characteristics of diesel exhaust emissions using microtox and mutatox assays. The Science of The Total Environment 2002, 284, (1-3), 61-74.
Lin, Y.-C.; Lee, W.-J.; Hou, H.-C., PAH emissions and energy efficiency of palm-biodiesel blends fueled on diesel generator. Atmospheric Environment 2006, 40, (21), 3930-3940.
Lowe, D. C.; Schmidt, U., Formaldehyde (hcho) measurements in the nonurban atmosphere. Journal of Geophysical Research-Oceans and Atmospheres 1983, 88, (NC15), 844-858.
Lowenthal, D. H.; Zielinska, B.; Chow, J. C.; Watson, J. G.; Gautam, M.; Ferguson, D. H.; Neuroth, G. R.; Stevens, K. D., Characterization of heavy-duty diesel vehicle emissions. Atmospheric Environment 1994, 28, (4), 731-743.
Menzie, C. A.; Potocki, B. B.; Santodonato, J., Exposure to carcinogenic pahs in the environment. Environmental Science & Technology 1992, 26, (7), 1278-1284.
Miguel, A. H.; Kirchstetter, T. W.; Harley, R. A.; Hering, S. V., On-road emissions of particulate polycyclic aromatic hydrocarbons and black carbon from gasoline and diesel vehicles. Environmental Science & Technology 1998, 32, (4), 450-455.
Morawska, L.; Thomas, S.; Bofinger, N.; Wainwright, D.; Neale, D., Comprehensive characterization of aerosols in a subtropical urban atmosphere: Particle size distribution and correlation with gaseous pollutants. Atmospheric Environment 1998, 32, (14-15), 2467-2478.
Mori, I.; Nishikawa, M.; Tanimura, T.; Quan, H., Change in size distribution and chemical composition of kosa (Asian dust) aerosol during long-range transport. Atmospheric Environment 2003, 37, (30), 4253-4263.
National Biodiesel Board, “Biodiesel Production”, http://www.biodiesel.org/pdf_files/fuelfactsheets/Production.PDF, 2006.
Nisbet, I. C. T.; Lagoy, P. K., Toxic equivalency factors (TEFS) for polycyclic aromatic-hydrocarbons (PAHS). Regulatory Toxicology and Pharmacology 1992, 16, (3), 290-300.
Oberdorster, G.; Ferin, J.; Gelein, R.; Soderholm, S. C.; Finkelstein, J., Role of the alveolar macrophage in lung injury - studies with ultrafine particles. Environmental Health Perspectives 1992, 97, 193-199.
Okeson, C. D.; Riley, M. R.; Fernandez, A.; Wendt, J. O. L., Impact of the composition of combustion generated fine particles on epithelial cell toxicity: influences of metals on metabolism. Chemosphere 2003, 51, (10), 1121-1128.
Pang, X. B.; Shi, X. Y.; Mu, Y. J.; He, H.; Shuai, S. J.; Chen, H.; Li, R. L., Characteristics of carbonyl compounds emission from a diesel-engine using biodiesel-ethanol-diesel as fuel. Atmospheric Environment 2006, 40, (36), 7057-7065.
Peters, A.; Wichmann, H. E.; Tuch, T.; Heinrich, J.; Heyder, J., Respiratory effects are associated with the number of ultrafine particles. American Journal of Respiratory and Critical Care Medicine 1997, 155, (4), 1376-1383.
Ramdahl, T.; Alfheim, I.; Rustad, S.; Olsen, T., Chemical and biological characterization of emissions from small residential stoves burning wood and charcoal. Chemosphere 1982, 11, (6), 601-611.
Renwick, L. C.; Donaldson, K.; Clouter, A., Impairment of alveolar macrophage phagocytosis by ultrafine particles. Toxicology and Applied Pharmacology 2001, 172, (2), 119-127.
Schulam, P.; Newbold, R.; Hull, L. A., Urban and rural ambient air aldehyde levels in schenectady, New-York and on Whiteface mountain, New-York. Atmospheric Environment 1985, 19, (4), 623-626.
Schwartz, J., 1991. Air pollution and daily mortality in Philadelphia. Presented at the 1991 Meeting of the American Lung Association, Anaheim, CA.
Seinfeld J.H., “Atmospheric Chemistry and Physics of Air Pollution”, John Wiley and Sons Inc., Canada, pp. 58-59, 1986.
Sitting M., “Aldehydes”, Pollution Detection and Monitoring Handbook, Noyes Data Corp., Park Ridge, New Jersey, 1974.
Soontjens, C. D.; Holmberg, K.; Westerholm, R. N.; Rafter, J. J., Characterisation of polycyclic aromatic compounds in diesel exhaust particulate extract responsible for aryl hydrocarbon receptor activity. Atmospheric Environment 1997, 31, (2), 219-225.
Sorimachi, A.; Sakai, M.; Ishitani, O.; Nishikawa, M.; Sakamoto, K., Study on dry deposition of SO2-NOx onto loess. Water Air and Soil Pollution 2001, 130, (1-4), 541-546.
Trier, A., Submicron particles in an urban atmosphere: A study of optical size distributions .1. Atmospheric Environment 1997, 31, (6), 909-914.
Tsolakis, A.; Megaritis, A., Exhaust gas assisted reforming of rapeseed methyl ester for reduced exhaust emissions of CI engines. Biomass & Bioenergy 2004, 27, (5), 493-505.
Tuominen, J.; Salomaa, S.; Pyysalo, H.; Skytta, E.; Tikkanen, L.; Nurmela, T.; Sorsa, M.; Pohjola, V.; Sauri, M.; Himberg, K., Polynuclear aromatic-compounds and genotoxicity in particulate and vapor-phases of ambient air-effect of traffic, season, and meteorological conditions. Environmental Science & Technology 1988, 22, (10), 1228-1234.
U.S. Environmental Protection Agency. 2000. Control of Emissions of Hazardous Air Pollutants from Motor Vehicles and Motor Vehicle Fuels, EPA420-R-00-023.
U.S. Environmental Protection Agency. 1997. Conduct of Acute Toxicity Studies. EPA 737-R-97-002: 2.
U.S. Environmental Protection Agency. 1995. Engineering Bulletin: Biological Toxicity Testing. EPA/540/S-95/501.
U.S. Environmental Protection Agency. 1987. Permit writer’s guide to water quality-based permitting for toxic pollutants. U.S. EPA, Office of Water, Washington, D C. EPA 440/4-87-005, July 1987.
U.S. Environmental Protection Agency. 1987. Waste-solid treatability studies for four complex industrial wastes: Methodologies and results, vol. 1 and 2. EPA/600/S6-86/003.
U.S. Environmental Protection Agency. 1997. Conduct of Acute Toxicity Studies. EPA 737-R-97-002: 2.
Usta, N., An experimental study on performance and exhaust emissions of a diesel engine fuelled with tobacco seed oil methyl ester. Energy Conversion and Management 2005, 46, (15-16), 2373-2386.
Warneck P., “Chemistry of the Natural Atmosphere”, International Geophysical Series, Academic, San Diego, Vol. 41, 1988.
Williams, E. L.; Grosjean, E.; Grosjean, D., Ambient levels of the peroxyacyl nitrates PAN, PPN and MPAN in Atlanta, Georgia. Journal of the Air & Waste Management Association 1993, 43, (6), 873-879.
Zhuang, G. S.; Guo, J. H.; Yuan, H.; Zhao, C. Y., The compositions, sources, and size distribution of the dust storm from China in spring of 2000 and its impact on the global environment. Chinese Science Bulletin 2001, 46, (11), 895-901.
Zweidinger, R. B.; Sigsby, J. E.; Tejada, S. B.; Stump, F. D.; Dropkin, D. L.; Ray, W. D.; Duncan, J. W., Detailed hydrocarbon and aldehyde mobile source emissions from roadway studies. Environmental Science & Technology 1988, 22, (8), 956-962.

交通部,“機動車輛登記數”,統計資料,2008。
空污專責人員訓練教材,環訓所,2003
趙浩然,2000,多種機動車輛排放醛酮類化合物之研究,國立成功大學環境工程學系博士論文
林俊義,2007,國際推動生質能源作物之展望,林業研究專訊 Vol.14 No.3
黃宗煌,2007,發展生質能的問題與對策,經濟部能源局能源報導
黃韻勳,2007,我國推動生質燃料之政策方向與國際趨勢研析,石油策略研究中心
謝志強,2007,歐洲生質柴油發展態勢,經濟部技術處 產業技術知識服務計畫(ITIS)
劉新裕,2006,生質能源之生產與轉換研究,行政院農業委員會
徐業良,2005,淺談生質柴油,汽車購買指南雜誌2005年七月號
鄭清山,2003,烷化生質柴油對柴油引擎影響之研究,國立高雄第一科技大學環境與安全衛生工程系碩士論文
王建鴻,1999,乙醇替代燃料對於汽油引擎排放廢氣中醛酮類化合物之研究,國立成功大學環境工程學系碩士論文
趙木榮,2001,螢光菌對空氣中半揮發性有機物之毒性測試方法建立及其應用,國立成功大學環境工程學系博士論文
楊明臻,2003,Bcl-2 在五氯酚代謝產物促癌機制中扮演的角色及其他相關訊號傳遞路徑探討,國立成功大學環境醫學研究所碩士論文
洪春量,2002,以微粒濃縮器探討懸浮微粒對天竺鼠肺部健康之影響,國立陽明大學環境衛生研究所碩士論文
林淵淙,2006,生質柴油及乳化柴油對引擎排放廢氣污染減量及提昇能源效率之研究,國立成功大學環境工程學系博士論文
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2010-12-11起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2011-12-11起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw