進階搜尋


 
系統識別號 U0026-0812200915033645
論文名稱(中文) 多變量製程能力不足指標在相關性風險評估上之研究
論文名稱(英文) Development of Multivariate Process Incapability Indices with Applications to the Correlated Risk Assessment
校院名稱 成功大學
系所名稱(中) 統計學系碩博士班
系所名稱(英) Department of Statistics
學年度 97
學期 1
出版年 98
研究生(中文) 李俊毅
研究生(英文) Chun-Yi Lee
學號 r2892105
學位類別 博士
語文別 英文
論文頁數 74頁
口試委員 口試委員-溫敏杰
口試委員-趙昌泰
口試委員-鄭春生
指導教授-潘浙楠
口試委員-呂金河
口試委員-邵曰仁
中文關鍵字 製程能力不足指標  希求函數  對稱與非對稱規格  相關性風險評估 
英文關鍵字 process incapability index  desirability function  symmetric and asymmetric tolerances  correlated risk assessment 
學科別分類
中文摘要 製程能力指標由於其量測值可作為評估製程表現的依據,已被工業界廣泛使用。至於製程能力不足指標Cpp,其優點在於該指標所提供製程準確度與精確度的訊息,有助於釐清品質改善的方向。藉由Cpp指標,實務工作者更可清楚知道製程表現及其風險水準。而另一個製程能力不足指標C"pp則是用於評估非對稱規格製程的表現,但該指標卻無法準確反映真正的製造風險。為了能準確評估對稱與非對稱規格製程的表現,我們根據希求函數的觀念提出一個新的單變量製程能力不足指標,並針對該指標與不合格率間的關係進行探討。在本論文的前半部,我們以兩個數值實例說明此一新的單變量製程能力不足指標可準確地反映製程風險。
此外,工業產品的品質通常由多個彼此相關的品質特性所決定,為了進一步評估多變量製程的製造風險,在考量產品品質特性間的相關程度後,我們提出一個新的多變量製程能力不足指標。此一新的多變量製程能力不足指標可視為單變量製程能力不足指標的延伸,藉由新的多變量製程能力不足指標,實務工作者可更清楚掌握多變量製程的製造風險。最後,我們以兩個數值實例說明此一新的多變量製程能力不足指標及其區間估計可準確反映相關性風險。本論文之研究成果可作為多變量製程相關性風險分析之參考。
英文摘要 Process capability indices have been widely used in industry today since they provide quantitative measures for evaluating process performance. Instead of using process capability index, the process incapability index Cpp has an advantage of separating the information of process accuracy and precision for a symmetric tolerance. Using Cpp process incapability index, the process performance and its risk level can easily be understood by quality practitioners. Another process incapability index C"pp is to measure the process performance for an asymmetric tolerance. However, it can’t correctly reflect the true manufacturing risk. In order to accurately measure the process performance for both symmetric and asymmetric tolerances, a new process incapability index using desirability function is proposed. The relationship between various new process incapability indices and their associated non-conforming rates has also been explored. In the first part of this dissertation, two numerical examples are illustrated to show that the manufacturing risk can be correctly reflected by our proposed univariate process incapability index.
Furthermore, due to the fact that the quality of an industrial product is determined by two or more interrelated quality characteristics. A new multivariate incapability process index is developed by taking the correlation among multiple quality characteristics into account. Analogous to univariate process incapability index, the multivariate process incapability indices can be viewed as an extension of the univariate process incapability indices and thus the manufacturing risk for a multivariate manufacturing process can be evaluated accordingly. Finally, the correlated risk assessment using the new multivariate incapability indices and their associated interval estimates is further demonstrated by two numerical examples.
論文目次 1. Introduction 1
2. Literature Review 5
2.1 Univariate process capability index 5
2.2 Univariate process incapability indices 13
2.3 Multivariate process capability indices 13
3. Univariate Process Incapability Index 20
3.1 Introduction 20
3.2 Development of the new process incapability index 22
3.3 Comparisons of various process incapability indices 27
3.4 The estimation of index and its sampling distribution 28
3.5 Numerical Examples 32
3.6 Summary 36
4. Multivariate Process Incapability Index 37
4.1 Introduction 37
4.2 The development of a multivariate process incapability index 37
4.3 The estimation of MCpp index and its sampling distribution 46
4.4 Numerical Examples 51
4.5 Summary 54
5. Conclusions and Future Research 55
References 58
Appendix 62
參考文獻 Ayyub, B. M. (2003). Risk Analysis in Engineering and Economics, Chapman and Hall/CRC, FL, pp. 35-37.
Bai, D. S. and Choi, S. S. (1997). “Process Capability Indices for Skewed Populations”. Masters Thesis. Department of Industrial Engineering, Advanced Institute of Science and Technology, Taejon, South Korea.
Bickel, P. J. and Doksum, K. A. (1977). Mathematical Statistics: Basic Ideas and Selected Topics, Holden-Day, San Francisco, pp. 460-461.
Boyles, R. A. (1991). “The Taguchi Capability Index”. Journal of Quality Technology 23, pp. 17-26.
Carr, W. E. (1991). “A New Process Capability Index: Parts per Million”. Quality Progress 24, pp. 152.
Chan, L. K., Cheng, S. W. and Spiring, F. A. (1988). “A New Measure of Process Capability, Cpm”. Journal of Quality Technology 20, pp. 162-175.
Chan, L. K., Cheng, S. W. and Spiring, F. A. (1991). “A Multivariate Measure of Process Capability”. International Journal of Modeling and Simulation 11, pp. 1-6.
Chen, H. F. (1994). “A Multivariate Process Capability Index Over A Rectangular Solid Tolerance Zone”. Statistica Sinica 4, pp. 749-758.
Chen, K. S. (1998). “Incapability Index with Asymmetric Tolerances”. Statistica Sinica 8, pp. 253-262.
Cheng, S. W. (1994). “Practical Implementation of the Process Capability Indices”. Quality Engineering 7, pp. 239-259.
Chou, C. Y., Lin, Y. C., Chang, C. L. and Chen, C. H. (2006). “On the Bootstrap Confidence Intervals of the Process Incapability Index Cpp”. Reliability Engineering and System Safety 91, pp. 452-459.
Chung, K. L. (2001). A Course in Probability Theory, Academic Press, San Diego.
Clements, J. A. (1989). “Process Capability Calculations for Non-Normal Distributions”. Quality Progress 22, pp. 95-100.
Corbett, C. J. and Pan, J. N. (2002). “Evaluating Environmental Performance Using Statistical Process Control Techniques”. European Journal of Operational Research 139, pp. 68-83.
Corbett, C. J. and Van Wassenhove, L. N. (1995). Environmental Issues and Operations Strategy, Chapter 18 in Folmer, H., Gabel H.L. Opschoor, H. (eds.), Principles of Environmental and Resource Economics (A Guide for Students and Decision-Makers), Edward Elgar Publishing Ltd., Aldershot (UK), pp. 413-439.
Flaig, J. J. (1992). “Issues Related on Capability Indices” in Process Capability Analysis Software Manual, Section 6, Applied Technology, San Jose, C.A.
Gatza, P. E. and McMillan, R. C. (1972). “The Use of Experimental Design and Computeriaed Data Analysis in Elastomer Development Studies”. Division of Rubber Chemistry, American Chemical Society Fall Meeting, Cincinnati, Ohio, Paper No. 6.
Greenwich, M. and Jahr-Schaffrath, B. L. (1995). “A Process Incapability Index”. International Journal of Quality and Reliability Management 12, pp. 58-71.
Hrdle, W. and Simar, L. (2003). Applied Multivariate Statistical Analysis, Springer, Berlin, N.Y., pp. 73-74.
Harrington, E. C. (1965). “The Desirability Function”. Industrial Quality Control 21, pp. 494-498.
Hubele, N. F.; Shahriari, H.; and Cheng, C. S. (1991). “A Bivariate Process of Capability Vector” in Statistics Process Control in Manufacturing edited by J. B. Keats, and D. C. Montgomery. Marcel Dekker, New York, N.Y., pp. 299-310.
Johnson, N. L.; Kotz, S.; and Pearn, W. L. (1994). “Flexible Process Capability Indices”. Pakistan Journal of Statistics 10, pp. 23-31
Juran, J. M. (1974). Juran’s Quality Control Handbook, 3rd ed. McGraw-Hill, New York, N.Y.
Kane, V. E. (1986). “Process Capability Indices”. Journal of Quality Technology 18, pp. 41-45.
Kotz, S. and Johnson, N. L. (2002). “Process Capability Indices – A Review, 1992-2000”. Journal of Quality Technology 34, pp. 2-19.
Lin, G. H. (2007). “A Bayesian Approach Based on Multiple Samples for Measuring Process Performance with Incapability Index”. International Journal of Production Economics 106, pp. 506-512.
Madu, C. N. (1996). Managing Green Technologies for Global Competitiveness, Quorum Books, Westport, C.T.
Madu, C. N. (2004). “Achieving Competitive Advantage through Quality and Environmental Management”. Journal of Environmental Quality Management 4, pp. 59-76.
Maman, A. D. (2005). “Improved Monitoring of Multivariate Process Variability”. Journal of Quality Technology 37, pp. 32-39.
Mathai, A. M. and Provost, S. B. (1992). Quadratic Forms in Random Variables: Theory and Applications, Dekker, New York, N.Y., pp. 164-165
Montague, D. F. (1990). “Process Risk Evaluation-What Method on Use?”. Reliability Engineering and System Safety 29, pp. 27-53.
Montgomery, D. C. (2001). Introduction to Statistical Quality Control, John Wiley & Sons, New York, N.Y., pp. 513-514.
Myers, R. H. and Montgomery, D. C. (1995). Response Surface Methodology, John Wiley, New York, N.Y., pp. 247-252.
Niverthi, M. and Dey, D. K. (2000). “Multivariate Process Capability a Bayesian Perspective”. Communications in Statistics: Simulation and Computation 29, pp. 667-687.
Pan, J. N. (2007a). “A Study of Multivariate Pre-Control Charts.” International Journal of Production Economics 105, pp. 160-170.
Pan, J. N. (2007b). “A New Loss Function-Based Approach for Evaluating Manufacturing and Environmental Risks.” International Journal of Quality and Reliability Management 24, pp. 861-887.
Pan, J. N. and Lee, J. K. (2003). “A Comparative Study of Multivariate Process Capability Indices”. Journal of Quality 10, pp. 149-176.
Patel, J. K. and Read, C B. (1996). Handbook of the Normal Distribution, Marcel Dekker, New York, N.Y., pp. 25.
Pearn, W. L., Kotz, S., and Johnson, N. L. (1992). “Distributional and Inferential Properties of Process Capability Indices”. Journal of Quality Technology 24, pp. 216-231.
Pignatiello, J. J. (1993). “Strategies for Robust Multiresponse Quality Engineering”. IIE Transactions 25, pp. 5-15.
Schneider, H. (1986). Truncated and Censored Samples from Normal Populations, Marcel Dekker, New, York, N.Y., pp. 15-16.
Singpurwalla, N. D. (1998). “The Stochastic Control of Process Capability Indices”. Test 7, pp.1-33.
Spiring, F. A. (1997). “A Unifying Approach to Process Capability Indices”. Journal of Quality Technology 29, pp. 49-58.
Spiring, F., Leung, B., Cheng, S. and Yeung, A. (2003). “A Bibliography of Process Capability Papers”. Quality and Reliability Engineering International 19, pp. 445-460.
Sultan, T. L. (1986). “An Acceptance Chart for Raw Materials of Two Correlated Properties”. Quality Assurance 12, pp. 70-72.
Taam, W., Subbaiah, P. and Liddy, J. W. (1993). “A Note on Multivariate Capability Indices”. Journal of Applied Statistics 20, pp. 339-351.
Vnnman, K. (1995). “A Unified Approach to Capability Indices”. Statistica Sinica 5, pp. 805-820.
Wang, F. K. and Chen, J. C. (1998). “Capability Index Using Principal Component Analysis”. Quality Engineering 11, pp. 21-27.
Wang, C. H. (2005). “Constructing Multivariate Process Capability Indices for Short-Run Production”. The International Journal of Advanced Manufacturing 26, pp. 1306-1311.
Wright, P. A. (1995). “A Process Capability Index Sensitive to Skewness”. Journal of Statistical Computation and Simulation 52, pp. 195-203.
Yeh, A. B. and Bhattacharya, S. (1998). “A Robust Capability Index”. Communications in Statistics: Simulation and Computation 27, pp. 565-589.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-12-11起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2013-12-11起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw