進階搜尋


 
系統識別號 U0026-0812200915033543
論文名稱(中文) 晶片尺寸封裝銲接至測試板在功率與溫度耦合循環下之暫態熱傳分析和可靠度評估
論文名稱(英文) Transient Thermal Analysis and Reliability Evaluation for Board-Level Chip-Scale Packages Subjected to Coupled Power and Thermal Cycling Test Conditions
校院名稱 成功大學
系所名稱(中) 工程科學系碩博士班
系所名稱(英) Department of Engineering Science
學年度 97
學期 1
出版年 98
研究生(中文) 黃東鴻
研究生(英文) Tong-Hong Wang
電子信箱 n9894130@mail.ncku.edu.tw
學號 N9894130
學位類別 博士
語文別 英文
論文頁數 88頁
口試委員 指導教授-林裕城
召集委員-潘文峰
口試委員-方得華
口試委員-賴逸少
口試委員-黃義佑
中文關鍵字 堆疊晶片  薄型細間距球柵陣列晶片尺寸封裝(TFBGA)  溫度循環測試  功率循環測試  功率與溫度耦合循環測試  電子工程設計發展聯合協會  熱傳特性  錫球接點  熱傳-應力循序耦合分析  可靠度 
英文關鍵字 thermal cycling test  coupled power and thermal cycling test  Thin-profile fine-pitch ball grid array (TFBGA)  Stacked-dies  Power cycling test  solder joint  JEDEC  thermal-mechanical coupling analysis  reliability  thermal characteristics 
學科別分類
中文摘要 為同時評估環境溫度變化及晶片實際運作的熱效應對封裝體可靠度的影響,電子工程設計發展聯合協會於近期發表了功率與溫度耦合循環測試規範。本文首先以暫態熱傳分析探討上板薄型細間距球柵陣列晶片尺寸封裝(TFBGA)在功率與溫度耦合循環測試,提出表格式(tabular)邊界條件來解決溫度循環測試產生隨時間變化的環境溫度。熱傳分析參數亦經穩態熱傳與暫態功率循環實驗驗證。
本研究以熱傳-應力循序耦合分析探討上板薄型細間距球柵陣列單一晶片和雙層堆疊晶片尺寸封裝在功率與溫度耦合循環測試下,晶片功率開啟方式與順序對錫球接點可靠度的影響,並與純粹功率循環和純粹溫度循環引致之可靠度相比較。
由數值分析可知當晶片功率開時,晶片結點溫度與溫度循環曲線即產生差異;而當晶片功率關閉時,其溫度即回歸溫度循環的溫度曲線。遠離晶片端的元件溫度相對較低,但其歷時曲線仍然維持相似形狀。此外,晶片功率開啟或關閉的先後順序搭配溫度循環曲線對元件溫度具有加成或折減的效果。另外,對低功率的應用,功率和溫度耦合循環測試之溫度歷時可經由純粹功率循環之溫度歷時和純粹溫度循環之溫度歷時線性相加取得。
錫球接點可靠度的預測得知,單一晶片TFBGA的晶片功率開啟或關閉的先後順序搭配溫度循環曲線對元件溫度具有加成或折減的效果。大致上功率循環延時愈短,其引致的疲勞壽命亦愈短。然而某些特定的功率循環延時與溫度循環曲線搭配後,因溫度補償效應反而增長了疲勞壽命。對雙層堆疊晶片TFBGA而言,任一晶片運作或兩晶片同步提供對半功率所對應的疲勞壽命大致相同。
英文摘要 To evaluate conjointly the effects of ambient temperature fluctuation and operation bias on the reliability of board-level electronic packages, a coupled power and thermal cycling test has been proposed by JEDEC. In this study, thermal characteristics of a board-level chip-scale package subjected to coupled power and thermal cycling test conditions are first investigated through the transient thermal analysis. Tabular boundary conditions are utilized to deal with time-varying thermal boundary conditions brought by thermal cycling. The numerical model was successfully calibrated using steady-state and power cycling experiments.
The sequential thermal-mechanical coupling analysis, which solves in turn the transient temperature field and subsequent thermomechanical deformations, is performed to investigate thermal characteristics along with fatigue reliability of board-level single-die and stacked-dies thin-profile fine-pitch ball grid array (TFBGA) chip-scale packages under coupled power and thermal cycling test conditions. Effects of different power cycling durations and sequences are studied. A pure power cycling and a pure thermal cycling condition are also examined and compared.
For the thermal characteristics, it is obvious form the analysis that the presence of power cycling leads to a significant deviation of the junction temperature from the thermal cycling profile. However, for components away from the die, though the patterns of temperature histories are similar, the temperature excursions are less significant. Moreover, for low-power applications, temperature histories from coupled power and thermal cycling are approximately linear combinations of temperature histories from pure power cycling and the ones from pure thermal cycling.
Thermomechanical reliability prediction indicate that, for the coupled power and thermal cycling test on board-level single-die TFBGA’s, a shorter power cycling duration in general leads to a shorter fatigue life. However, the temperature compensation effect elongates the fatigue life under certain power cycling durations. For the board-level stacked-dies TFBGA’s, reliability performances of a board-level stacked-die package should be similar as long as the total power dissipation prescribed to the package is identical, regardless of how the power distributes among separate dies.
論文目次 Abstract………………………………………………………………I
摘要……………………………………………………………………III
誌謝……………………………………………………………………IV
Table of Contents……………………………………………………V
List of Tables……………………………………………………VIII

Chapter 1 Introduction ……………………………………………1
1.1 Package types ……………………………………………1
1.2 Reliability tests ………………………………………3
1.3 Purpose …………………………………………………10

Chapter 2 Finite element modeling and experimental details…………………………………………………………………12
2.1 Finite element modeling ……………………………………12
2.1.1 Package dimensions …………………………………………12
2.1.2 Thermal and elastic properties …………………………14
2.1.3 Anand viscoplasticity ……………………………………16
2.1.4 Conduction and convection fundamentals ………………20
2.1.5 Radiation fundamentals ……………………………………21
2.1.6 Thermal boundary conditions ……………………………23
2.1.7 Mechanical boundary conditions ………………………28
2.2 Experimental details…………………………………………30
2.2.1 Thermal test die………………………………………………………………………30
2.2.2 Packaging………………………………………………………36
2.2.3 Test board……………………………………………………38
2.2.4 Surface on test board ……………………………………44
2.2.5 Temperature calibration……………………………………47

Chapter 3 Model calibration with experiment ………………49
3.1 Model calibration………………………………………………49
3.2 Temperature effect on power cycling duration…………51

Chapter 4 Thermal characteristics ……………………………57
4.1 Comparison among power cycling, thermal cycling and, coupled power and thermal cycling of a single-die TFBGA …………………………………………………………………………57
4.2 Effects of different power cycling sequences and power cycling durations on a coupled power and thermal cycling of a single-die TFBGA ……………………………………………61
4.3 Effects of different powering dies and power cycling sequences on a coupled power and thermal cycling of stacked-dies TFBGA …………………………………………………65

Chapter 5 Thermomechanical reliability evaluations ……71
5.1 Comparison among power cycling, thermal cycling and, coupled power and thermal cycling of a single-die TFBGA …………………………………………………………………………71
5.2 Effects of different power cycling sequences and power cycling durations on a coupled power and thermal cycling of a single-die TFBGA ……………………………………………73
5.3 Effects of different powering dies and power cycling sequences on a coupled power and thermal cycling of stacked-dies TFBGA …………………………………………………75

Chapter 6 Conclusions……………………………………………79

References ……………………………………………………………82
Biography ……………………………………………………………86
Publications …………………………………………………………87


List of Tables

Table 1.1 ………………………………………………………………6
Thermal cycling test conditions
Table 1.2 ………………………………………………………………6
Soak mode conditions
Table 2.1 ……………………………………………………………15
Thermal properties of components
Table 2.2 ……………………………………………………………16
Elastic properties of components
Table 2.3 ……………………………………………………………19
Material parameter units for Anand model
Table 2.4 ……………………………………………………………45
Classification reflow profile
Table 3.1 ……………………………………………………………53
Power cycling test conditions
Table 4.1 ……………………………………………………………57
Comparison cells
Table 4.2 ……………………………………………………………61
Test conditions of power cycling sequence and duration for stacked-die package
Table 4.3 ……………………………………………………………66
Test conditions of powering die and power cycling sequence for stacked-die package
Table 5.1 ……………………………………………………………72
Predictions of thermomechanical fatigue lives
Table 5.2 ……………………………………………………………75
Thermomechanical fatigue lives predictions for different power cycling sequences and durations of stacked-die package
Table 5.3 ……………………………………………………………77
Thermomechanical fatigue lives predictions for different powering die and power cycling sequence of stacked-die package

Figure 1.1 ……………………………………………………………1
Low and thin BGA
Figure 1.2 ……………………………………………………………2
MCM package before molding
Figure 1.3 ……………………………………………………………2
Stacked-die package before molding
Figure 1.4 ……………………………………………………………3
Package on package
Figure 1.5 ……………………………………………………………5
Thermal cycling profile
Figure 1.6 ……………………………………………………………7
Single thermal cycling chamber and its digital acquisition system
Figure 1.7 ……………………………………………………………9
Coupled power and thermal cycling test
Figure 2.1 ……………………………………………………………13
Layout of solder joints (unit: mm) and modeling region
Figure 2.2 ……………………………………………………………13
Eighth symmetry finite element model
Figure 2.3 ……………………………………………………………14
Closed-up view of the finite element model around the die
Figure 2.4 ……………………………………………………………26
Setting flow of the thermal tabular boundary conditions
Figure 2.5 ……………………………………………………………28
Temperature histories of 1 W and 5 min power dissipation at 25 oC calculated using different time steps from (a) entire history, and (b) initial 2s.
Figure 2.6 ……………………………………………………………29
Mechanical boundary conditions
Figure 2.7 ……………………………………………………………34
Delphi PST1-02 / 5PU thermal test die
Figure 2.8 ……………………………………………………………36
Circuit layout and connection of thermal test die.
Figure 2.9 ……………………………………………………………36
Daisy chain and pad information (unit: m)
Figure 2.10 …………………………………………………………37
Process flow of TFBGA
Figure 2.11 …………………………………………………………38
Wire-bonded thermal test die on substrate
Figure 2.12 …………………………………………………………39
Cross section of 2s2p PCB showing trace and dielectric thicknesses
Figure 2.13 …………………………………………………………40
BGA test board outer dimensions and edge connector design
Figure 2.14 …………………………………………………………41
Traces to outer ball row flared to perimeter 25 mm from package body
Figure 2.15 …………………………………………………………43
Daisy chain test board
Figure 2.16 …………………………………………………………43
Copper pad and soldermask
Figure 2.17 …………………………………………………………44
Daisy chain pads
Figure 2.18 …………………………………………………………45
Classification reflow profile
Figure 2.19 …………………………………………………………46
HELLER 1900 EXL convection reflow oven
Figure 2.20 …………………………………………………………46
Reflow profile for eutectic solder
Figure 2.21 …………………………………………………………47
Surface mounted package on thermal test board
Figure 2.22 …………………………………………………………48
Constant temperature oil tank
Figure 2.23 …………………………………………………………48
Empirical voltage vs. temperature relationship
Figure 3.1 ……………………………………………………………49
Calibration experiment setup
Figure 3.2 ……………………………………………………………50
Time histories of Tj and Tb under steady-state thermal dissipation with a power of 1.1 W and Ta at 19.3oC
Figure 3.3 ……………………………………………………………51
Time histories of Tj and Tb for transient power cycling with a power of 1.1 W (consecutively power-on for 10 s and power-off for 10 s) and Ta at 21.2oC
Figure 3.4 ……………………………………………………………52
Time histories of (a) Tj and (b) Tb for transient power cycling with a power of 1.1 W (consecutively power-on and off for 0.25, 1, and 5 s) and Ta at 21.2oC
Figure 3.5 ……………………………………………………………54
Viscoplatic strain energy density contour for test condition P1 at the end of test cycles (unit: J/m3)
Figure 3.6 ……………………………………………………………55
Wave at different test cycles
Figure 3.7 ……………………………………………………………55
Relative errors of Wave between test cycles
Figure 3.8 ……………………………………………………………56
Temperature distributions under test conditions (a) P1 and (b) P3 at the end of power-on (left) and power-off (right) stages during the 15th test cycle (Unit: K)
Figure 4.1 ……………………………………………………………58
Temperature histories for cell A
Figure 4.2 ……………………………………………………………59
Temperature histories for cell B
Figure 4.3 ……………………………………………………………59
Temperature histories for cell C
Figure 4.4 ……………………………………………………………60
Temperature histories for cell D
Figure 4.5 ……………………………………………………………63
Time histories of junction temperature for test conditions T0 and P’s
Figure 4.6 ……………………………………………………………63
Time histories of junction temperature for test conditions T0 and Q’s
Figure 4.7 ……………………………………………………………64
Time histories of maximum temperature on substrate bottom for test conditions T0 and P’s
Figure 4.8 ……………………………………………………………64
Time histories of maximum temperature on substrate bottom for test conditions T0 and Q’s
Figure 4.9 ……………………………………………………………67
Time histories of junction temperatures on bottom die (Tj,bottom)
Figure 4.10 …………………………………………………………68
Time histories of junction temperatures on top die (Tj,top)
Figure 4.11 …………………………………………………………69
Time histories of maximum temperatures on bottom surface of substrate (Ts,bottom)
Figure 4.12 …………………………………………………………70
Simplified thermal resistance network
Figure 5.1 ……………………………………………………………71
Viscoplastic strain energy density contour for cell A at the end of test cycles (Unit: Pa)
Figure 5.2 ……………………………………………………………74
Viscoplastic strain energy density contour for test condition P01 at the end of test cycles (Unit: J/m3)
Figure 5.3 ……………………………………………………………74
Thermomechanical fatigue lives predictions for different power cycling sequences and durations of stacked-die package
Figure 5.4 ……………………………………………………………76
Viscoplastic strain energy density contour for test condition P11 at the end of test cycles (Unit: J/m3)
Figure 5.5 ……………………………………………………………77
Thermomechanical fatigue lives predictions for different powering die and power cycling sequence of stacked-die package
參考文獻 1. JEDEC Solid State Technology Association, Temperature cycling, JESD22-A104-B, 2000.
2. J. Lohan and M. Davies, Transient thermal behaviour of a board-mounted 160-lead plastic quad flat pack. Proc. 1994 Intersociety Conference on Thermal Phenomena in Electronic Systems, Washington DC, pp. 108-116, 1994.
3. S. J. Ham, M. S. Cho and S. B. Lee, Thermal deformations of CSP assembly during temperature cycling and power cycling. Proc. International Symposium on Electronic Materials and Packaging, Hong Kong, China, pp. 350-357, 2000.
4. M. Thoben, W. Staiger and J. Wilde, Modelling and experimental investigations on degradation of microcomponents in power cycling. http://ansys.net/ansys/papers/ mw2000_1031.pdf, 2000.
5. J. Lenkkeri and T. Jaakola, Rapid power cycling of flip-chip and CSP components on ceramic substrates. Microelectronics Reliability, Vol. 41, No. 5, pp. 661-668, 2001.
6. A. Syed, Predicting solder joint reliability for thermal, power, and bend cycle within 25% accuracy. Proc. 51st Electronic Components and Technology Conference, Orlando, FL, pp. 255-263, 2001.
7. P. Towashiraporn, G. Subbarayan, B. McIlvanie, B. C. Hunter, D. Love and B. Sullivan, Predictive reliability models through validated correlation between power cycling and thermal cycling accelerated life tests. Soldering and Surface Mount Technology, Vol. 14, No. 3, pp. 51-60, 2002.
8. B. Rodgers, J. Punch, J. Jarvis, P. Myllykoski and T. Reinikainen, Finite element modelling of a BGA package subjected to temperature and power cycling. Proc. 2002 Intersociety Conference on Thermal Phenomena in Electronic Systems, San Diego, CA, 2002.
9. D. E. H. Popps, A. Mawer, G. Presas, Flip chip PBGA solder joint reliability: Power cycling versus thermal cycling. Proc. 8th IMAPS Topical Workshop on Flip Chip Technologies, Austin, TX, 2003.
10. Y. Liu and S.Irving, Power cycling simulation of an IC package: Considering electromigration and thermal-mechanical failure. Proc. 53rd Electronic Components and Technology Conference, New Orleans, LA, pp. 415-421, 2003.
11. P. Towashiraporn, K. Gall, G. Subbarayan, B. McIlvanie, B. C. Hunter, D. Love and B. Sullivan, Power cycling thermal fatigue of Sn-Pb solder joints on a chip scale package. International Journal of Fatigue, Vol. 26, No. 5, pp. 497-510, 2004.
12. P. Towashiraporn, G. Subbarayan, B. McIlvanie, B. C. Hunter, D. Love and B. Sullivan, The effect of model building on the accuracy of fatigue life predictions in electronic packages. Microelectronics Reliability, Vol. 44, No. 1, pp. 115-127, 2004.
13. W. J. Roesch and S. Jittinorasett, Cycling copper flip chip interconnects. Microelectronics Reliability, Vol. 44, No. 7, pp. 1047-1054, 2004.
14. JEDEC Solid State Technology Association, Power and temperature cycling, JESD22-A105C, 2004.
15. ANSYS Inc., ANSYS v.7.0 Manuals, 2002.
16. S. Imaoka, Tabular boundary conditions and function editor at 6.0. http://ansys.net/ansys/tips_sheldon/STI09_ANSYS_6.0_Function_Editor.pdf, 2002.
17. T. H. Wang, C. -C. Lee, Y. -S. Lai, and Y. -C. Lin, , Transient Thermal Analysis for Board-level Chip-scale Packages Subjected to Coupled Power and Thermal Cycling Test Conditions, J. Electron. Pack., ASME, Vol. 128, No. 3, pp. 281-284, 2006.
18. T. H. Wang, Y. -S. Lai, and Y. -C. Lin, Reliability Evaluations for Board-level Chip-scale Packages Under Coupled Power and Thermal Cycling Test Conditions, Microelectron. Reliab., in press; doi: 10.1016/j.microrel. 2007.02.011.
19. T. H. Wang, C. -C. Lee, Y. -S. Lai and Y. -C. Lin, Thermal characteristics and thermomechanical reliability of board-level stacked-die packages subjected to coupled power and thermal cycling tests, submitted to IEEE Transactions on Components and Packaging Technologies, 31 (2), pp. 495-502, 2008.
20. T. H. Wang, Y. -S. Lai, C. -C. Lee and Y. -C. Lin, Coupled Power and Thermal Cycling Reliability of Board-level Package-on-Package Stacking Assemblies,” IEEE Transactions on Electronics Packaging Manufacturing, in press.
21. J. J. Skrzypek, Plasticity and Creep, Boca Raton: CRC Press, 1993.
22. J. Wilde, K. Becker, M. Thoben, W. Blum, T. Jupitz, G. Wang, and Z. N. Cheng, Rate Dependent Constitutive Relations Based on Anand Model for 92.5Pb5Sn2.5Ag Solder, IEEE Trans. Adv. Pack., Vol. 23, No. 3, pp. 408-414, 2000.
23. L. Anand, Constitutive Equations for Hot-Working of Metals, International Journal of Plasticity, Vol. 1, pp. 213-231, 1985.
24. R. Darveaux, Effect of Simulation Methodology on Solder Joint Crack Growth Correlation and Fatigue Life Prediction, J. Electron. Pack., ASME, Vol. 124, No. 3, pp. 147-154, 2002.
25. JEDEC Solid State Technology Association, Thermal test chip guideline (Wire bond type chip), EIA/JESD51-4, 1997.
26. JEDEC Solid State Technology Association, Integrated circuit thermal measurement method- Electrical test method, EIA/JESD51-1, 1995.
27. The Advanced Semiconductor Engineering Group, ASE package handbook, pp. 77.
28. JEDEC Solid State Technology Association, Test boards for area array surface mount package thermal measurements, EIA/JESD51-9, 2000.
29. IPC/JEDEC, Moisture/reflow sensitivity classification for nonhermetic solid state surface mount devices, IPC/JEDEC J-STD-020C, 2004.
30. Thermo Electron Corporation, Circulators, Cryostats, Coolers, pp. 12.
31. JEDEC Solid State Technology Association, Integrated circuits thermal test method environment conditions-Natural convection (still air), EIA/JESD51-2, 1995.
32. T. H. Wang, Y. -S. Lai and C. -C. Lee, Power cycling and thermal cycling fatigue reliability of chip-scale packages, Journal of Microelectronics and Electronic Packaging, 2(3), pp. 171~179, 2005.
33. S. B. Park and I. Z. Ahmed, Shorter field life in power cycling for organic packages, Journal of Electronic Packaging, ASME, Vol. 129, No. 1, pp. 28-34, 2007.
34. Y. -S. Lai, T. H. Wang, and C. -C. Lee, Thermal-mechanical Coupling Analysis for Coupled Power and Thermal Cycling Reliability of Chip-scale Packages, Proc. 6th EuroSimE, Berlin, Germany, pp. 539-544, 2005.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2008-12-10起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2008-12-10起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw