進階搜尋


 
系統識別號 U0026-0812200915030802
論文名稱(中文) 散熱鰭片之電磁特性與接地構型之分析
論文名稱(英文) Analysis of the Electromagnetic Characteristics and Grounding Configuration of Pin-Fin Heatsinks
校院名稱 成功大學
系所名稱(中) 工程科學系碩博士班
系所名稱(英) Department of Engineering Science
學年度 97
學期 1
出版年 98
研究生(中文) 邱世彬
研究生(英文) Shih-bin Chiu
電子信箱 n9889112@ccmail.ncku.edu.tw
學號 n9889112
學位類別 博士
語文別 中文
論文頁數 178頁
口試委員 指導教授-周榮華
口試委員-簡來成
口試委員-魏哲和
口試委員-鄭育能
口試委員-陳添智
口試委員-趙隆山
中文關鍵字 散熱鰭片  電磁輻射  電磁訊號源  接地構型 
英文關鍵字 heatsink  EM emissions  EM excitation source  grounding configuration 
學科別分類
中文摘要 隨著高速電路的演進及CPU時脈頻率的提升,散熱模組的使用已不可或缺,然而在散熱問題考量下,卻衍生出鰭片、熱管及冷卻管路等類天線外型結構之電磁相容性(EMC)問題。本文以全波馬克斯威爾方程式為統御方程式,利用時域有限差分法(FDTD)搭配完美匹配層(PML)之邊界條件,以三類型電磁訊號源在不同操作頻率下探討針狀散熱鰭片之電磁共振行為,並採用金屬周界接地模式,以探究此法對改善鰭片電磁共振之適用性。
就訊號源影響而言,Modulated Gaussian Pulse誘發鰭片共振發生於特定頻率,共振點能量集中;Differentiated Gaussian Pulse除了共振點能量集中外,並隨著操作頻率提升至4GHz時,鰭片共振會呈現分群效應,另一現象為電磁能量匱乏區之產生,此區會隨著操作頻率增加而平移;Smooth Compact Pulse則具有均勻能量分佈於頻帶之特徵,當操作頻率提升至8或10GHz時,共振點數量增加且往高頻區段移動,共振能量呈現均佈型態。
針對鰭片結構分析,sink6x6鰭片為最早反應訊號源影響之結構,block鰭片則在高頻時具有明顯之耦合行為,配合時域態的電場分佈圖,可知鰭針分佈處為電場集中點。sink3x3鰭片則可抑制Z方向電場之作用。就鰭片吸收與輻射型態下能量觀點比較,鰭片的吸收能力較輻射能力高,其強度差值約為2個order。
對於接地構型,採用金屬周界接地模式,對於訊號源所誘發之鰭片共振,可將高頻區段之共振點抑制到2-10GHz頻段。針對sink6x6鰭片採用不同接地構型,若搭配四周接地模式,可藉由共振腔之特性改變共振頻率點,且於操作頻率在1GHz時,可降低共振量值約1.4倍;而嵌入接地模式可將輻射型態共振點頻率抑制達8GHz,而改善效益最高為開縫接地構型,兼具降低共振強度與偏移共振點之優勢,於操作頻率1GHz時,可降低共振幅度約4倍,另一特色為可使共振點突波分佈的特性趨於平緩,且對於抑制高頻共振顯現其能力。
英文摘要 With the evolution of high speed circuits and higher CPU clock frequency, cooling modules are necessary for electronic systems. However, the configurations of the cooling modules such as heatsinks, heatpipes, may induce EMC problems. In this study, the electromagnetic effect of pin-fin heatsinks is investigated by solving Maxwell equations numerically using a FDTD method and PML boundary conditions. Three types of excitation sources with different operating frequencies are explored. For suppressing the EM effects of fins, grounding methods by using metal slabs are also examined.
For the effect of excitation sources, resonant behaviors triggered by Modulated Gaussian Pulse occur at specific frequencies. For Differentiated Gaussian Pulse, the distribution of resonant points shows cluster phenomena due to the peaks of the source when the reference operating frequency is increased to 4GHz. Also, an EM empty bandwidth exists which shifts with the operating frequency. For the Smooth Compact Pulse excitation source, quite a few multiple resonant frequencies are observed at higher operating frequencies.
Among the heatsinks, the 6x6 pin-fin heatsink is most liable to EM energy to induce EM resonance. Using a metal block as a heatsink at higher operating frequencies should be avoided as it may induce undesirable EM effects.The 3x3 pin-fin heatsink can suppress the Z-direction electric field. No matter what the excitation source is, the absorption magnitudes of the fins are much larger than those due to radiation.
For grounding methods with metal slabs, the scheme is effective in suppressing emissions at higher frequencies. Different grounding configurations for the 6x6 pin-fin heatsink show that the EM resonant magnitude can be reduced by 1.4 times at 1GHz operating frequency. The resonant points can be changed by the fin cavity characteristics by using surrounded grounding method. As for the embedded grounding model, the scheme can suppress emissions up to 8GHz. For the slit grounding model, the adverse EM effect can be decreased by 4 times at low operating frequency. Additionally, this grounding configuration can make the resonant pulse more smoothly and suppress the high frequency resonance more effectively.
論文目次 目錄 I
表目錄 IV
圖目錄 V
符號說明 XI
第一章、序論 ...1
1-1 研究背景及動機 1
1-2 電磁干擾(EMI-Electromagnetic Interference)及控制 5
第二章、文獻回顧 10
第三章、電磁場數值分析 21
3-1 馬克斯威爾方程式(Maxwell’s Equations) 22
3-2 時域有限差分法(FDTD Method) 24
3-3 準確性與穩定性 26
3-4 吸收邊界條件之選擇 27
3-5 數值分析模型 31
3-5-1 散熱鰭片與電子元件模型 31
3-5-2 數值分析網格 32
3-5-3 電磁訊號源 33
3-5-4 接地條件的設定 35
第四章、電磁訊號源與操作頻率之探討 36
4-1鰭片吸收電磁波型態之頻譜分析 37
4-1-1 訊號源於操作頻率800MHz之電磁效應 37
4-1-2 訊號源於操作頻率1GHz之電磁效應 39
4-1-3 訊號源於操作頻率2GHz之電磁效應 40
4-1-4 訊號源於操作頻率4GHz之電磁效應 42
4-1-5 訊號源於操作頻率6GHz之電磁效應 44
4-1-6 訊號源於操作頻率8GHz之電磁效應 46
4-1-7 訊號源於操作頻率10GHz之電磁效應 48
4-1-8 綜合討論 50
4-2鰭片輻射電磁波型態之頻譜分析 53
4-2-1 訊號源於操作頻率0.8及1GHz之電磁效應 53
4-2-2 訊號源於操作頻率2GHz之電磁效應 55
4-2-3 訊號源於操作頻率4GHz之電磁效應 57
4-2-4 訊號源於操作頻率6GHz之電磁效應 58
4-2-5 訊號源於操作頻率8及10GHz之電磁效應 59
4-2-6 綜合討論 61
第五章、接地構型之探討 65
5-1 Ez1-Modulated Gaussian Pulse-鰭片接地構型之分析 66
5-1-1 鰭片吸收型態之接地效應 66
5-1-2 鰭片輻射型態之接地效應 67
5-2 Ez3-Smooth Compact Pulse-鰭片接地構型之分析 69
5-2-1 鰭片吸收型態之接地效應 69
5-2-2 鰭片輻射型態之接地效應 71
5-3 Heatsink6x6鰭片---接地構型差異之分析 73
5-3-1 Sink6x6鰭片吸收型態之接地構型比較 73
5-3-2 Sink6x6鰭片輻射型態之接地構型比較 76
第六章、結論與建議 78
6-1 總結 78
6-2 建議 81
參考文獻 82
附錄 88







表 目 錄

表一、鰭片的尺寸規格 98
表二、訊號源Ez1-Modulated Gaussian Pulse--鰭片吸收型態Ez共振點分佈表 99
表三、訊號源Ez2-Differentiated Gaussian Pulse--鰭片吸收型態Ez共振點分佈表 100
表四、訊號源Ez3-Smooth Compact Pulse--鰭片吸收型態Ez共振點分佈表 101
表五、訊號源Ez1-Modulated Gaussian Pulse--鰭片輻射型態Ez共振點分佈表 103
表六、訊號源Ez2-Differentiated Gaussian Pulse--鰭片輻射型態Ez共振點分佈表 105
表七、訊號源Ez3-Smooth Compact Pulse--鰭片輻射型態Ez共振點分佈表 106





圖 目 錄

圖1-1 鰭片面積示意圖[5] 107
圖1-2 各式鰭片結構圖[6] 107
圖3-1 Yee單位晶格的網格位置圖[66] 108
圖3-2 Yee單位晶格網格位置的有限差分表示圖[69] 108
圖3-3 Yee演算法之單位時間間格示意圖[68] 109
圖3-4 二維PML之應用架構[77] 109
圖3-5 三維PML之應用架構[78] 110
圖3-6 散熱鰭片(Heatsink 6x6)及IC Package幾何示意圖 110
圖3-7 電子元件與散熱鰭片尺度示意圖 111
圖3-8 數值分析之網格分佈圖 111
圖3-9-a 訊號源Ez1操作頻率0.8GHz之時域與頻率域圖 112
圖3-9-b 訊號源Ez1操作頻率1GHz之時域與頻率域圖 113
圖3-9-c 訊號源Ez1操作頻率2GHz之時域與頻率域圖 114
圖3-9-d 訊號源Ez1操作頻率4GHz之時域與頻率域圖 115
圖3-9-e 訊號源Ez1操作頻率6GHz之時域與頻率域圖 116
圖3-9-f 訊號源Ez1操作頻率8GHz之時域與頻率域圖 117
圖3-9-g 訊號源Ez1操作頻率10GHz之時域與頻率域圖 118
圖3-10-a 訊號源Ez2操作頻率0.8GHz之時域與頻率域圖 119
圖3-10-b 訊號源Ez2操作頻率1GHz之時域與頻率域圖 120
圖3-10-c 訊號源Ez2操作頻率2GHz之時域與頻率域圖 121
圖3-10-d 訊號源Ez2操作頻率4GHz之時域與頻率域圖 122
圖3-10-e 訊號源Ez2操作頻率6GHz之時域與頻率域圖 123
圖3-10-f 訊號源Ez2操作頻率8GHz之時域與頻率域圖 124
圖3-10-g 訊號源Ez2操作頻率10GHz之時域與頻率域圖 125
圖3-11-a 訊號源Ez3操作頻率0.8GHz之時域與頻率域圖 126
圖3-11-b 訊號源Ez3操作頻率1GHz之時域與頻率域圖 127
圖3-11-c 訊號源Ez3操作頻率2GHz之時域與頻率域圖 128
圖3-11-d 訊號源Ez3操作頻率4GHz之時域與頻率域圖 129
圖3-11-e 訊號源Ez3操作頻率6GHz之時域與頻率域圖 130
圖3-11-f 訊號源Ez3操作頻率8GHz之時域與頻率域圖 131
圖3-11-g 訊號源Ez3操作頻率10GHz之時域與頻率域圖 132
圖4-1 訊號源Ez1頻率為0.8GHz,鰭片吸收型態Ez訊號正規化頻譜分析圖 133
圖4-2 訊號源Ez2頻率為0.8GHz,鰭片吸收型態Ez訊號正規化頻譜分析圖 133
圖4-3 訊號源Ez3頻率為0.8GHz,鰭片吸收型態Ez訊號正規化頻譜分析圖 134
圖4-4 訊號源Ez1頻率為1GHz,鰭片吸收型態Ez訊號正規化頻譜分析圖 134
圖4-5 訊號源Ez2頻率為1GHz,鰭片吸收型態Ez訊號正規化頻譜分析圖 135
圖4-6 訊號源Ez3頻率為1GHz,鰭片吸收型態Ez訊號正規化頻譜分析圖 135
圖4-7 訊號源Ez1頻率為2GHz,鰭片吸收型態Ez訊號正規化頻譜分析圖 136
圖4-8 訊號源Ez2頻率為2GHz,鰭片吸收型態Ez訊號正規化頻譜分析圖 136
圖4-9 訊號源Ez3頻率為2GHz,鰭片吸收型態Ez訊號正規化頻譜分析圖 137
圖4-10 訊號源Ez1頻率為4GHz,鰭片吸收型態Ez訊號正規化頻譜分析圖 137
圖4-11 訊號源Ez2頻率為4GHz,鰭片吸收型態Ez訊號正規化頻譜分析圖 138
圖4-12 訊號源Ez3頻率為4GHz,鰭片吸收型態Ez訊號正規化頻譜分析圖 138
圖4-13 訊號源Ez1頻率為6GHz,鰭片吸收型態Ez訊號正規化頻譜分析圖 139
圖4-14 訊號源Ez2頻率為6GHz,鰭片吸收型態Ez訊號正規化頻譜分析圖 139
圖4-15 訊號源Ez3頻率為6GHz,鰭片吸收型態Ez訊號正規化頻譜分析圖 140
圖4-16 訊號源Ez1頻率為8GHz,鰭片吸收型態Ez訊號正規化頻譜分析圖 140
圖4-17 訊號源Ez2頻率為8GHz,鰭片吸收型態Ez訊號正規化頻譜分析圖 141
圖4-18 訊號源Ez3頻率為8GHz,鰭片吸收型態Ez訊號正規化頻譜分析圖 141
圖4-19 訊號源Ez1頻率為10GHz,鰭片吸收型態Ez訊號正規化頻譜分析圖 142
圖4-20 訊號源Ez2頻率為10GHz,鰭片吸收型態Ez訊號正規化頻譜分析圖 142
圖4-21 訊號源Ez3頻率為10GHz,鰭片吸收型態Ez訊號正規化頻譜分析圖 143
圖4-22 訊號源Ez1頻率為4GHz,鰭片吸收型態Ey訊號正規化頻譜分析圖 143
圖4-23 訊號源Ez2頻率為4GHz,鰭片吸收型態Ey訊號正規化頻譜分析圖 144
圖4-24 訊號源Ez3頻率為4GHz,鰭片吸收型態Ey訊號正規化頻譜分析圖 144
圖4-25 訊號源Ez1頻率為10GHz,鰭片吸收型態Ey訊號正規化頻譜分析圖 145
圖4-26 訊號源Ez2頻率為10GHz,鰭片吸收型態Ey訊號正規化頻譜分析圖 145
圖4-27 訊號源Ez3頻率為10GHz,鰭片吸收型態Ey訊號正規化頻譜分析圖 146
圖4-28 Ez1操作頻率2G時,block鰭片之電磁波形分佈圖-absorption 146
圖4-29 Ez1操作頻率4G時,sink6x6鰭片之電磁波形分佈圖-absorption 147
圖4-30 Ez2操作頻率4G時,sink6x6鰭片之電磁波形分佈圖-absorption 147
圖4-31 Ez3操作頻率4G時,sink6x6鰭片之電磁波形分佈圖-absorption 148
圖4-32 Ez1操作頻率10G時,sink6x6鰭片之電磁波形分佈圖-absorption 148
圖4-33 Ez2操作頻率10G時,sink6x6鰭片之電磁波形分佈圖-absorption 149
圖4-34 Ez3操作頻率10G時,sink6x6鰭片之電磁波形分佈圖-absorption 149
圖4-35 Ez3操作頻率10G時,block鰭片之電磁波形分佈圖-absorption 150
圖4-36 訊號源Ez1頻率為0.8GHz,鰭片輻射型態Ez訊號正規化頻譜分析圖 150
圖4-37 訊號源Ez2頻率為0.8GHz,鰭片輻射型態Ez訊號正規化頻譜分析圖 151
圖4-38 訊號源Ez3頻率為0.8GHz,鰭片輻射型態Ez訊號正規化頻譜分析圖 151
圖4-39 訊號源Ez1頻率為1GHz,鰭片輻射型態Ez訊號正規化頻譜分析圖 152
圖4-40 訊號源Ez2頻率為1GHz,鰭片輻射型態Ez訊號正規化頻譜分析圖 152
圖4-41 訊號源Ez3頻率為1GHz,鰭片輻射型態Ez訊號正規化頻譜分析圖 153
圖4-42 訊號源Ez1頻率為2GHz,鰭片輻射型態Ez訊號正規化頻譜分析圖 153
圖4-43 訊號源Ez2頻率為2GHz,鰭片輻射型態Ez訊號正規化頻譜分析圖 154
圖4-44 訊號源Ez3頻率為2GHz,鰭片輻射型態Ez訊號正規化頻譜分析圖 154
圖4-45 訊號源Ez1頻率為4GHz,鰭片輻射型態Ez訊號正規化頻譜分析圖 155
圖4-46 訊號源Ez2頻率為4GHz,鰭片輻射型態Ez訊號正規化頻譜分析圖 155
圖4-47 訊號源Ez3頻率為4GHz,鰭片輻射型態Ez訊號正規化頻譜分析圖 156
圖4-48 訊號源Ez1頻率為6GHz,鰭片輻射型態Ez訊號正規化頻譜分析圖 156
圖4-49 訊號源Ez2頻率為6GHz,鰭片輻射型態Ez訊號正規化頻譜分析圖 157
圖4-50 訊號源Ez3頻率為6GHz,鰭片輻射型態Ez訊號正規化頻譜分析圖 157
圖4-51 訊號源Ez1頻率為8GHz,鰭片輻射型態Ez訊號正規化頻譜分析圖 158
圖4-52 訊號源Ez2頻率為8GHz,鰭片輻射型態Ez訊號正規化頻譜分析圖 158
圖4-53 訊號源Ez3頻率為8GHz,鰭片輻射型態Ez訊號正規化頻譜分析圖 159
圖4-54 訊號源Ez1頻率為10GHz,鰭片輻射型態Ez訊號正規化頻譜分析圖 159
圖4-55 訊號源Ez2頻率為10GHz,鰭片輻射型態Ez訊號正規化頻譜分析圖 160
圖4-56 訊號源Ez3頻率為10GHz,鰭片輻射型態Ez訊號正規化頻譜分析圖 160
圖4-57 Ez1操作頻率2G時,block鰭片之電磁波形分佈圖-radiation 161
圖4-58 Ez1操作頻率4G時,sink6x6鰭片之電磁波形分佈圖- radiation 161
圖4-59 Ez2操作頻率4G時,sink6x6鰭片之電磁波形分佈圖- radiation 162
圖4-60 Ez3操作頻率4G時,sink6x6鰭片之電磁波形分佈圖- radiation 162
圖4-61 Ez1操作頻率10G時,sink4x4鰭片之電磁波形分佈圖- radiation 163
圖4-62 Ez2操作頻率10G時,sink4x4鰭片之電磁波形分佈圖- radiation 163
圖4-63 Ez1操作頻率10G時,sink6x6鰭片之電磁波形分佈圖- radiation 164
圖4-64 Ez2操作頻率10G時,sink6x6鰭片之電磁波形分佈圖- radiation 164
圖4-65 Ez3操作頻率10G時,sink6x6鰭片之電磁波形分佈圖- radiation 165
圖4-66 Ez3操作頻率10G時,block鰭片之電磁波形分佈圖- radiation 165
圖5-1 訊號源Ez1頻率為1GHz,sink6x6鰭片吸收型態--接地頻譜分析圖 166
圖5-2 訊號源Ez1頻率為4GHz,block鰭片吸收型態--接地頻譜分析圖 166
圖5-3 訊號源Ez1頻率為4GHz,sink6x6鰭片吸收型態--接地頻譜分析圖 167
圖5-4 訊號源Ez1頻率為10GHz,block鰭片吸收型態--接地頻譜分析圖 167
圖5-5 訊號源Ez1頻率為10GHz,sink4x4鰭片吸收型態--接地頻譜分析圖 168
圖5-6 訊號源Ez1頻率為4GHz,block鰭片輻射型態--接地頻譜分析圖 168
圖5-7 訊號源Ez1頻率為4GHz,sink4x4鰭片輻射型態--接地頻譜分析圖 169
圖5-8 訊號源Ez1頻率為4GHz,sink6x6鰭片輻射型態--接地頻譜分析圖 169
圖5-9 訊號源Ez1頻率為10GHz,sink6x6鰭片輻射型態--接地頻譜分析圖 170
圖5-10 訊號源Ez3頻率為1GHz,sink6x6鰭片吸收型態--接地頻譜分析圖 170
圖5-11 訊號源Ez3頻率為4GHz,block鰭片吸收型態--接地頻譜分析圖 171
圖5-12 訊號源Ez3頻率為4GHz,sink4x4鰭片吸收型態--接地頻譜分析圖 171
圖5-13 訊號源Ez3頻率為4GHz,sink6x6鰭片吸收型態--接地頻譜分析圖 172
圖5-14 訊號源Ez3頻率為10GHz,block鰭片吸收型態--接地頻譜分析圖 172
圖5-15 訊號源Ez3頻率為10GHz,sink4x4鰭片吸收型態--接地頻譜分析圖 173
圖5-16 訊號源Ez3頻率為10GHz,sink6x6鰭片吸收型態--接地頻譜分析圖 173
圖5-17 訊號源Ez3頻率為6GHz,sink6x6鰭片輻射型態--接地頻譜分析圖 174
圖5-18 訊號源Ez3頻率為10GHz,block鰭片輻射型態--接地頻譜分析圖 174
圖5-19 訊號源Ez3頻率為10GHz,sink4x4鰭片輻射型態--接地頻譜分析圖 175
圖5-20 訊號源Ez3頻率為10GHz,sink6x6鰭片輻射型態--接地頻譜分析圖 175
圖5-21 訊號源Ez3頻率為1GHz,sink6x6鰭片吸收型態--接地構型比較圖 176
圖5-22 訊號源Ez3頻率為4GHz,sink6x6鰭片吸收型態--接地構型比較圖 176
圖5-23 訊號源Ez3頻率為10GHz,sink6x6鰭片吸收型態--接地構型比較圖 177
圖5-24 訊號源Ez3頻率為1GHz,sink6x6鰭片輻射型態--接地構型比較圖 177
圖5-25 訊號源Ez3頻率為4GHz,sink6x6鰭片輻射型態--接地構型比較圖 178
圖5-26 訊號源Ez3頻率為10GHz,sink6x6鰭片輻射型態--接地構型比較圖 178
參考文獻 [1] R. R. Tummala, “Fundamental of Microsystems Packaging,” Mcgraw-Hill, 2001.
[2] H. Xie, M. Aghazadeh, W. Lui and K. Haley, “Thermal Solutions to Pentium Processors in TCP in Notebooks and Sub-notebooks,” IEEE Transactions on Components, Packaging and Manufacturing Technology, Part A, vol.19, no.1, pp.54-65, March, 1996.
[3] D. D. Pollock, “Thermoelectricity Theory Thermomtery Tool ASTM Special Technical Publication,” 1985.
[4] R. C. Chu, U. P. Hwang and R. E. Simons, “Conduction Cooling for an LSI Package: A One-Dimensional Approach,” IBM J. Res. Develop., vol.26, no.1, pp.55-66, January, 1982.
[5] R. A. Wirtz, W. M. Chen and R. H. Zhou, “Effect of Flow Bypass on the Performance of Longitudinal Fin Heat Sinks,” Journal of Electronic Packaging, ASME, vol.116, pp.206-211, 1994.
[6] R. L. Webb, “Principles of Enhanced Heat Transfer,” John Wiley & Sons, 1994.
[7] M. Behnia, D. Copeland and D. A. Soodphakdee, “Comparison of Heat Sink Geometries for Laminar Forced Convection: Numerical Simulation of Periodically Developed Flow,” IEE Int. Society Conference on Thermal Phenomena, pp.310-315, 1998.
[8] A. T. Morrison, “Optimization of Heat Sink Fin Geometries for Heat Sinks in Natural Convection,” IEEE Int. Society Conference on Thermal Phenomena, pp.145-148, 1992.
[9] C. L. Chapman, S. Lee and B. L. Schmidt, “Thermal Performance of an Elliptical Pin Fin Heat Sink,” IEEE 10th SEMI-THERM Symposium, pp.24-32, 1994.
[10]H. Shaukatullah, W. R. Storr, B. J. Hansen and M. A. Gaynes, “Design and Optimization of Pin Fin Heat Transfer for Low Velocity Application,” IEEE 12th SEMI-THERM Symposium, pp.151-163, 1996.
[11]G. L. Lehmann and S. J. Kosteva, “A Study of Forced Convection Direct Air Cooling in the Downstream Vicinity of Heat Sinks,” Journal of Electronic Packaging, ASME, vol.112, pp.234-240, 1990.
[12]謝金明,高速數位電路設計暨雜訊防制技術,Hewlett Packard, 1997.
[13]http://en.wikipedia.org/wiki/Nehalem_(CPU_architecture)
[14]C. R. Paul, “Introduction to Electromagnetic Compatibility,” Wiley, New York, 1992.
[15]M. I. Montrose, “Printed Circuit Board Design Techniques for EMC Compliance,” IEEE Press, New York, 1996.
[16]M. I. Montrose, “EMC and the Printed Circuit Board: Design, Theory, and Layout Made Simple,” IEEE Press, New York, 1999.
[17]H. W. Ott, “Noise Reduction Techniques in Electronic Systems,” John Wiley&Sons, 1988.
[18]C. F. Lee, K. Li, S.Y. Poh, R. T. Shin and J. A. Kong, “Electromagnetic Radiation from a VLSI Package and Heatsink Configuration,” IEEE International Symposium on Electromagnetic Compatibility, pp.393-398, 1991.
[19]C. R. Paul, “Printed Circuit Board EMC,” Proc.6th Int. Symp. On EMC., pp.107-114, March, 1985.
[20]J. D. M. Osburn and D. R. J. White, “Grounding, a Recommendation for the Future,” Proc. IEEE Int. EMC Symp., pp.155-160, August, 1987.
[21]L. B. Gravelle and P. F. Wilson, “EMI/EMC in Printed Circuit Boards-A literature Review,” IEEE Transactions on Electromagnetic Compatibility, vol. 34, no. 2, pp.109-116, 1992.
[22]D. N. Ladd and G. I. Costache, “Finite Element Analysis of The Electromagnetic Radiation From A VLSI Package Heatsink,” IEEE International Symposium on Electromagnetic Compatibility, pp.120-123, August, 1992.
[23]E. Sumbar, F. E. Vermeulen, and F. S. Chute, “Implementation of Radiation Boundary Conditions in the Finite Element Analysis of Electromagnetic Wave Propagation,” IEEE Transactions on Microwave Theory and Techniques, vol.39, no. 2, pp.267-273, February, 1991.
[24]K. Li, C. F. Lee, S.Y. Poh, R. T. Shin and J. A. Kong, “Application of FDTD Method to Analysis of Electromagnetic Radiation from VLSI Heatsink Configurations,” IEEE Transactions on Electromagnetic Compatibility, vol. 35, no. 2, pp. 204-214, May, 1993.
[25]C. E. Brench, “Heatsink Radiation as a Function of Geometry,” IEEE International Symposium on Electromagnetic Compatibility, pp. 105-109, August, 1994.
[26]C. E. Brench, “Creating Practical FDTD Models for EMC Analysis,” IEEE International Symposium on Electromagnetic Compatibility, pp. 174-178, August, 1995.
[27]N. J. Ryan, D. A. Stone and B. Chambers, “Application of the FDTD Method to Modeling the Electromagnetic Radiation from Heatsinks,” IEE 10th International Conference on Electromagnetic Compatibility, pp.119-124, 1-3 September, 1997.
[28]N. J. Ryan, D. A. Stone and B. Chambers, “Application of FD-TD to the Prediction of RF Radiation from Heatsinks,” IEE Electronics Letters, vol.33, no.17, pp.1443-1444, 14August, 1997.
[29]S. K. Das and T. Roy, “An Investigation on Radiated Emissions from Heatsinks,” IEEE International Symposium on Electromagnetic Compatibility, vol. 2, pp.784-789, 24-28August, 1998.
[30]M. P. Robinson, T. M. Benson, C. Christopoulos, J. F. Dawson, M. D. Ganley, A. C. Marvin, J. Porter and D. W. P. Thomas, “Analytic Formulation for the Shielding Effectiveness of Enclosures with Apertures,” IEEE Transactions on Electromagnetic Compatibility, vol.40, no.3, pp.240-248, 1998.
[31]D. W. P. Thomas, A. Denton, T. Konefal, T. M. Benson, C. Christopoulos, J. F. Dawson, A. C. Marvin and J. Porter, “Characterisation of the Shielding Effectiveness of Loaded Equipment Enclosures,” IEE International Conference and Exhibition on Electromagnetic Compatibility, pp.89-94, 12-13July, 1999.
[32]N. J. Ryan, D. A. Stone and B. Chambers, “FDTD Modeling of Heatsinks for EMC,” IEE International Conference and Exhibition on Electromagnetic Compatibility, pp.125-130, 12-13 July, 1999.
[33]J. Nonaka, S. Nitta, A. Mutoh and T. Miyashita, “The Influence of Straight-Fin Heatsink on Noise Susceptibility of IC-Capacitive Coupling,” IEEE International Symposium on Electromagnetic Compatibility, vol.1, pp.345-350, 2-6 August, 1999.
[34]H. T. Hsu, “The Influences of Heat Sink on Noise Immunity of ICs,” IEEE International Symposium on Electromagnetic Compatibility, pp.622-625, May, 1994.
[35]J. Nonaka, S. Nitta, A. Mutoh and T. Miyashita, “The Influence of Heatsink on Noise Susceptibility of IC,” IEEE International Symposium on Electromagnetic Compatibility, vol.1, pp.231-236, August, 1998.
[36]S. Nitta, “Noise Proof Techniques in Electronic Equipment,” Ohm Co., 1966
[37]P. Havarasan, M. Haines, H. Skinner and F. Justice, “Current and Future EMI Challenges at Intel and How to Manage Them,” IEEE International Symposium on Electromagnetic Compatibility, vol.1, pp.281-283, 21-25 August, 2000.
[38]K. Radhakrishnan, D. Wittwer and Yuan-Liang Li, “Study of Heatsink Grounding Schemes for GHz Microprocessors,” IEEE Conference on Electrical Performance of Electronic Packaging, pp.189-192, 23-25 October, 2000.
[39]B. Archambeault, S. Pratapneni, L. Zhang, D. C. Wittwer and J. Chen, “A Proposed Set of Specific Standard EMC Problems to Help Engineers Evaluate EMC Modeling Tools,” IEEE International Symposium on Electromagnetic Compatibility, vol. 2, pp.1335-1340, 13-17 August, 2001.
[40]J. C. Diepenbrock, B. Archambeault and L. D. Hobgood, “Improved Grounding Method for Heat Sinks of High Speed Processors,” IEEE Electronic Components and Technology Conference 51th Proceedings, pp.993-996, June, 2001.
[41]“S-Parameter Techniques for Faster, More Accurate Network Design,” Hewlett-Packard Application Note 95-1.
[42]G. Felic and R. Evans, “Study of Heat Sink EMI Effects in SMPS Circuits,” IEEE International Symposium on Electromagnetic Compatibility, vol.1, pp.254-259, 13-17 August, 2001.
[43]C. E. Brench and O. M. Ramahi, “Source Selection Criteria for FDTD Models,” IEEE International Symposium on Electromagnetic Compatibility, vol.1, pp.491-494, 24-28August, 1998.
[44]L. Tihanyi, “Electromagnetic Compatibility in Power Electronics,” IEEE Press, 1995.
[45]Yu Huang, J. E. Butler, M. de Sorgo, R. E. DuBroff, T. H. Hubing, J. L. Drewniak and T. P. van Doren, “EMI Considerations in Selecting Heat-Sink-Thermal -Gasket Materials,” IEEE Transactions on Electromagnetic Compatibility, vol.43, no.3, pp.254-260, 2001.
[46]J. F. Dawson, A. C. Marvin, S. J. Porter, A. Nothofer, J. E. Will and S. Hopkins, “The Effect of Grounding on Radiated Emissions from Heatsinks,” IEEE International Symposium on Electromagnetic Compatibility, vol.2, pp.1248-1252, 13-17 August, 2001.
[47]I. Raza, “Containing Emissions from a Microprocessor Module,” IEEE International Symposium on Electromagnetic Compatibility, vol.2, pp.871-876, August, 2000.
[48]C. Wang, J. L. Drewniak, J. L. Knighten, D. Wang, R. Alexander and D. M. Hockanson, “Grounding of Heatpipe/Heatspreader and Heatsink Structures for EMI Mitigation,” IEEE International Symposium on Electromagnetic Compatibility, vol.2, pp.916-920, 13-17 August, 2001.
[49]C. Wang, X. Ye, J. L. Drewniak, J. L. Knighten, D. G. Wang and R. Alexander, “FDTD Modeling of EMI due to Coupling from PCB Traces to Heatpipe/Heatsink Structures,” 14th International Zurich Symposium, pp.541-544, February, 2001.
[50]R. Luebbers, F. P. Hunsberger, K. S. Kunz, R. B. Standler and M. Schneider, “A Frequency-Dependent Finite-Difference Time-Domain Formulation for Dispersive Materials,” IEEE Transactions on Electromagnetic Compatibility, vol.32, no.3, pp.222-227, August, 1990.
[51]Rong Li and Lin-Chang Zhang, “Heatsink Grounding Effect on Radiated Emission of Electronic Device,” IEEE 3rd International Symposium on Electromagnetic Compatibility, pp.704-709, 21-24 May, 2002.
[52]N. J. Ryan, B. Chambers and D. A. Stone, “FDTD Modeling of Heatsink RF Characteristics for EMC Mitigation,” IEEE Transactions on Electromagnetic Compatibility, vol.44, no. 3, pp.458-465, August, 2002.
[53]D. G. Wang, J. L. Knighten and P. K. Muller, “An Integrated Vent, Heatsink and EMI Shield,” IEEE 18th Annual Symposium on Semiconductor Thermal Measurement and Management, pp.125-131, 12-14 March, 2002.
[54]G. P. Peterson, “An Introduction to Heat Pipes,” John Wily & Sons, New York, 1995.
[55] D. M. Pozar, “Microwave Engineering,” 2nd Ed., John Wily & Sons, Inc., 1998.
[56]A. Damiano, G. Gatto, I. Marongiu and A. Piroddi, “A Heat Sink Model for EMI Resonance Frequency Determination,” IEEE 35th Annual on Power Electronics Specialists Conference, vol.1, pp.273-277, 20-25 June, 2004.
[57]D. M. Hockanson and R. D. Slone, “Investigation of EMI Coupling at CPU Interconnect,” IEEE International Symposium on Electromagnetic Compatibility, vol. 2, pp.424-429, 9-13 August, 2004.
[58]C. A. Balanis, “Advanced Engineering Electromagnetics,” John Wily & Sons, Inc., New York, 1989.
[59]丁志雄,散熱鰭片對電磁效應之影響,國立成功大學工程科學研究所博士論文,2004.
[60]S. B. Chiu, C. H. Ding and J. H. Chou, “The Electromagnetic Effect of Cooling Fins,” International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol.19, pp. 315-330, 2006.
[61]K. S. Kunz, and R. J. Luebbers, “The Finite Difference Time Domain Method for Electromagnetics,” CRS, 1993.
[62]P. Silvester, “Finite Elements for Electrical Engineers,” Cambridge U. Press, N.Y., 1990.
[63]R. Laroussi and G. I. Costache, “Finite-Element Method Applied to EMC Problems,” IEEE Transactions on Electromagnetic Compatibility, vol. 35, no. 2, pp. 178-184, 1993.
[64]R. F. Harrington, “Field Computation by Moment Method,” IEEE Press, 1993.
[65]R. D. Kenneth, “Engineering Electromagnetics,” Prentice Hall, Inc., 1998
[66]K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations,” IEEE Transactions on Antennas and Propagation, vol. 14, pp.302-307, 1966.
[67]A. Taflove and K. R. Umashankar, “The Finite-Difference Time-Domain Method for Numerical Modeling of Electromagnetic Wave Interactions,” Electromagn. vol.10, no.1-2, pp105-126, 1990.
[68]A. Taflove and S. C. Hagness, “Computational Electrodynamics: The Finite- Difference Time- Domain Method,” 2nd ed., Artech House, Boston, 2000.
[69]M. N. O. Sadiku, “Numerical Techniques in Electromagnetics,” CRC Press, Boca Raton, Fla., pp.179-187, 1992.
[70]A. Taflove and M. E. Brodwin, “Numerical Solution of Steady-State Electromagnetic Scattering Problems Using the Time-Dependent Maxwell’s Equations,” IEEE Transactions on Microwave Theory and Techniques, vol.23, pp.623-630, August, 1975.
[71]B. Engquist and A. Majda, “Absorbing Boundary Conditions for the Numerical Simulation of Waves,” Mathematics of Computation, vol. 31, pp.629-651, 1977
[72]G. Mur, “Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic Field Equations,” IEEE Transactions on Electromagnetic Compatibility, vol. 23, pp.377-382, 1981.
[73]L. N. Trefethen and L. Halpern, “Well-Posedness of One-Way Wave Equations and Absorbing Boundary Conditions,” Mathematics of Computation, vol. 47, pp.421-435, 1986.
[74]T. G. Moore, J. G. Blaschak, A. Taflove and G. A. Kriegsmann, “Theory and Application of Radiation Boundary Operators,” IEEE Transactions on Antennas and Propagation, vol. 36, no.12, pp.1797-1812, 1988.
[75]R. L. Higdon, “Numerical Absorbing Boundary Conditions for the Wave Equation,” Mathematics of Computation, vol. 49, pp.65-90, 1987.
[76]Z. P. Liao, H. L. Wong, B. P. Yang and Y. F. Yuan, “A Transmitting Boundary for Transient Wave Analysis,” Science Sinica, Series A, vol.27, no.10, pp.1063-1076, 1984.
[77]J. P. Berenger,“A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” Journal of Computational Physics, vol. 114, pp.185-200, 1994.
[78]J. P. Berenger, “Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” Journal of Computational Physics, vol.127, pp.363-379, 1996.
[79]J. P. Berenger, “Perfectly Matched Layer for the FDTD Solution of Wave- Structure Interaction Problems,” IEEE Transactions on Antennas and Propagation, vol. 51, pp.110-117, 1996.
[80]J. P. Berenger, “A Perfectly Matched Layer for Free-Space Simulations in Finite-Difference Computer Codes,” Anneals des Telecommunications, vol. 51, pp.39-46, 1996.
[81]J. P. Berenger, “Improved PML for the FDTD Solution of Wave-Structure Interaction Problems,” IEEE Transactions on Antennas and Propagation, vol. 45, pp.466-473, 1997.
[82]J. P. Berenger, “Numerical Reflection of Evanescent Waves from Perfectly Matched Layers,” Proc. IEEE on Antennas and Propagation, Soc. Int. Symposium, vol. 3, pp.1888-1891, 1997.
[83]B. Archambeault, C. Brench and O. M. Ramahi, “EMI/EMC Computational Modeling Handbook,” 2nd ed., Kluwer Academic Publishers, Boston, 2001.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-09-25起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2013-09-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw