進階搜尋


 
系統識別號 U0026-0812200914375552
論文名稱(中文) 肘關節終端阻力感覺測試之生物力學分析於旋後旋前及中位姿勢的差異探討
論文名稱(英文) Biomechanical Analysis of Elbow End-Feel Test in Supination, Pronation, Neutral Positions
校院名稱 成功大學
系所名稱(中) 物理治療研究所
系所名稱(英) Department of Physical Therapy
學年度 96
學期 2
出版年 97
研究生(中文) 吳志展
研究生(英文) Chih-Chan Wu
電子信箱 t6693103@mail.ncku.edu.tw
學號 t6695402
學位類別 碩士
語文別 英文
論文頁數 101頁
口試委員 指導教授-徐阿田
口試委員-張志涵
口試委員-楊俊佑
中文關鍵字 終端阻力感覺  Cyriax  肘關節 
英文關鍵字 Cyriax  elbow  end-feel 
學科別分類
中文摘要 背景和目的 終端阻力感覺測試是治療師常規的理學檢工具,它常被用來篩檢受損害的組織或用來引導治療的方向。廣泛的使用並不能證明它的信度和有效性。相反地,它已被許多研究報告證實是一個不夠精確的診斷工具。缺乏生物力學的研究可能使治療師對於病理專業評斷發生誤差,甚至導致治療方向的錯誤。為了要顯露終端阻力感覺測試的真實情況,我們利用角度位移和關節力矩的曲線來描述它,在肘關節正常的終端阻力感覺是在肘關節彎曲時發生軟組織擠壓感覺以及肘關節伸直時骨骨相頂感覺,這些終端阻力感覺是Cyriax臨床醫學博士首先提出的。前臂自轉在肘關節一般來說不會改變終端阻力感覺。我們審查肘關節旋前旋後及中位位置時終端阻力感覺測試的角度和力矩的關係圖看是否可以區別他的異同,同時證實它與手肘解剖結構的鍊結。

實驗方法10名男性和13名女性被邀請參與這項研究。 手肘動作由電子磁力系統記來錄,並且利用安裝在訂製的腕部副木上的負重元測量測試者施加的力量。總共做了肘關節彎曲還有在三個前臂位置(旋後、旋前、中位)終端阻力感覺測試。終端阻力感覺測試的力矩還另外做了來自於肢段的重力矩補償的調整。角度力矩曲線如軟組織材料測試被劃分成四段,分別是中立區(Neutral zone,NZ),第一段趾區域(Toe re-gion,T1),第二段趾區域(T2)和線性彈性區域(terminal linear, TL)。曲線的四段斜率是我們的觀察值。另外在整個趾區域的角度位移(AT),或到固定阻力矩時例如到4牛頓米(A4)或8牛頓米(A8)時的角度位移都一併被探討。這些角度位移是用來展現在終端阻力感覺中阻力上升的快慢的其一的參數。 重複量數MANOVA用來觀察區別從終端阻力感覺的類型,以及前臂位置、性別和手肘過於反曲與否對上述七個參數的影響。

結果 肘曲屈型態終端阻力感覺比起肘伸直在中立區斜率(NZ)來的大(p=0.019),同樣的從指區域開始到4牛頓米的角度位移 (A4)(p=0.008)和從指區域開始到8牛頓米的角度位移(A8)的都是肘曲屈比較多(p=0.017)。前臂自旋位置只對第二趾區域(T2)斜率發生影響。中位前臂位置有最大的第二趾區域(T2)斜率(比起旋前p=0.016,比起旋後p=0.029)。男性比起女性有比較大的中立區斜率(NZ)(p=0.019)。

結論 前臂位置在角度力矩曲線斜率的趾區域發生區別,但這區別是超過人能感覺到的。 臨床工作者能區別的只是速度或角度位移到某種程度的阻力上升的快慢,例如手肘彎曲阻力慢升的感覺以及肘關節伸直時阻力遽升有相當的差別。然而,可區分的感覺無法像Cyriax博士所說可以區別具體的組織,例如阻力遽升代表一定是骨頭相撞或者阻力慢升代表軟組織被擠壓。我們使用的角度力矩曲線忠實的呈現終端阻力感覺的圖像而且利用角度力矩曲線可區分的特性創造未來終端阻力感覺診斷模型仍然是可行的
英文摘要 Background and Purpose. End-feel test is a conventional practice for the therapist to screen lesions and guide interventions. The popular practice does not prove its reliability and validity. Conversely, it is a questionable diagnosis tool reported by the previous studies. Lack of biomechanical study misleads the professional judgments on the pathologies and even therapeutic effect. To reveal the true picture of end-feel test I examined the angle displacement and joint torque curve of the end-feel test to portray the profile of two normal type end-feels on the elbow joint which are soft-tissue approximation in flexion and bone-to-bone in extension first proposed by Dr. Cyriax. In general although the forearm rotation doesn’t change the normal end-feels in the elbow joint, the difference of angle-torque relationship in different forearm positions was also examined connect with elbow structures.

Method 10 male and 13 female healthy subjects were recruited to this study. Kine-matics of the elbow motion was recorded by electrical magnetic system (Fastrak, Polhe-mus), and my exertion was measured by a loadcell (MLP SERIES LOAD CELL, Transducer Techniques Inc.) installed on the customized wrist splint. Flexion and extension end-feel tests in three forearm positions (supination/ pronation/ neutral) were employed in this study. The joint torque regarded as the resistance of end-feel perceived by me and was adjusted by gravity compensates. The angle-torque curve was then divided into four parts which are the neutral zone (NZ), first section of the toe region (T1), second section of the toe region (T2), and terminal linear region (TL) as material testing. Four slopes of the curve were derived by regression method. Other parameters are the angle displacement in the toe region (AT), and from the beginning of the toe region to certain torque, such as 4 Nm (A4), 8 Nm (A8). The angle displacements are the indicators of how long the resis-tance development. Repeat measure MANOVA was used to observe the difference from types of end-feels, forearm positions, gender, and elbow hyperextension or not.

Results. The flexion end-feel is larger than extension in Neutral Zone slope (p=0.019), angle displacement in the toe region (p=0.002), angle displacement from the beginning of the toe region to 4 Nm (p=0.008), and to 8 Nm (p=0.017). The forearm positions only took action on the second section of the toe region slope. In neutral position the second section of the toe region slope is the largest (p=0.016 for pronation, 0.029 for supination). The male subject has larger Neutral Zone slope than female (p=0.019).

Conclusion. The forearm positions presented the difference in the toe region of the angle-torque curve slope but this distinction is rather vague for people to detect. What clinicians can distinguish is the angle displacements from initial resistance rising to certain resistance, but the distinguishable feeling cannot be directed to specific tissues, as Dr. Cyriax proposed. However, The angle-torque curve is an honest profile of end-feel and the distinguishable characteristic of the angle-torque curve is still feasible to create the end-feel diagnosis model in the future.
論文目次 1. Introduction 1
1.1. End-feel test 3
1.1.1. The procedures of the end-feel test 3
1.1.2. The categories of normal end-feels 4
1.1.3. Pain and resistance sequence 4
1.2. Literatures review 6
1.3. Anatomical base of the elbow end-feel test 9
1.3.1. Elbow flexion and extension and end feel 9
1.3.2. Forearm positions and end feel 11
1.3.3. Summary 12
1.4. End-feel test in elbow 14
1.5. Hypotheses 15
2. Methods 16
2.1. Subjects 16
2.2. Instruments 16
2.3. The definitions of segments conventions 18
2.4. Procedures 20
2.5. Data analysis 24
2.5.1. Outcome measured 24
2.5.1.1. Torque applied on the elbow joint 24
2.5.1.2. The slope of the torque and angle curve 28
2.5.1.3. The angle displacement in the toe region and to certain torques 29
2.5.2. Statistics 30
3. Results 31
3.1 Subjects’ basic data and gender difference 31
3.2 ROM and torques in end feel test 33
3.3 Main effect and interaction on outcome measures 37
3.3.1 Neutral Zone slope (NZ) 38
3.3.2 Slope of the first section of the toe region (T1) 40
3.3.3 Slope of the second section of the toe region (T2) 41
3.3.4 Slope of the terminal linear region (TL) 43
3.3.5 The angle spanning the toe region (AT) 44
3.3.6 The angle displacement from the beginning of the toe region to 4 Nm or -4 Nm (A4) 46
3.3.7 The angle displacement from the beginning of the toe region to 8 Nm or -8 Nm (A8) 48
3.3.8 Summary 50
3.3.8.1 Within-subject factors (End-feel types and forearm positions) 50
3.3.8.2 Between-subject factors (Gender and hyperextension of elbow) 50
3.4 Correlations 54
4. Discussion 56
4.1 Range of motion in elbow end feel test 56
4.2 The end torque in the end-feel test 58
4.3 The slope of the torque / angle curve 60
4.3.1 Neutral Zone slope (NZ) 60
4.3.2 Slope of the first section of the toe region (T1) 62
4.3.3 Slope of the second section of the toe region (T2) 65
4.3.3.1 Slope of the second section of the toe region during flexion end-feel test 65
4.3.4 Terminal linear region (TL) 69
4.3.5 The hypothesis of anatomy involved in elbow end feel test 70
4.4 Angle displacement 71
4.4.1 Angle displacement in the toe region (AT) 71
4.4.2 Angle displacement from the beginning of the toe region to 4 and 8 Nm (A4, A8) 73
4.5 Limitations of the study 76
4.5.1 Maneuver artifact 76
4.5.2 Muscle activities effect 76
4.5.3 Sampling rate of EM system 77
4.5.4 Analysis methods and interpretations 77
4.5.5 Skin movement artifact 78
5. Conclusion 79
Reference 80
Appendix
參考文獻 An, K-NPD, Morrey, BFMD, Chao, EYSPD. The Effect of Partial Removal of Proximal Ulna on Elbow Constraint. SO - Clinical Orthopaedics & Related Research August 1986;209:270-279 1986.
Baeyens, JP, Van Glabbeek, F, Goossens, M, Gielen, J, Van Roy, P, Clarys, JP. In vivo 3D arthroki-nematics of the proximal and distal radioulnar joints during active pronation and supination. Clinical Biomechanics 2006; 21: 9-12.
Bryce, CD, Armstrong, AD. Anatomy and Biomechanics of the Elbow. Orthopedic Clinics of North America 2008; 39(2): 141-154.
Chesworth, BM, MacDermid, JC, Roth, JH, Patterson, SD. Movement diagram and "end-feel" reliability when measuring passive lateral rotation of the shoulder in patients with shoulder pathology, 1998; pp. 593-601.
Colman, WW, Strauch, RJ. PHYSICAL EXAMINATION OF THE ELBOW. Orthopedic Clinics of North America 1999; 30(1): 15-20.
Cyriax.J. Textbook of Orthopaedic Medicine. Diagnosis of Soft Tissue Lesions 8th ed. London: Bailliere Tindall, 1982;
Dunning, CEM, Zarzour, ZDSMD, Patterson, SDM, Johnson, JAP, King, GJWMD. Muscle Forces and Pronation Stabilize the Lateral Ligament Deficient Elbow. SO - Clinical Orthopaedics & Related Research July 2001;388:118-124 2001.
Eckstein, F, Lohe, F, Hillebrand, S, Bergmann, M, Schulte, E, Milz, S, Putz, R. Morphomechanics of the humero-ulnar joint: I. Joint space width and contact areas as a function of load and flexion angle. Anatomical Record 1995; 243(3): 318-26.
Fornalski, SMD, Gupta, RMD, Lee, TQP. Anatomy and Biomechanics of the Elbow Joint. Tech-niques in Hand & Upper Extremity Surgery 2003; 7(4): 168-178.
Franklin, ME, Conner-Kerr, T, Chamness, M, Chenier, TC, Kelly, RR, Hodge, T. Assessment of exercise-induced minor muscle lesions: the accuracy of Cyriax's diagnosis by selective tension paradigm. Journal of Orthopaedic & Sports Physical Therapy 1996; 24(3): 122-9.
Fuss, FK. The ulnar collateral ligament of the human elbow joint. Anatomy, function and bio-mechanics. Journal of Anatomy 1991; 175: 203-12.
Gamage, SSHU, Lasenby, J. New least squares solutions for estimating the average centre of rotation and the axis of rotation. Journal of Biomechanics 2002; 35(1): 87-93.
Goto, A, Moritomo, H, Murase, T, Oka, K, Sugamoto, K, Arimura, T, Nakajima, Y, Yamazaki, T, Sato, Y, Tamura, S, Yoshikawa, H, Ochi, T. In vivo elbow biomechanical analysis during flexion: three-dimensional motion analysis using magnetic resonance imaging. Journal of Shoulder and Elbow Surgery 2004; 13(4): 441-447.
Hayes, KW, Petersen, C, Falconer, J. An examination of Cyriax's passive motion tests with pa-tients having osteoarthritis of the knee.[see comment]. Physical Therapy 1994; 74(8): 697-707; discussion 707-9.
Hollister, AMMD, Gellman, HMD, Waters, RLMD. The Relationship of the Interosseous Mem-brane to the Axis of Rotation of the Forearm. SO - Clinical Orthopaedics & Related Research January 1994;298:272-276 1994.
Kaltenborn, FM, Evjenth, O. Manual mobilization of the extremity joints : basic examination and treatment techniques 4th ed.: Oslo :Olaf Norlis ;1989.Minneapolis, MN :OPTP (Orthopedic Physical Therapy Products) distributor in the U.S.A.,, 1989; pp.31
Kapandji, A. Biomechanics of pronation and supination of the forearm. Hand clinics 2001; 17(1).
Kasten, P, Krefft, M, Hesselbach, J, Weinberg, AM. Kinematics of the ulna during pronation and supination in a cadaver study: implications for elbow arthroplasty. Clinical Biomechanics 2004; 19(1): 31-35.
Kijowski, R, Tuite, M, Sanford, M. Magnetic resonance imaging of the elbow. Part I: Normal anatomy, imaging technique, and osseous abnormalities. Skeletal Radiology 2004; 33(12): 685-697.
Levangie, PK, Norkin, CC. Joint structure and function :a comprehensive analysis 3rd ed. Phi-ladelpha: F.A. Davis, 2001; p226-250
Margerta Nordin., H.Frankel., V. Basic Biomechanics of the Musculoskeletal System, 3rd ed. Philadelphia: FA Davis, 2001; p340-357
Miyasaka, KC. ANATOMY OF THE ELBOW. Orthopedic Clinics of North America 1999; 30(1): 1-13.
Morrey, BF. Applied anatomy and biomechanics of the elbow joint. Instructional Course Lec-tures 1986; 35: 59-68.
Morrey, BF, An, K-N. Articular and ligamentous contributions to the stability of the elbow joint. Am J Sports Med 1983; 11(5): 315-319.
Morrey, BF, An, K-N. Stability of the elbow: Osseous constraints. Journal of Shoulder and Elbow Surgery 2005; 14(1, Supplement 1): S174-S178.
Morrey, BF, Chao, EY. Passive motion of the elbow joint. J Bone Joint Surg Am 1976; 58(4): 501-508.
Nakamura, T, Yabe, Y, Horiuchi, Y, Yamazaki, N. In vivo motion analysis of forearm rotation utilizing magnetic resonance imaging. Clinical Biomechanics 1999; 14(5): 315-20.
Olsen, BS, Vsel, MT, SΦjbjerg, JO, Helmig, P, Sneppen, O. Lateral collateral ligament of the elbow joint: Anatomy and kinematics. Journal of Shoulder and Elbow Surgery 1996; 5(2, Part 1): 103-112.
Patla, CE, Paris, SV. Reliability of interpretation of the Paris classification of normal end feel for elbow flexion and extension. Journal of Manual & Manipulative Therapy 1993; 1(2): 60-66.
Petersen, CM, Hayes, KW. Construct validity of Cyriax's selective tension examination: association of end-feels with pain at the knee and shoulder. Journal of Orthopaedic & Sports Physical Therapy 2000; 30(9): 512-21; discussion 522-7.
Riddle, DL. Measurement of accessory motion: critical issues and related concepts. PHYS THER 1992; 72(12): 865-874.
Safran, MR, Baillargeon, D. Soft-tissue stabilizers of the elbow. Journal of Shoulder and Elbow Surgery 2005a; 14(1, Supplement 1): S179-S185.
Safran, MR, McGarry, MH, Shin, S, Han, S, Lee, TQ. Effects of Elbow Flexion and Forearm Rota-tion on Valgus Laxity of the Elbow. J Bone Joint Surg Am 2005b; 87(9): 2065-2074.
Smith, LK, Weiss, E, Lehmkuhl, LD. Brunnstrom's clinical kinesiology, 5th ed. Philadelphia: F.A. Davis, 1996; p157-178
Stokdijk, M, Biegstraaten, M, Ormel, W, de Boer, YA, Veeger, HE, Rozing, PM. Determining the optimal flexion-extension axis of the elbow in vivo - a study of interobserver and intraobserver reliability. Journal of Biomechanics 2000; 33(9): 1139-45.
Tyrdal, S, Olsen, BS. Hyperextension of the elbow joint: Pathoanatomy and kinematics of liga-ment injuries. Journal of Shoulder and Elbow Surgery 1998a; 7(3): 272-283.
Tyrdal, S, Sanderhoff Olsen, B. Combined hyperextension and supination of the elbow joint induces lateral ligament lesions. Knee Surgery, Sports Traumatology, Arthroscopy 1998b; 6(1): 36-43.
Wavreille, G, Seraphin, J, Chantelot, C, Marchandise, X, Fontaine, C. Ligament fibre recruitment of the elbow joint during gravity-loaded passive motion: An experimental study. Clinical Bio-mechanics 2008; 23(2): 193-202.
Wu, G, van der Helm, FCT, Veeger, HEJD, Makhsous, M, Van Roy, P, Anglin, C, Nagels, J, Karduna, AR, McQuade, K, Wang, X, Werner, FW, Buchholz, B, International Society of, B. ISB recom-mendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion--Part II: shoulder, elbow, wrist and hand. Journal of Biomechanics 2005; 38(5): 981-992.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2009-09-10起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2009-09-10起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw