進階搜尋


 
系統識別號 U0026-0812200914370571
論文名稱(中文) 運動速度的知覺學習:類化性質與注意力的影響
論文名稱(英文) Motion Speed Perceptual Learning: Generality and Attentional Modulation
校院名稱 成功大學
系所名稱(中) 認知科學研究所
系所名稱(英) Institute of Cognitive Science
學年度 96
學期 2
出版年 97
研究生(中文) 黃雅廷
研究生(英文) Ya-ting Huang
電子信箱 u7695107@mail.ncku.edu.tw
學號 u7695107
學位類別 碩士
語文別 英文
論文頁數 106頁
口試委員 召集委員-許清芳
指導教授-曾加蕙
口試委員-廖敏如
中文關鍵字 類化  轉化  注意力  運動偵測  速度區辨  知覺學習 
英文關鍵字 generality  transfer  attention  motion detection  speed discrimination  perceptual learning 
學科別分類
中文摘要 本研究試著釐清:經過速度知覺學習後,作業類化性質(generality)是否會發生在運動偵測作業上,以及在速度知覺學習作業上的注意力效用,是否也會轉化而表現在運動偵測作業上。此處我們使用速度區辨學習作業做為訓練作業,而測量運動偵測能力的表現來研究:(1)是否速度區辨的學習會產生方向特化(direction-specific)和眼睛特化(eye-specific)之類敏感性(sensitivity)的進步,以及這些進步是否會表現在運動偵測表現上,(2)注意力是否也會影響這些敏感性的進步。
在前測、學習期和後測中,受測者要戴紅藍眼鏡來接受雙眼或單眼的刺激。在前測和後測中,我們測量受測者每隻眼睛,在八個主要方向(北、南、西、東、東北、西北、東南、西南),要有多少比例往某一方向一致移動點數,才能具75%正確報告偵測運動率(閾值)。前測完成後,參加者要學習七天、每天一小時的速度區辨作業。我們設計了四種學習狀況:實驗一,受試者學習偵測往單一方向的運動點群的速度變化;在實驗二中,同樣的運動刺激中加入了與目標方向垂直(夾角為-90度)方向的干擾運動點群;實驗三中,則加入了與目標方向相反(±180度)方向移動的干擾運動點群。在實驗二與實驗三中,受測者需要去注意目標方向移動的運動點群(永遠呈現在右眼)並區辨該運動點群中途的速度變化(變快或變慢),同時要忽略往另一干擾方向的運動點群(永遠呈現到左眼);在實驗四中,受測者在前測和後測間,不需接受任何學習。
在實驗一中,我們發現在學習完對某一方向的速度區辨後,運動偵測能力的進步會類化到各方向;在實驗二中,也有類化的進步,但在干擾方向上的進步是最少量;在實驗三中,則發現在目標方向上,有明顯的注意力調整效果。在做為控制組的實驗四中,受測者的運動偵測能力在前、後測間沒有明顯變化,證實受測者的運動偵測能力是穩定的,並不因為重複從事該作業而提高運動偵測閾,因此可知我們在各實驗中發現的進步應該由學習所引起的。在所有的實驗中,我們也發現左眼的進步模式類似於右眼。最後,因為學習導致雙眼運動偵測能力的調整效果會持續兩星期。
我們的結果表示速度學習可以改進運動偵測能力,且對不同方向的注意力會調整因練習而導致的運動偵測能力變化,且這樣的效果可持續至少兩星期,顯示神經可塑性有長時間的變化。
英文摘要 My study tried to clarify whether motion speed learning transfers to motion detection sensitivity and whether this transfer is limited to the trained eye and if it is attenuated by attention.
Participants wore red-blue eyeglasses to receive binocular or monocular stimuli throughout the experiment containing pre-test, learning, and post-tests. At the pre-test and post-tests, we measured the subjects’ 75% motion coherence detection thresholds for each eye in eight major directions (N, S, W, E, NE, NW, SE, SW). In between, subjects had seven hourly learning sessions of motion speed discrimination. Four learning conditions are designed in this study. In Experiment I, subjects learned to discriminate motion speed change in a single target direction (0°). In Experiment II, subjects learned to discriminate the same display while transparently moving dots in orthogonal direction (-90°) were simultaneously displayed during learning. In Experiment III, subjects learned to discriminate the same motion display while transparently moving dots in opposite direction (±180°) were simultaneously displayed during learning. In Experiment II and III, observers needed to attend to dots on target direction (always projected to their right eye) and discriminate the speed change (faster or slower) in the middle of the trial while ignoring the distracter direction (always projected to their left eye). In Experiment IV, observers did not receive any learning practice between pre-test and post-test 1.
In Experiment I, we found the motion detection improved generally cross all directions after speed discrimination learning in one single direction. In Experiment II, similar general improvement but least improvement occurred in the distracter direction was discovered. In Experiment III, a significant attention enhancement in the target directions was observed. In Experiment IV which served as a control condition, the subjects’ motion sensitivity did not significantly change without training between pre-test and post-test 1. The results of Experiment IV confirmed the subjects’ motion sensitivities are stable and therefore the improvement we found in other three experiments should be induced by learning. In all experiments, we found the improvement pattern of left eye is similar to that of the right eye, and the motion sensitivity modulation from learning in both eyes lasted over two weeks.
Our results suggested that speed learning can improve the motion detection sensitivity and attention modulated the practice-induced changes in the motion detection sensitivity across a wide range of motion directions. The effect persisted for at least two weeks, indicating a long-persistent change in neural plasticity.
論文目次 ABSTRACT (in English) I
ABSTRACT (in Chinese) III
ACKNOWLEDGEMENTS V
TABLE OF CONTENTS VI
LIST OF TABLES IX
LIST OF FIGURES X
INTRODUCTION 1
PURPOSE 9
GENERAL METHOD 10
EXPERIMENT I (SINGLE DIRECTION) 18
EXPERIMENT II (ORTHOGONAL DIRECTION) 28
EXPERIMENT III (DIAGONAL DIRECTION) 38
EXPERIMENT IV (CONTROL CONDITION) 44
LEARNING CURVE 48
GENERAL DISCUSSION 50
REFERENCES 58
APPENDIX I INDIVIDUAL POLAR PLOT FOR EXPERIMENT I SINGLE DIRECTION 63
APPENDIX II INDIVIDUAL THRESHOLD DIFFERENCE PLOT FOR EXPERIMENT I SINGLE DIRECTION 67
APPENDIX III INDIVIDUAL LEARNING CURVE PLOT FOR EXPERIMENT I SINGLE DIRECTION 71
APPENDIX IV INDIVIDUAL POLAR PLOT FOR EXPERIMENT II ORTHOGONAL DIRECTION 75
APPENDIX V INDIVIDUAL THRESHOLD DIFFERENCE PLOT FOR EXPERIMENT II ORTHOGONAL DIRECTION 79
APPENDIX VI INDIVIDUAL LEARNING CURVE FOR EXPERIMENT II ORTHOGONAL DIRECTION 83
APPENDIX VII INDIVIDUAL POLAR PLOT FOR EXPERIMENT III DIAGONAL DIRECTION 87
APPENDIX VIII INDIVIDUAL THRESHOLD DIFFERENCE PLOT FOR EXPERIMENT III DIAGONAL DIRECTION 91
APPENDIX IX INDIVIDUAL LEARNING CURVE FOR EXPERIMENT III DIAGONAL DIRECTION 95
APPENDIX X INDIVIDUAL POLAR PLOT FOR EXPERIMENT IV CONTROL CONDITION 99
APPENDIX XI INDIVIDUAL THRESHOLD DIFFERENCE PLOT FOR EXPERIMENT IV CONTROL CONDITION 103
參考文獻 Ahissar, M., & Hochstein, S. (1993). Attentional control of early perceptual learning. Proceedings of the National Academy of Sciences of the United States of America, 90(12), 5718-5722.
Ahissar, M., & Hochstein, S. (1997). Task difficulty and the specificity of perceptual learning. Nature, 387(6631), 401-406.
Ahissar, M., & Hochstein, S. (2004). The reverse hierarchy theory of visual perceptual learning. Trends in Cognitive Sciences, 8(10), 457-464.
Allen, H. A., & Ledgeway, T. (2003). Attentional modulation of threshold sensitivity to first-order motion and second-order motion patterns. Vision Research, 43(27), 2927-2936.
Ball, K., & Sekuler, R. (1982). A specific and enduring improvement in visual motion discrimination. Science, 218(4573), 697-698.
Ball, K., & Sekuler, R. (1987). Direction-specific improvement in motion discrimination. Vision Research, 27(6), 953-965.
Blake, R., & Sekuler, R. (2006). Perception. Boston: McGraw-Hill.
Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433-436.
Cheng, K., Hasegawa, T., Saleem, K. S., & Tanaka, K. (1994). Comparison of neuronal selectivity for stimulus speed, length, and contrast in the prestriate visual cortical areas V4 and MT of the macaque monkey. Journal of Neurophysiol, 71(6), 2269-2280.
Chirimuuta, M., Burr, D., & Morrone, M. C. (2007). The role of perceptual learning on modality-specific visual attentional effects. Vision Research, 47(1), 60-70.
Chung, S. T. L., Li, R. W., & Levi, D. M. (2006). Identification of contrast-defined letters benefits from perceptual learning in adults with amblyopia. Vision Research, 46(22), 3853-3861.
Cowey, A., Campana, G., Walsh, V., & Vaina, L. (2006). The role of human extra-striate visual areas V5/MT and V2/V3 in the perception of the direction of global motion: a transcranial magnetic stimulation study. Experimental Brain Research, 171(4), 558-562.
Dahmen, J. C., & King, A. J. (2007). Learning to hear: plasticity of auditory cortical processing. Current Opinion in Neurobiology, 17(4), 456-464.
DeAngelis, G. C., & Uka, T. (2003). Coding of horizontal disparity and velocity by MT neurons in the alert macaque. Journal of Neurophysiol, 89(2), 1094-1111.
Desimone, R., & Schein, S. J. (1987). Visual properties of neurons in area V4 of the macaque: sensitivity to stimulus form. Journal of Neurophysiol, 57(3), 835-868.
Dosher, B. A., & Lu, Z.-L. (1998). Perceptual learning reflects external noise filtering and internal noise reduction through channel reweighting. Proceedings of the National Academy of Sciences of the United States of America, 95(23), 13988-13993.
Dosher, B. A., & Lu, Z.-L. (1999). Mechanisms of perceptual learning. Vision Research, 39(19), 3197-3221.
Fahle, M. (2004). Perceptual learning: A case for early selection. Journal of Vision, 4(10), 879-890.
Fahle, M. (2005). Perceptual learning: specificity versus generalization. Current Opinion in Neurobiology, 15(2), 154-160.
Fiorentini, A., & Berardi, N. (1980). Perceptual learning specific for orientation and spatial frequency. Nature, 287(5777), 43-44.
Gold, J., Bennett, P. J., & Sekuler, A. B. (1999). Signal but not noise changes with perceptual learning. Nature, 402(6758), 176-178.
Harris, J. A., Harris, I. M., & Diamond, M. E. (2001). The topography of tactile learning in humans. The Journal of Neuroscience, 21(3), 1056-1061.
Hochstein, S., & Ahissar, M. (2002). View from the top: hierarchies and reverse hierarchies in the visual system. Neuron, 36(5), 791-804.
Huang, X., Lu, H., Tjan, B. S., Zhou, Y., & Liu, Z. (2007). Motion perceptual learning: When only task-relevant information is learned. Journal of Vision, 7(10), 1-10.
Hubel, D. H., Wiesel, T. N., & Stryker, M. P. (1977). Orientation columns in macaque monkey visual cortex demonstrated by the 2-deoxyglucose autoradiographic technique. Nature, 269(5626), 328-330.
Karni, A., & Sagi, D. (1991). Where practice makes perfect in texture discrimination: evidence for primary visual cortex plasticity. Proceedings of the National Academy of Sciences of the United States of America, 88(11), 4966-4970.
Karni, A., & Sagi, D. (1993). The time course of learning a visual skill. Nature, 365(6443), 250-252.
Koyama, S., Harner, A., & Watanabe, T. (2004). Task-dependent changes of the psychophysical motion-tuning functions in the course of perceptual learning. Perception, 33, 1139 - 1147.
Li, R. W., Levi, D. M., & Klein, S. A. (2004). Perceptual learning improves efficiency by re-tuning the decision 'template' for position discrimination. Nature neuroscience, 7(2), 178-183.
Liu, J., & Newsome, W. T. (2003). Functional organization of speed tuned neurons in visual area MT. Journal of Neurophysiol, 89(1), 246-256.
Liu, J., & Newsome, W. T. (2005). Correlation between speed perception and neural activity in the middle temporal visual area. The Journal of Neuroscience, 25(3), 711-722.
Liu, Z. (1999). Perceptual learning in motion discrimination that generalizes across motion directions. Proceedings of the National Academy of Sciences of the United States of America, 96(24), 14085-14087.
Liu, Z., & Vaina, L. M. (1998). Simultaneous learning of motion discrimination in two directions. Cognitive Brain Research, 6(4), 347-349.
Lu, Z.-L., Chu, W., & Dosher, B. A. (2006). Perceptual learning of motion direction discrimination in fovea: separable mechanisms. Vision Research, 46(15), 2315-2327.
Lu, Z.-L., Chu, W., Dosher, B. A., & Lee, S. (2005a). Independent perceptual learning in monocular and binocular motion systems. Proceedings of the National Academy of Sciences of the United States of America, 102(15), 5624-5629.
Lu, Z.-L., Chu, W., Dosher, B. A., & Lee, S. (2005b). Perceptual learning of Gabor orientation identification in visual periphery: Complete inter-ocular transfer of learning mechanisms. Vision Research, 45(19), 2500-2510.
Lu, Z.-L., & Dosher, B. A. (2004). Perceptual learning retunes the perceptual template in foveal orientation identification. Journal of Vision, 4(1), 44-56.
Matthews, N., Liu, Z., Geesaman, B. J., & Qian, N. (1999). Perceptual learning on orientation and direction discrimination. Vision Research, 39(22), 3692-3701.
Matthews, N., Liu, Z., & Qian, N. (2001). The effect of orientation learning on contrast sensitivity. Vision Research, 41(4), 463-471.
Maunsell, J. H., & Van Essen, D. C. (1983). Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. Journal of Neurophysiol, 49(5), 1127-1147.
Nishina, S., Seitz, A. R., Kawato, M., & Watanabe, T. (2007). Effect of spatial distance to the task stimulus on task-irrelevant perceptual learning of static Gabors. Journal of Vision, 7(13), 1-10.
Noppeney, U., Waberski, T. D., Gobbelé, R., & Buchner, H. (1999). Spatial attention modulates the cortical somatosensory representation of the digits in humans. Neuroreport, 10(15), 3137-3141.
Pelli, D. G. (1997). The videotoolbox software for visual psychophysics: transforming numbers into movies. Spatial Vision, 10, 437-442.
Petrov, A. A., Dosher, B. A., & Lu, Z.-L. (2006). Perceptual learning without feedback in non-stationary contexts: Data and model. Vision Research, 46(19), 3177-3197.
Poggio, T., Fahle, M., & Edelman, S. (1992). Fast perceptual learning in visual hyperacuity. Science, 256(5059), 1018-1021.
Priebe, N. J., & Lisberger, S. G. (2004). Estimating target speed from the population response in visual area MT. The Journal of Neuroscience, 24(8), 1907-1916.
Priebe, N. J., Lisberger, S. G., & Movshon, J. A. (2006). Tuning for spatiotemporal frequency and speed in directionally selective neurons of macaque striate cortex. The Journal of Neuroscience, 26(11), 2941-2950.
Raymond, J. E. (2000). Attentional modulation of visual motion perception. Trends in Cognitive Sciences, 4(2), 42-50.
Saffell, T., & Matthews, N. (2003). Task-specific perceptual learning on speed and direction discrimination. Vision Research, 43(12), 1365-1374.
Sathian, K., & Zangaladze, A. (1997). Tactile learning is task specific but transfers between fingers. Perception & Psychophysics, 59(1), 119-128.
Seitz, A., & Watanabe, T. (2005). A unified model for perceptual learning. Trends in Cognitive Sciences, 9(7), 329-334.
Seitz, A. R., & Dinse, H. R. (2007). A common framework for perceptual learning. Current Opinion in Neurobiology, 17(2), 148-153.
Seitz, A. R., Nanez, J. E., Holloway, S. R., Koyama, S., & Watanabe, T. (2005). Seeing what is not there shows the costs of perceptual learning. Proceedings of the National Academy of Sciences of the United States of America, 102(25), 9080-9085.
Sireteanu, R., & Rettenbach, R. (2000). Perceptual learning in visual search generalizes over tasks, locations, and eyes. Vision Research, 40(21), 2925-2949.
Thompson, B., & Liu, Z. (2006). Learning motion discrimination with suppressed and un-suppressed MT. Vision Research, 46(13), 2110-2121.
Treue, S. (2001). Neural correlates of attention in primate visual cortex. Trends in Neurosciences, 24(5), 295-300.
Treue, S., & Maunsell, J. H. R. (1996). Attentional modulation of visual motion processing in cortical areas MT and MST. Nature, 382(6591), 539-541.
Vaina, L. M., Sundareswaran, V., & Harris, J. G. (1995). Learning to ignore: psychophysics and computational modeling of fast learning of direction in noisy motion stimuli. Cognitive Brain Research, 2(3), 155-163.
van Wassenhove, V., & Nagarajan, S. S. (2007). Auditory cortical plasticity in learning to discriminate modulation rate. The Journal of Neuroscience, 27(10), 2663-2672.
Vidnyanszky, Z., & Sohn, W. (2005). Learning to suppress task-irrelevant visual stimuli with attention. Vision Research, 45(6), 677-685.
Watanabe, T., José E. Náñez, S., Koyama, S., Mukai, I., Liederman, J., & Sasaki, Y. (2002). Greater plasticity in lower-level than higher-level visual motion processing in a passive perceptual learning task. Nature neuroscience, 5(10), 1003.
Webb, B. S., Roach, N. W., & McGraw, P. V. (2007). Perceptual learning in the absence of task or stimulus specificity. PLoS ONE, 2(12), e1323.
Yu, C., Klein, S. A., & Levi, D. M. (2004). Perceptual learning in contrast discrimination and the (minimal) role of context. Journal of Vision, 4(3), 169-182.
Zanker, J. M. (1999). Perceptual learning in primary and secondary motion vision. Vision Research, 39(7), 1293-1304.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2010-09-03起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2010-09-03起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw