進階搜尋


 
系統識別號 U0026-0812200914364945
論文名稱(中文) 視覺與本體感覺輸入對跟隨腳跨越障礙物時神經肌肉控制之影響
論文名稱(英文) Effect of visual and proprioceptive inputs on trailing limb neuromuscular control during obstacle crossing
校院名稱 成功大學
系所名稱(中) 物理治療研究所
系所名稱(英) Department of Physical Therapy
學年度 96
學期 2
出版年 97
研究生(中文) 李詩瑋
研究生(英文) Shih-Wei Li
學號 t6694402
學位類別 碩士
語文別 中文
論文頁數 153頁
口試委員 口試委員-湯佩芳
口試委員-陳家進
指導教授-林桑伊
中文關鍵字 視覺輸入  本體感覺輸入  跨越障礙物  神經肌肉控制 
英文關鍵字 neuromuscular control  obstacle crossing  proprioceptive inputs  visual inputs 
學科別分類
中文摘要 背景:跨越障礙物時的動作控制,會受到多種感覺輸入的影響,如動態視覺訊息或本體感覺輸入等。動態視覺輸入主要是在跨越前,提供感覺訊息使中樞神經系統能藉以產生跨越時的動作計畫;而本體感覺訊息則是在跨越動作執行時,提供感覺輸入至中樞神經系統以進行動作調整。因此本研究欲探討動態視覺訊息與本體感覺輸入對跟隨腳跨越障礙物時神經肌肉控制的貢獻,並探討中樞神經系統整合此兩項感覺輸入時對跟隨腳跨越障礙物時神經肌肉控制的影響。方法:共收取30位健康年輕受試者,在六種試驗情境下跨越一高為慣用腳長百分之十五的障礙物,此六種試驗情境為分別在正常視覺或動態視覺訊息減少時,皆包含無振動刺激、施予前導腳或跟隨腳阿基里斯腱振動刺激等三種本體感覺刺激情況。本研究收取跟隨腳股外肌、膕腱肌、前脛肌與內腓腸肌的肌電值以及雙腳腳控鍵資料,來區辨跟隨腳跨越那一步中第一次雙腳站立期、跟隨腳單腳站立期、第二次雙腳站立期與跟隨腳擺盪期的時間點,並在上述四步態分期下分析此四肌肉的平均肌電值、肌電值變異度,以及跟隨腳股外肌與膕旁肌、前脛肌與內腓腸肌等兩組拮抗肌共同活動的時間百分比和活動程度。結果:在正常視覺情況下,施予跟隨腳本體感覺干擾會顯著減少前脛肌與內腓腸肌的共同活動程度,但在動態視覺訊息減少時,三項本體感覺輸入情況間比較皆未達顯著差異。相較於正常視覺情況,動態視覺訊息減少會導致跟隨腳單腳站立期時間、跟隨腳擺盪期時間及跨步時間皆顯著增加,跟隨腳膕旁肌與內腓腸肌的肌電活動在整個跨越過程中也會顯著提升。此外施予跟隨腳本體感覺干擾會使「第一次雙腳站立期時間」與「跟隨腳擺盪期時間」顯著小於施予前導腳本體感覺干擾情況,跟隨腳本體感覺干擾會導致跟隨腳前脛肌在「第一次雙腳站立期」時的肌電平均值較前導腳振動時顯著下降,在「跟隨腳擺盪期」時,則皆較施予前導腳本體感覺干擾與無本體感覺干擾時顯著下降。結論:根據本研究結果,再度證實此兩項感覺輸入對於跟隨腳神經肌肉控制的貢獻,且也發現此兩項因子間具有交互作用,進一步探討發現受試者在動態視覺輸入減少時可能較為忽略來自下肢的本體感覺干擾,導致所施予的本體感覺干擾對於跨越時神經肌肉控制的影響比在正常視覺情況下更不顯著。因此臨床上必須留意患者行走時動態視覺訊息是否會有減少的情況,尤其對下肢踝關節本體感覺輸入缺失的患者,更需要告知其動態視覺訊息的重要性。
英文摘要 Introduction: For the control of obstacle crossing, visual and somatosensory inputs are the two determinant sensory inputs. Visual inputs can provide information about the obstacle in relation to the individual and to the environment. In addition, the somatosensory inputs can provide information of body segments in relation to one another and to the environment. It is likely that problems in either one sensory input will lead to changes in the control of obstacle crossing. The purposes of this study were to investigate the effect of conflicting proprioceptive inputs from the Achilles tendon and reduced dynamic visual inputs on the neuromuscular control of obstacle crossing, and their interaction. Methods: Thirty healthy young adults walked on a walkway and crossed a low obstacle halfway. This task was performed in three proprioceptive conditions (no vibration, vibration to Achilles tendon of the leading or the trailing limb) under two visual conditions (normal and reduced). In the reduced visual condition, visual inputs since 4 to 5 steps before crossing were blocked by a pair of eye goggles. Surface electromyography (EMG) was used to record the activation of bilateral vastus lateralis (VL), biceps femoris (BF), tibialis anterior (TA) and medial gastrocnemius (MG). Footswitches were also attached to subjects’ bilateral big toes and heels to capture the foot contact to determine gait phases. Mean EMG amplitude, standard deviation of EMG amplitude, and the coactivation time and level between VL and BF, TA and MG were analyzed. Results: Conflicting proprioceptive inputs from the Achilles tendon of the trailing limb led to significantly decreased coactivation level between TA and MG of the trailing limb only in normal, but not in reduced visual condition. The same condition led to significantly increased duration of first double support and swing phases of the trailing limb, and decreased mean EMG amplitude of TA in first double support phase and swing phase as well, regardless of the vibration condition. Reduced dynamic visual inputs significantly increased the stride time, duration of single support and swing phases of the trailing limb in all vibration conditions. And reduced dynamic visual inputs also significantly increased the mean EMG amplitude of BF and MG of the trailing limb. Conclusion: This study confirmed the contribution of both dynamic visual inputs and proprioceptive inputs from lower leg to the neuromuscular control of obstacle crossing again. Moreover, significant interaction of these two factors had also been found. Compared to reduced dynamic visual condition, greater effect of conflicting proprioceptive inputs from lower leg on the neuromuscular control of trailing limb was in normal visual condition. Thus, patients need to be educated to maintain sufficient dynamic visual inputs during obstacle crossing, especially for those with dysfunction of proprioception of lower limbs.
論文目次 中文摘要 5
英文摘要 7
誌謝 9
表目錄 13
圖目錄 15
第一章 理論及文獻回顧 18
第一節 站立姿勢之維持 18
一、站立姿勢控制系統簡介 18
二、感覺系統對站立姿勢控制之貢獻 19
三、動作系統對站立姿勢控制之貢獻 24
四、感覺整合對站立姿勢控制之影響 26
五、結論 26
第二節 雙腳行走之動作特徵 28
一、步態週期 28
二、步態之運動學特徵分析 29
三、步態之力學特徵分析 32
四、步態之肌電圖特徵分析 33
五、結論 38
第三節 行走動作控制系統簡介 39
一、反射對行走動作的影響 39
二、中樞模式產生器對行走控制之影響 40
三、脊髓上路徑對行走控制之影響 41
四、感覺輸入對行走控制之貢獻 43
五、感覺整合對行走控制之影響 45
六、結論 46
第四節 跨越障礙物之動作特徵 47
一、運動學特徵分析 47
二、力學特徵分析 50
三、肌電圖特徵分析 51
四、結論53
第五節 感覺系統對跨越障礙物動作的影響 54
一、視覺對於跨越障礙物動作之貢獻 54
二、體感覺系統對於跨越障礙物動作之貢獻56
三、感覺整合對於跨越障礙物動作之影響57
四、結論58

第二章 研究背景 59
第一節 研究目的 59
第二節 研究假設 61

第三章 研究方法 62
第一節 研究設計 62
第二節 受試者 63
第三節 前置研究 64
一、測試步驟 64
二、實驗工具 67
三、測試結果 71
第四節 主要研究之測試步驟 73
一、測試步驟 73
二、實驗工具 78
第五節 訊號處理與資料擷取 84
第六節 統計分析 91

第四章 實驗結果 93
第一節 受試者基本資料 93
第二節 受試者跨越障礙物成功率 94
第三節 正常情況下跟隨腳跨越障礙物時肌電活動分析 96
第四節 動態視覺訊息與本體感覺輸入對跟隨腳神經肌肉控制的影響104
一、步態分期之時間特徵104
二、平均肌電活動振幅110
三、肌電值變異度119
四、共同活動的時間百分比與活動程度126

第五章 討論 134
第一節 跨越障礙物與一般行走在神經肌肉控制的異同136
第二節 視覺對跟隨腳跨越障礙物動作控制的貢獻139
第三節 本體感覺對跟隨腳跨越障礙物動作控制的貢獻141
第四節 視覺與本體感覺對跟隨腳跨越障礙物動作的交互影響143
第五節 實驗限制145
第六節 臨床應用146

第六章 結論 147

第七章 參考文獻 148

附錄 158

自述 161
參考文獻 1. Andersson O, Grillner S.Peripheral control of the cat’s step cycle. I: Phase dependent effects of ramp-movements of the hip during fictive locomotion. Acta Physiol Scand. 113:89-101; 1981.
2. Ashley MJ, Gryfe CI, Amies A. A longitudinal study of falls in an elderly population II. Some circumstances of falling. Age Ageing. 6(4):211-20, 1977.
3. Basmajian JV, De Luca C. Muscles alive: their functions revealed by electromyography. Williams & Wilkins, Baltimore. 5th ed. In Ch11: Posture, p.252-6, 1985.
4. Blake AJ, Morgan K, Bendall MJ, Dallosso H, Ebrahim SB, Arie TH, Fentem PH, Bassey EJ. Falls by elderly people at home: prevalence and associated factors. Age Ageing. 17(6):365-72, 1988.
5. Brown GT. The intrinsic factors in the act of progression in the mammal. Proc Roy Soc Lond Ser B. 84:308-19, 1911.
6. Campbell AJ, Borrie MJ, Spears GF, Jackson SL, Brown JS, Fitzgerald JL. Circumstances and consequences of falls experienced by a community population 70 years and over during a prospective study. Age Ageing. 19(2):136-41, 1990.
7. Charles R Fox. Special sense 3: The Visual System. In: Neuroscience for rehabilitation. Edited by Helen Cohen, 2nd ed. Philadelphia: Lippincott, 1999, p.111-130.
8. Chen HL. Lu TW. Comparisons of the joint moments between leading and trailing limb in young adults when stepping over obstacles. Gait Posture. 23(1):69-77, 2006.
9. Chou LS, Draganich LF. Placing the trailing foot closer to an obstacle reduces flexion of the hip, knee, and ankle to increase the risk of tripping. J Biomech. 31(8):685-91, 1998.
10. Chou LS. Kaufman KR. Brey RH. Draganich LF. Motion of the whole body's center of mass when stepping over obstacles of different heights. Gait Posture. 13(1):17-26, 2001.
11. Courtine G, Pozzo T, Lucas B, Schieppati M. Continuous, bilateral Achilles' tendon vibration is not detrimental to human walk. Brain Res Bull. 55:107-15, 2001.
12. Craik RL, Oatis CA. Gait analysis: theory and application. Mosby Inc., St. Louis, USA. P46-65, 1995.
13. Daubney ME, Culham EG. Lower-extremity muscle force and balance performance in adults aged 65 years and older. Phys Ther. 79(12):1177-85, 1999.
14. Davis JW, Ross PD, Preston SD, Nevitt MC, Wasnich RD. Strength, physical activity, and body mass index: relationship to performance-based measures and activities of daily living among older Japanese women in Hawaii. J Am Geriatr Soc. 46(3):274-9, 1998.
15. Delcomyn F. Neural basis of rhythmic behavior in animals. Sci Wash DC. 210:492-498, 1980.
16. Dietz V. Quintern J. Boos G. Berger W. Obstruction of the swing phase during gait: phase-dependent bilateral leg muscle coordination. Brain Res. 384(1):166-9, 1986.
17. Dietz V. Horstmann GA. Berger W. Interlimb coordination of leg-muscle activation during perturbation of stance in humans. J Neurophysiol. 62(3):680-93, 1989.
18. Duysens J, Pearson KG. The role of cutaneous afferents from the distal hindlimb in the regulation of the step cycle of thalamic cats. Exp Brain Res. 24:245-55, 1976.
19. Duysens J, Pearson KG. Inhibition of flexor burst generation by loading ankle extensor muscles in walking cats. Brain Res. 187:321-32, 1980.
20. Eils E. Nolte S. Tewes M. Thorwesten L. Volker K. Rosenbaum D. Modified pressure distribution patterns in walking following reduction of plantar sensation. J Biomech. 35(10):1307-13, 2002.
21. Eklund G. General features of vibration-induced effects on balance. Ups J Med Sci. 77:112-124, 1972.
22. Forssberg H. A developmental model of human locomotion. In: Grillner S, Stein PSG, Stuart DG, Forssberg H, Herman RM, editors. Neurobiology of vertebrate locomotion. Wenner Gren international symposium series, v. 45. London: Macmillan; 1986. p. 485–501.
23. Gibson JJ. Visually controlled locomotion and visual orientation in animals. Br J Psychol. 49(3):182-94, 1958.
24. Goodwin GM. McCloskey DI. Matthews PB. The contribution of muscle afferents to kinaesthesia shown by vibration induced illusions of movement and by the effects of paralysing joint afferents. Brain. 95(4):705-48, 1972.
25. Gray BJ, Lissman HW. The effect of deafferentation upon the locomotory activity of amphibian limbs. J Exptl Biol. 17:227-36, 1940.
26. Grillner S. Locomotion in the spinal cat. In Stein RB, Pearson KG, Smith S, editors. Control of posture and locomotion., New York : Plenum Press, 1973. p.515-35.
27. Grillner S. Locomotion in Vertebrates: Central mechanisms and reflex interaction. Phys Rev. 55:247-304, 1975.
28. Grillner S, Zangger P. On the central generation of locomotion in the low spinal cat. Exp Brain Res. 34:241-61, 1979.
29. Grillner S. Control of locomotion in bipeds, tetrapods and fish. In V. B. Brooks, editors. Motor control Sect 1, V.2, Handbook of Physiology. Bethesda, MD: American Physiology Society, 1981. p.1179-1236.
30. Grillner S, Zangger P. The effect of dorsal root transection of the efferent motor pattern in the cat’s hindlimb during locomotion. Acta Physiol Scand. 120:393-405, 1984.
31. Grillner S. Neurobiological bases of rhythmic motor acts in vertebrates. Science. 228:143-9, 1985.
32. Hafström A, Fransson PA, Karlberg M, Ledin T, Magnusson M. Visual influence on postural control, with and without visual motion feedback. Acta Otolaryngol.
122:392-7, 2002.
33. Hahn ME. Lee HJ. Chou LS. Increased muscular challenge in older adults during obstructed gait. Gait Posture. 22(4):356-61, 2005.
34. Horak FB, Nashner LM. Central programming of postural movements: adaptation to altered support-surface configurations. J Neurophysiol. 55(6):1369-81, 1986.
35. Horak FB. Nashner LM. Diener HC. Postural strategies associated with somatosensory and vestibular loss. Exp Brain Res 82(1):167-77, 1990.
36. Horak FB, Shupert CL, Dietz V, Horstmann G. Vestibular and somatosensory contributions to responses to head and body displacements in stance. Exp Brain Res. 100(1):93-106, 1994.
37. Hunphrey DR, Freund HJ. Motor control: concepts and issues. John Wiley & Sons. New York, USA. How do sensory and motor signals interact during locomotion? P199-211, 1991.
38. Ingle VK, Proakis JG. Digital signal processing using MATLAB. 2nd ed. Australia, Thomson, Toronto.
39. Inglis JT, Frank JS, Inglis B. The effect of muscle vibration on human position sense during movements controlled by lengthening muscle contraction. Exp Brain Res. 84(3):631-4, 1991.
40. Ivanenko YP, Grasso R, Lacquaniti F.Influence of leg muscle vibration on human walking.J Neurophysiol. 2000 Oct;84(4):1737-47.
41. Jeffrey R. Cram, Glenn S. Kasman, Jonathan Holtz. Introduction to surface electromyography. In Ch4: electrodes and site selection strategies. 1st ED. Gaithersburg: Aspen Publishers; 1998. p.81-89.
42. Kavounoudias A. Roll R. Roll JP. The plantar sole is a 'dynamometric map' for human balance control. Neuroreport. 9(14):3247-52, 1998.
43. Kavounoudias A. Gilhodes JC. Roll R. Roll JP. From balance regulation to body orientation: two goals for muscle proprioceptive information processing? Exp Brain Res. 124(1):80-8, 1999.
44. Keele SW, Ivry R. Does the cerebellum provide a common computation for diverse tasks? A timing hypothesis. Ann N Y Acad Sci. 1990;608:179-211.
45. Lamoureux EL, Sparrow WA, Murphy A, Newton RU. The relationship between lower body strength and obstructed gait in community-dwelling older adults. J Am Geriatr Soc. 50(3):468-73, 2002.
46. Lamoureux E, Sparrow WA, Murphy A, Newton RU. The effects of improved strength on obstacle negotiation in community-living older adults. Gait Posture. 17(3):273-83, 2003.
47. Lavoie S, McFadyen B, Drew T.A kinematic and kinetic analysis of locomotion during voluntary gait modification in the cat. Exp Brain Res. 106(1):39-56, 1995.
48. Lee DN, Lishman JR, Thomson JA. Regulation of gait in long jumping. J Exp Psychol Hum Percept Perform. 8(3);448-459, 1982.
49. Lin SI, Woollacott M. Association between sensorimotor function and functional and reactive balance control in the elderly. Age Ageing. 34(4):358-63, 2005.
50. Lynette A. Jones. Somatic senses 3: proiprioception. In: Neuroscience for rehabilitation. Edited by Helen Cohen, 2nd ed. Philadelphia: Lippincott, 1999, p.111-130.
51. MacKay-Lyons M. Central pattern generation of locomotion: A review of the evidence. Phys Ther. 82:69-83, 2002.
52. MacLellan MJ. Patla AE. Stepping over an obstacle on a compliant travel surface reveals adaptive and maladaptive changes in locomotion patterns. Exp Brain Res. 173(3):531-8, 2006
53. McFadyen BJ, Winter DA. Anticipatory locomotor adjustments during obstructed human walking. Neurosci Res Commun. 9(1):37–44, 1991.
54. McVea DA, Pearson KG. Long-lasting memories of obstacles guide leg movements in the walking cat. J Neurosci. 26(4):1175-8, 2006.
55. Mohagheghi AA, Moraes R, Patla AE. The effects of distant and on-line visual information on the control of approach phase and step over an obstacle during locomotion. Exp Brain Res. 155: 459–68, 2004.
56. Overstall PW, Exton-Smith AN, Imms FJ, Johnson AL. Falls in the elderly related to postural imbalance. Br Med J. 1:261-4, 1977
57. Patla AE, Adkin A, Martin C, Holden R, Prentice S. Characteristics of voluntary visual sampling of the environment for safe locomotion over different terrains. Exp Brain Res. 112(3):513-22, 1996.
58. Patla AE, Rietdyk S, Martin C, Prentice S. Locomotor Patterns of the Leading and the Trailing Limbs as Solid and Fragile Obstacles Are Stepped Over: Some Insights Into the Role of Vision During Locomotion. J Mot Behav. 28(1):35-47, 1996.
59. Patla AE. How is human gait controlled by vision? Ecol Psychol. 10:287-302; 1998.
60. Patla AE, Vickers JN. How far ahead do we look when required to step on specific locations in the travel path during locomotion? Exp Brain Res. 148(1):133-8, 2003.
61. Patla AE, Greig M. Any way you look at it, successful obstacle negotiation needs visually guided on-line foot placement regulation during the approach phase. Neurosci Lett. 397:110-4, 2006.
62. Perry J. Gait analysis: normal and pathological function. McGraw-Hill Inc., New York, USA. P1-149, 1992.
63. Prokop T, Schubert M, Berger W. Visual influence on human locomotion. Modulation to changes in optic flow. Exp Brain Res.114(1):63-70, 1997.
64. Rhea CK, Rietdyk S. Visual exteroceptive information provided during obstacle crossing did not modify the lower limb trajectory. Neurosci Lett. 11;418(1):60-5, 2007.
65. Rietdyk S, Rhea CK. Control of adaptive locomotion: effect of visual obstruction and visual cues in the environment. Exp Brain Res. 169:272-8, 2006.
66. Roll JP, Vedel JP, Ribot E. Alteration of proprioceptive messages induced by tendon vibration in man: a microneurographic study. Exp Brain Res. 76:213-22, 1989.
67. Roll JP, Vedel JP. Kinaesthetic role of muscle afferents in man, studied by tendon vibration and microneurography. Exp Brain Res. 47:177-90, 1982.
68. Rossignol S. Visuomotor regulation of locomotion. Can J Physiol Pharmacol.74:418-25, 1996.
69. Rougier P. The influence of having the eyelids open or closed on undisturbed postural control. Neurosci Res. 47(1):73-83, 2003.
70. Sherrington CS, Sowton SC. Chloroform and reversal of reflex effect. J Physiol. 15;42(5-6):383-8, 1911.
71. Shumway-Cook A, Woollacott MH. Motor control: theory and practical applications. Lippinott Williams & Wilkins, Philadelphia, USA. 2nd In. Ch 3: Mobility function. P163-91, 305-77, 2001.
72. Shumway-Cook A, Woollacott MH. Motor control: Theory and practical applications. Lippincott Williams & Wilkins, Philadelphia, USA. 2nd In Ch7: Normal postural control. P163-91, 2001.
73. Simoneau GG, Ulbrecht JS, Derr JA, Cavanagh PR. Role of somatosensory input in the control of human posture. Gait Posture. 3(3): 115-122, 1995.
74. Skinner HB, Barrack RL. Ankle weighting effect on gait in able-bodied adults. Arch Phys Med Rehabil 71, 112-15, 1990.
75. Sorensen KL. Hollands MA. Patla E. The effects of human ankle muscle vibration on posture and balance during adaptive locomotion. Exp Brain Res. 143:24-34, 2002.
76. Sparrow WA, Shinkfield AJ, Chow S, Begg RK. Characteristics of gait in stepping over obstacles. Hum Mov Sci. 15:605-22, 1996.
77. Tessier-Lavigne M. Visual processing by the retina. In: Kandel, ER., Schwartz, JH., Jessel, TM., Principles of Neural Science, 4th ed.. McGraw-Hill, New York, 2000, pp. 507-516.
78. Verschueren SM. Swinnen SP. Desloovere K. Duysens J. Effects of tendon vibration on the spatiotemporal characteristics of human locomotion. Exp Brain Res. 143:231-9, 2002.
79. Verschueren SM. Swinnen SP. Desloovere K. Duysens J. Vibration-induced changes in EMG during human locomotion. J Neurophys. 89:1299-307, 2003.
80. Vuillerme N, Danion F, Forestier N, Nougier V. Postural sway under muscle vibration and muscle fatigue in humans. Neurosci Lett. 2002;333(2):131-5.
81. Vicon Plug-in Gait User Manual, Oxford Metrics Ltd., Oxford UK, 2003.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-09-02起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2013-09-02起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw