系統識別號 U0026-0812200914362001
論文名稱(中文) 以消費者分群和資訊融合建立對產品外型之滿意度研究
論文名稱(英文) An approach to model satisfaction of product form design by applying customer segmentation and information consolidation
校院名稱 成功大學
系所名稱(中) 工業設計學系碩博士班
系所名稱(英) Department of Industrial Design
學年度 96
學期 2
出版年 97
研究生(中文) 陳凱越
研究生(英文) Kai-Yieh Tan
學號 p3695408
學位類別 碩士
語文別 英文
論文頁數 93頁
口試委員 指導教授-謝孟達
中文關鍵字 資訊融合  次序迴歸  感性工學  消費者滿意度 
英文關鍵字 consumer satisfaction  Kansei engineering  ordinal regression  information consolidation 
中文摘要 了解消費者的滿意度,對任何力求進步的商業組織而言可說是基本的要求。同樣地,在產品設計領域裡,這也是一個很重要的項目。隨著科技的進步,專業的分工,以往單純依靠經驗法則所做的決策已然不足以應付。同時也因為以消費者為中心和使用者導向的風潮漸漸地越來越受到重視。然而過往的研究經常會忽略掉消費者偏好之間的差異度,導致建構出來的模型往往不足以闡述現實生活中的狀況,亦難以實際地被應用。
本研究提出一個以感性工學為主的產品外型偏好預測模型,結合了消費者分群和資訊融合的概念。首先會以消費者之間異同的偏好應用Fuzzy C-means (模糊分類演算法)進行分群,求出每一消費者對於被劃分群組的隸屬程度,反映出實際情況裡的模糊性。接下來會使用Ordinal Regression(次序迴歸)來建立每一位消費者的偏好迴歸模型,基於一般大眾實際上比較不擅長如相關專家般為自身的喜好打上精準的分數,本研究讓使用者按照主觀意識將偏好的項目做排序並使用次序迴歸來建立個人預測的迴歸模型,並導入從模糊分群中求出各消費者對於群組的隸屬程度做為其影響權重,最終可利用於求出各群組對於研究對象的情感滿意度的狀況。此論文中以自行車做為演示預測模型的案例。
英文摘要 Understanding the customer of satisfaction, is a baseline standard of performance and a
possible standard of excellence for any business organization (Gerson, 1993) One of the most
important issues concerning product design is consumer satisfaction, the empirical decision is no
longer works sufficiently to assist industry/designer to have understanding therefore to have proper
strategy when doing design and decision making. The importance on understanding consumer
satisfaction in product design field is getting heavier as the concept of User-centered and
Consumer-oriented have been promoted. however the unlikeness of consumer preference always
out of consideration during previous researches ,thus the constructed prediction models aren’t fully
interpret the real situation and hardly applied on practical application.
This study proposes a prediction model based on Kansei Engineering, by applying the concept of
consumer segmentation and information consolidation. First, consumers will be separated into
different groups by applying FCM(fuzzy c-means) from their heterogeneous preference towards the studied object ,a membership showing the extent of each individual belonging towards group will be obtained to reflect the inherent vagueness of consumer segmentation. The extracted parameters
showing different extent of influence from consumers were then treated as retrieval when constructing a mutual satisfaction model for each cluster by applying Ordinal Regression. A case study of bicycle is demonstrated in this study to explore the effectiveness of the proposed model .
論文目次 Table of Content
Chapter 1 Introduction-------------------------------------------------------------------------- 1
1.1 Introduction-------------------------------------------------------------------------------- 1
1.2 Objective----------------------------------------------------------------------------------- 5
1.3 Range and Limitation------------------------------------------------------------------------ 6
1.4 Research Framework-------------------------------------------------------------------------- 7
Chapter 2 Literature Review----------------------------------------------------------------------9
2.1 Forming -------------------------------------------------------------------------------------9
2.2 Kansei Engineering--------------------------------------------------------------------------10
2.3 Affective satisfaction model2.4 Consumer segmentation---------------------------------------13
2.5 Information Consolidation-------------------------------------------------------------------15
2.6 Introduction of bicycle---------------------------------------------------------------------17
Chapter 3 Research Framework--------------------------------------------------------------------18
3.1 Outline of proposed affective satisfaction model of product form----------------------------18
3.2 Planning of implementation procedures-------------------------------------------------------20
3.3 Validation of gained data-------------------------------------------------------------------22
Chapter 4 Experiments Procedures----------------------------------------------------------------23
4.1 Construction of consumer segmentation-------------------------------------------------------23
4.2 Construction of satisfaction model----------------------------------------------------------27
4.3 Construction of aggregation satisfaction----------------------------------------------------29
Chapter 5 Result and Discussion-----------------------------------------------------------------34
5.1 Result of consumer segmentation-------------------------------------------------------------34
5.2 Result of constructing aggregated satisfaction model----------------------------------------40
Chapter 6 Conclusion and Suggestion-------------------------------------------------------------56
6.1 Contribution of this study------------------------------------------------------------------57
6.2 Suggestion for further study----------------------------------------------------------------58
參考文獻 1. Bloom, J. (2004). Tourist market segmentation with linear and non-linear techniques. Tourism
Management, 25, 723-733.
2. T, Bock. & Uncles M. (2002). A taxonomy of differences between consumers for market
segmentation. International Journal of Research in Marketing, 19, 215-224.
4. Cheung, K. W., Kwok J. T., Law M. H. & Tsui K. C. (2003). Mining customer product ratings
for personalized marketing. Decision Support Systems, 35, 231-243.
3. Gerson, R.F., 1993. Measuring Customer Satisfaction. Menlo Park, CA, USA.
4. D, Dubois. & Prade. H (2004). On the use of aggregation operations in information fusion
processes. Fuzzy Sets and Systems, 142, 143-161.
5. Han, S. H., Kim K. J, Yun M. H. & Hong S. W. (2004). Identifying mobile phone design
features critical to user satisfaction. Human Factors and Ergonomics in Manufacturing, 14(1),
6. Grabisch, M. (1995). Fuzzy integral in multicriteria decision making. Fuzzy Sets and Systems,
69, 279-298.
7. Huang, J. J., Tzeng G. H. & Ong C. S. (2007). Marketing segmentation using support vector
clustering. Expert Systems with Applications, 32, 313-317.
8. Jang, S. C., Morrison A. M. & O'Leary J. T. (2002). Benefit segmentation of Japanese pleasure
travelers to the USA and Canada: selecting target markets based on the profitability and risk of
individual market segments. Tourism Management, 23, 367-378.
9. Jacobs, R., Jordan. M, Nowlan S. & Hinton G. (1991). Adaptive mixtures of local experts.
Neural Computation, 3(1), 79-87.
10. Jindo, T., Hirasago K. & Nagamachi M. (1995). Development of a design support system for
office chairs using 3-D graphics. International Journal of Industrial Ergonomics, 15, 49-62.
11. Lee, M. D. & Pope K. J. (2003). Avoiding the dangers of averaging across subjects when using
multidimensional scaling. Journal of Mathematical Psychology, 47, 32-46.
12. MacKay, D. (2006). Chemometrics, econometrics, psychometrics—How best to handle
hedonics? Food Quality and Preference, 17, 529-535.
13. Makropoulos, C. K. & Butler D. (2006). Spatial ordered weighted averaging: incorporating
spatially variable attitude towards risk in spatial multi-criteria decision-making. Environmental
Modelling & Software, 21, 69-84.
14. Mingoti, S. A. & Lima J. O. (2006). Comparing SOM neural network with fuzzy c-means,
k-means and traditional hierarchical clustering algorithms. European Journal of Operational
Research, 174, 1742-1759.
15. Nagamichi, M., 1995, ‘‘Kansei Engineering: A New Ergonomic Consumer-Oriented
Technology for Product Development,’’ Int. J. Ind. Ergonom., 15~1!,pp. 3–11.
16. Neal, R. (1996). Bayesian Learning for Neural Networks. New York: Springer-Verlag.
17. Norman, D.A. and Draper, S.W. (1986). User-Centered System Design: New Perspectives on
Human-Computer Interaction. Lawrence Erlbaum, NJ.
18. Donald A. Norman., (1990) < The Design of Everyday Things>, Doubleday Business
19. Pal S. K., Mitra P., Mitra S. (2003). Rough-fuzzy MLP: modular evolution, rule generation, and
evaluation. IEEE Transactions on Knowledge and Data Engineering, 15(1), 14-25.
20. Perrone, P. Michael. & Leaon. N. Cooper (1993). When networks disagree: Ensemble methods
for neural networks for speech and image processing London: Chapman and Hall.
21. Sadig, R. & Tesfamariam S. (2007). Probability density functions based weights for ordered
weighted averaging (OWA) operators: an example proof water quality indices. European Journal
of Operational Research, 182, 1350-1368.
22. Smith, W. (1956). Product differentiation and market segmentation as an alternative marketing
strategy. Journal of Marketing, 21(1), 3-8.
23. Tang, C., Heymann H. & Hsieh F. H. (2000). Alternatives to data averaging of consumer
preference data. Food Quality and Preference, 11, 99-104.
24. Torra, V. (2005). Aggregation operators and models. Fuzzy Sets and Systems, 156, 407-410.
25. Tsai, H. C., Hsiao S. W. & Hung F. K. (2006). An image evaluation approach for
parameter-based product form and color design. Computer-Aided Design, 38, 157-171.
26. Yamamoto, K., Yoshikawa T. & Furuhashi T. (2005). Division method of subjects by
individuality for stratified analysis of SD evaluation data. IEEE.
27. Shieh, Meng-Dar, and Yang, Chih-Chieh (2008.08) “Classification model for product form
design using fuzzy support vector machines,” Computers & Industrial Engineering, Volume 55,
Issue 1, Pages 150-164.
28. Shieh, Meng-Dar, and Yang, Chih-Chieh (2008.07) “Multiclass SVM-RFE for product form
feature selection,” Expert Systems with Applications, Volume 35, Issue 1-2, Pages 531-541.
29. Zhu, Y. M., Bentabet L., Dupuis O., Kaftandjian V., Babot D. & Rombaut M. (2002). Automatic
determination of mass functions in Dempster-Shafer theory using fuzzy c-means and spatial
neighborhood information for image segmentation. Optical Engineering, 41(4), 760-770.
30. Introduction of Maslow’s hierarchy of needs
http://en.wikipedia.org/wiki/Maslow's_hierarchy_of_needs 王宗興,自行車車架造型特徵對意
31. 陳肇杰,產品造型評價之研究,國立成功大學工業設計研究所碩士論文,1993。
32. 台灣經濟研究院,自行車及其零組件業發展策略研究報告。
33. 陳國祥,管倖生,鄧怡莘,張育銘,感性工學----將感性予以理性化的手法,工業設計2001,
10 期,p2,2001。
34. 黃俊英,多變量分析,中國經濟企業研究所,1986。
35. 林師模,陳苑欽,多變量分析---管理上的應用,雙葉書廊,2006。
  • 同意授權校內瀏覽/列印電子全文服務,於2009-08-29起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2011-08-29起公開。

  • 如您有疑問,請聯絡圖書館