進階搜尋


 
系統識別號 U0026-0812200914343749
論文名稱(中文) 酒精汽油對不同里程車輛引擎排放氣態污染物影響研究
論文名稱(英文) Investigation of ethanol-gasoline effect on exhaust emissions for different accumulated mileage vehicles
校院名稱 成功大學
系所名稱(中) 環境工程學系碩博士班
系所名稱(英) Department of Environmental Engineering
學年度 96
學期 2
出版年 97
研究生(中文) 周欣慧
研究生(英文) Hsin-Hui Chou
學號 p5695408
學位類別 碩士
語文別 中文
論文頁數 156頁
口試委員 口試委員-許逸群
指導教授-蔡俊鴻
口試委員-鄭福田
口試委員-張能復
口試委員-郝晶瑾
口試委員-江鴻龍
中文關鍵字 基準污染物  酒精汽油  行駛里程  有機氣態污染物  汽油小客車  光化反應潛勢 
英文關鍵字 criteria pollutant  ozone-formation potential  volatile organic compound  passenger cars  mileage  ethanol-gasoline blends 
學科別分類
中文摘要 本研究目的為探討不同行駛里程數車輛於使用酒精汽油之引擎尾氣排放氣態污染物之影響,解析污染物包括基準污染物(NMHC、HC、CO及NOx)、揮發性有機污染物(VOCs)以及醛酮化合物(Carbonyls);並探討汽油車使用酒精汽油所致車輛引擎尾氣排放VOCs之臭氧生成潛勢。測試車為汽油小客車,包括新車、低里程(< 5萬公里)、中里程(5~8萬公里)及高里程(> 8萬公里)等四車群,共計9部測試車輛;測試油品為3% (E3)、10% (E10)、20% (E20)酒精汽油及市售95無鉛汽油。測試作業於車體動力計模擬FTP-75行車型態下,量測測試全程尾氣排放,排氣量測結果乃與為市售95無鉛汽油進行比較。
四車群使用E3酒精汽油之研究結果顯示,基準污染物排放係數皆隨車輛行駛里程增加而增加。與市售95無鉛汽油相較,各車群使用E3皆具有減量效果;減量比例為NMHC (2.1%~3.3%)、HC (1.6%~5.5%)及CO (1.6%~3.9%);NOx則於低、中里程車群呈現排放減量(2.2%及1.4%),於新車及高里程車群無明顯變化。使用E3酒精汽油為燃料時,對汽車引擎尾氣排放VOCs亦有改善效果,減量範圍為1.3%~4.1%,且隨車輛累計里程數愈高,VOCs減量效果愈不明顯。此外,使用E3會造成車輛尾氣中乙醛排放增量,幅度約1.4%~2.0%,主要乃為酒精汽油所含乙醇成分燃燒氧化生成醛類所致。
針對高、低里程車輛使用E3、E10及E20酒精汽油之引擎尾氣污染物排放結果顯示,使用不同乙醇含量酒精汽油對基準污染物排放皆有明顯的減量,減量幅度最高可達32%。車輛使用E20及E10酒精汽油所致基準污染物排放係數減量比例E20:32% (CO) 至11% (NOx);E10:17% (CO) 至5% (NOx),且以低里程車輛呈現較大減量變化。在VOCs方面,使用不同乙醇含量之酒精汽油所致VOCs減量範圍為2~45%,尤以低里程車輛使用E20達最高減量效果,高里程車輛使用E20亦有20%減量效果。甲醛及乙醛排放則隨汽油添加乙醇含量增加而呈現增量結果,甲醛排放增量最高達18%;乙醛排放增量最高達38%,以高里程車輛之排放係數變化量較低里程車輛明顯;使用E20酒精汽油時,高里程車輛排放甲醛及乙醛較低里程車輛約高出1.45倍(甲醛)及1.20倍(乙醛)。
汽油車使用酒精汽油之引擎尾氣排放VOCs致臭氧生成潛勢結果顯示,低里程車輛使用E20酒精汽油具有最低之臭氧生成潛勢值(0.86 g-O3/km),與市售95無鉛汽油(0.96 g-O3/km)相較,減少10.7%;於高里程車輛使用E20酒精汽油之臭氧生成潛勢值(2.16 g-O3/km),與市售95無鉛汽油(2.32 g-O3/km)相較,亦減少7.1%,顯示車輛使用酒精汽油可以明顯降低臭氧生成。
整體而言,使用酒精汽油對汽車之引擎尾氣排放氣態污染物及致臭氧生成潛勢皆具有改善效果;且隨乙醇添加含量(最高至20% v/v)增加而有改善情形。不同里程車群使用酒精汽油多呈現污染物減量情形,高里程車群之二期車使用E3酒精汽油亦有略為降低污染物之趨勢,顯示二期車輛亦可以使用E3酒精汽油,對空氣品質改善亦有助益。
英文摘要 The objective of this study is to investigate the effect of ethanol-gasoline blends on exhaust emissions for passenger cars with different accumulated mileage. The pollutants include criteria pollutants (NMHC, THC, CO, and NOx), volatile organic compounds (VOCs), and carbonyls. The ozone-forming potential of individual organic compound was also discussed. In the present study, nine passenger cars, i.e., one new vehicle, four low-mileage cars (<50,000km), one medium-mileage car (50,000-80,000km), and three high-mileage cars (> 80,000 km), were divided into four types. Four test fuels were used in this study. One was commercial unleaded gasoline with octane number of 95 with MTBE as the oxygenated additive. The other fuels were ethanol-gasoline blends contain 3% (E3), 10% (E10), and 20% (E20) by volume, respectively. The blends were blended by the largest local refinery in Taiwan. All of the test cars were run on a chassis dynamometer following the United State Federal Test Procedure (FTP-75).
The results show that the criteria pollutant emissions increased with the increasing of driving mileage while uses E3 as the fuel. In comparison with commercial unleaded gasoline, using the E3 ethanol-gasoline blend may lead to lower NMHC, HC, and CO emissions in all types of test cars. The decreased percentages were 2-3% for NMHC, 2-6% for HC, and 2-4% for CO. However, the difference of NOx emissions between the commercial unleaded gasoline and E3 was not pronounced for the new car and high accumulated mileage cars. Further, using the E3 ethanol-gasoline blend also shows VOCs emission reduction for the test cars, the reduction ranged from 1% (high-mileage cars) to 4% (new car). Adding ethanol would increase acetaldehyde with the emission by 1-2%; however, the E3 test fuel does not correlated with the emissions of for formaldehyde.
Moreover, all four test fuels (E3, E10, E20, and commercial gasoline) were conducted to the high and the low-mileage cars. The results indicated that the pollutant emissions were decreased while using ethanol-gasoline blends as compared to the use of commercial gasoline. The CO shows a highest emission reduction (32%) on the low-mileage car. In general, the exhaust emissions of criteria pollutants were lower with ethanol-gasoline blends, but formaldehyde and acetaldehyde emissions increase. The emissions of formaldehyde and acetaldehyde from the high-mileage car were higher than the low-mileage car by 1.5 and 1.2 times, respectively. The variation of exhaust emissions is larger in the high-mileage car than in the low-mileage car.
The results of ozone-forming potential shows that the using ethanol-gasoline blends may lead to low ozone-forming potential as compared to the commercial gasoline. The reduction is about 11% (0.96 to 0.86 g-O3/km) and 7% (2.32 to 2.16 g-O3/km) for the low-mileage cars and the high-mileage cars while using E20 test fuel. In brief, the data indicated that the ozone-forming potential decreased as using ethanol-gasoline blends, regardless of the accumulated mileage.
In summary, ethanol-gasoline blends may result in a mitigation effect on exhaust emissions of the criteria pollutants, most of organic compounds and ozone-forming potential; and the emission reductions were increase with increasing ethanol content. For the high-mileage car (>80,000 km) also showed a emission decreasing while using ethanol-gasoline blends, even though the reductions are not pronounced; however, for air quality improvement, the ethanol-gasoline blends are commend to use as a alterative fuel in passenger cars.
論文目次 中文摘要 I
Abstract III
誌 謝 VII
目錄 IX
表目錄 XIII
圖目錄 XV
第一章 前 言 1
1-1 研究缘起 1
1-2 研究目標 2
第二章 文獻回顧 3
2-1 移動源空氣污染物排放特性 3
2-2 汽油組成特性與管制標準 4
2-2-1 汽油組成分類與性質 4
2-2-2 各國油品標準及規範 7
2-2-3 台灣油品管制現況 10
2-3酒精汽油組成特性與管制標準 11
2-3-1酒精汽油之介紹 11
2-3-2各國酒精汽油之發展 12
2-3-3酒精汽油組成特性 17
2-3-4酒精汽油污染物之排放特性 18
2-4 機動車輛排放光化反應性污染物 21
2-4-1 揮發性有機物之光化反應性指標 21
2-4-2 揮發性有機物於大氣中光化反應特性 22
第三章 研究方法 41
3-1 研究架構 41
3-2 測試車輛篩選與油品摻配設計 42
3-2-1 測試車輛篩選 42
3-2-2 油品成分摻配設計 43
3-3 排氣採樣測試程序 43
3-3-1 車體動力計簡述 44
3-3-2 動力計操作與排氣測定 44
3-3-3 汽油車引擎尾氣之採樣程序 45
3-4 汽車引擎排氣測定分析及品保品管 48
3-4-1汽油車引擎排氣之分析 48
3-4-2 實驗品保品管 52
3-5 汽車引擎尾氣空氣污染物排放係數推估 57
第四章 結果與討論 79
4-1 酒精汽油對不同里程車輛引擎尾氣基準污染物排放之影響 79
4-1-1 基準污染物排放濃度解析 79
4-1-2 基準污染物排放係數解析 83
4-1-3 酒精汽油所致基準污染物排放差異 86
4-1-4 車輛使用酒精汽油之燃油經濟性 88
4-2 酒精汽油對不同里程車輛引擎尾氣排放氣態有機污染物之影響 93
4-2-1 揮發性有機物排放濃度及排放係數解析 93
4-2-2 醛酮類族群排放濃度及排放係數解析 98
4-2-3 酒精汽油所致有害空氣污染物排放特徵解析 100
4-3 高低里程車輛使用酒精汽油之氣態污染物排放差異分析 117
4-3-1 基準污染物排放濃度/係數解析 117
4-3-2 VOCs及Carbonyls排放係數解析 123
4-3-3特定有害污染物排放係數解析 128
4-3-4 高低里程車輛使用酒精汽油之燃油經濟性解析 129
4-4 酒精汽油對車輛引擎尾氣致光化反應趨勢 138
4-4-1 不同里程車輛引擎尾氣排放VOCs致光化反應趨勢 138
4-4-2 高低里程車輛之引擎尾氣致光化反應趨勢 141
第五章 結論與建議 147
5-1 結論 147
5-2 建議 150
參考文獻 151
參考文獻 1.Chum, H.L., Overend, R.P., 2001. “Biomass and renewable fuels.” Fuel Processing Technology 71:187–195.
2.CONCAWE, 2001. “Motor Vehicle Emission Regulations and Fuel Specifications – Part 1 Summary and Annual 1999/2000 Update.” Report No. 1/01
3.Correa, S.M., Martins, E., Arbilla, G., 2003. “Formaldehyde and acetaldehyde in a high traffic street of Rio de Janeiro, Brazil.” Atmospheric Environment 37:23-29.
4.Al-Hasan, M., 2003. “Effect of ethanol–unleaded gasoline blends on engine performance and exhaust emission.” Energy Conversion and Management 44:1547-1561.
5.He, B.-Q., Wang, J.-X., Hao, J.-M., Yan, X.-G., Xiao, J.-H., 2003. “A study on emission characteristics of an EFI engine with ethanol blended gasoline fuels.” Atmospheric Environment 35:4399-4406.
6.Hsieh, W.-D., Chen, R.-H., Wu, T.-L., Lin, T.-H., 2002. “Engine performance and pollutant emission of an SI engine using ethanol-gasoline blended fuels.” Atmospheric Environment 36:403-410.
7.Jia, L.-W., Shen, M.-Q., Wang, J., Lin M.-Q., 2005. “Influence of ethanol–gasoline blended fuel on emission characteristics from a four-stroke motorcycle engine.” Journal of Hazardous Materials A123:29-34.
8.Jia, L.-W., Zhou, W.-L., Shen, M.-Q., Wang, J., Lin M.-Q., 2006. “The investigation of emission characteristics and carbon deposition over motorcycle monolith catalytic converter using different fuels.” Atmospheric Environment 40:2002-2010
9.Kirchstetter, T.W., Singer, B.C., Harley, R.A., 1996. “Impact of oxygenated gasoline use on California light-duty vehicle emissions.” Environmental Science & Technology 30: 661-670.
10.Leong, S.T., Mottamara, S., Laortankul, P., 2002. “Applicability of gasoline containing ethanol as Thailand’s alternative fuel to curb toxic VOC pollutants form automobile emission.” Atmospheric Environment 36:3495-3503.
11.Nadim, F., Zack, P., Hoag, G.E., Liu, S., 2001. “United sates experience with gasoline additives.” Energy Policy 29:1-5.
12.Niven, R.K., 2005. “Ethanol in gasoline : environmental impacts and sustainability review article. ” Renewable and Sustainable Energy Reviews 9:535-555.
13.Poulopoulos, S.G., Philippopoulos, C.J., 2003. “The effect of adding oxygenated compounds to gasoline on automotive exhaust emissions.” Journal of Engineering for Gas Turbines and Power-Transactions of the Asme 125:344-350.
14.Poulopoulos, S.G., Samaras, D.P., Philippopoulos, C.J., 2001. “Regulated and unregulated emissions from an internal combustion engine operating on ethanol-containing fuels.” Atmospheric Environment 37:949-957.
15.Schifter, I., Díaz, L., Guzman, E., Lopez-Salinas, E., 2004. “Fuel formulation and vehicle exhaust emissions in Mexico. ” Fuel 83:2065-2074.
16.Tsai, J.H., Hsu, Y.C., Weng, H.C., Lin, W.Y., Jeng, F.T., 2000. “Air pollutant emission factors from new and in-use motorcycles.” Atmospheric Environment 34: 4747-4754.
17.Tsai, J.H., Chiang, H.L., Hsu, Y.C., Weng, H.C., Yang, C.Y., 2003. “The speciation of volatile organic compounds (VOCs) from motorcycle engine exhaust at different driving modes.” Atmospheric Environment 37:2485–2496.
18.USEPA網頁資料a, “Fuels and Fuel Additives.”, http://www.epa.gov/otaq/fuels.htm
19.USEPA網頁資料b, “Mobile Source Air Toxics.” http://www.epa.gov/otaq/toxics.htm, EPA420-R-00-023
20.Winebrake, J.J., Deaton, M.L., 1997. “A comparative analysis of emissions deterioration for in-use alternative fuel vehicles.”, Journal of Air & Waste Management Association 47:1291-1296.
21.World-Wide Fuel Charter, 2002, http://www.oica.net/htdocs/fuel%20quality/WWFC_Dec2002_Brochure.pdf
22.Yucesu, H.S., Topgul, T., Cinar, C., Okur, M., 2006. “Effect of ethanol–gasoline blends on engine performance and exhaust emissions in different compression ratios.” Applied Thermal Engineering 26:2272-2278
23.Zervas, E., Montagne, X., Lahaye J., 2001. “C-1-C-5 organic acid emissions from an SI engine: Influence of fuel and air/fuel equivalence ratio.” Environmental Science & Technology 35:2746-2751.
24.Zervas, E., Montagne, X., Lahaye J., 2003. “Emissions of regulated pollutants from a spark ignition engine. Influence of fuel and Air/Fuel equivalence ratio.” Environmental Science & Technology 37:3232-3238.
25.王建鴻,1998,乙醇替代燃料對於汽油引擎排放廢氣中醛酮類化合物之研究,國立成功大學碩士論文
26.何文淵,1999,汽油車引擎尾氣揮發性有機物成份及光化反應潛勢,國立成功大學碩士論文
27.翁閎政,1998,機車排氣之揮發性有機物特徵及光化反應性研究,國立成功大學碩士論文
28.陳厚良,2005,替代性燃料-汽醇對機車引擎排放特性之研究,國立屏東科技大學碩士論文
29.陳子秦,2007,汽油車氣態污染物之排放劣化與行駛里程相關性研究,國立成功大學碩士論文
30.葉惠芬,2004,冷熱啟動測試機車排放揮發性有機物特徵之差異研究,國立成功大學碩士論文
31.劉育穎,2000,機車排放醛酮化合物特徵與光化反應性研究,國立成功大學碩士論文
32.張安伶,2006,油品成份對機車引擎排放氣態污染物影響研究,國立成功大學碩士論文
33.黃其聰,2004,醇類燃料對汽油排氣分析研究,中原大學碩士論文
34.台灣地區排放量資料庫排放量推估手冊TEDS6.1
35.曾益民,2006,生質酒精汽油之發展,工業技術研究院
36.張四立,2008,國外推動酒精汽油之政策工具,能源政策-能源報導
37.黃靖雄,2002年再版,現代低公害省油汽車排氣污染控制技術及裝置,全華科技圖書出版
38.簡淑美、莊訓城、張和中、彭瓊瑜、洪永翰、楊鍚賢,2006,汽車使用液化石油氣與汽油燃料排放揮發性有機物、醛酮類化合物特徵與臭氧生成潛勢分析,第18屆空氣污染研討會
39.行政院環保署環保法規網站資料,2004,空氣污染防制-車用汽柴油成分及性能管制標準
40.交通部統計處資訊服務網站,2007,http://www.motc.gov.tw/~ccj/main.htm
41.行政院經濟建設委員會,2007,http://www.cepd.gov.tw/m1.aspx?sNo=0009419
42.行政院環保署,”空保處網頁資料-移動源管制油品改善”,http://www.epa.gov.tw/
43.經濟部標準檢驗局,2007,油品基本資料-車用無鉛汽油,http://www.moeaboe.gov.tw/oil102/cpknew/index.html
44.環保署/國科會空污防制科研合作計畫期末報告,2005,子計畫二:油品成分對機車引擎排放氣態污染物影響研究,NSC 94-EPA-Z-006-006
45.台灣中油,石油教室-用油常識-98無鉛汽油
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2009-08-27起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2009-08-27起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw