進階搜尋


 
系統識別號 U0026-0812200914342533
論文名稱(中文) 阿基里斯腱振動對於腦中風病患步行時神經肌肉控制之影響
論文名稱(英文) Effect of Achilles Tendon Vibration on Neuromuscular Control during Locomotion in Stroke Patients
校院名稱 成功大學
系所名稱(中) 物理治療研究所
系所名稱(英) Department of Physical Therapy
學年度 96
學期 2
出版年 97
研究生(中文) 許立儒
研究生(英文) Li-Ju Hsu
電子信箱 t6694106@mail.ncku.edu.tw
學號 T6694106
學位類別 碩士
語文別 中文
論文頁數 157頁
口試委員 口試委員-陳家進
口試委員-湯佩芳
指導教授-林桑伊
中文關鍵字 肌肉振動  中風  感覺功能  步行控制 
英文關鍵字 stroke  vibration  locomotion  sensory function 
學科別分類
中文摘要 引言:關節位置感覺受損是中風患者常見的問題,並且可能會影響患者行走時的感覺控制及整合能力。肌肉振動可活化肌肉中的Ia感覺受器,並引起額外且衝突性的本體感覺輸入,過去使用此類實驗方法的研究結果指出,阿基里斯腱振動所引起的衝突性感覺輸入會引起正常人步行時關節動作及肌肉活動的改變。由於中風之後的踝關節及膝關節位置感覺損傷可能會影響病患步行時感覺整合的能力,因此衝突的感覺輸入對中風患者步行控制的影響仍不清楚。本研究的目的即是要探討此二關節位置感覺損傷是否影響阿基里斯腱對中風患者其行走時肌肉活動的改變。方法:三十一位中風患者就踝關節及膝關節分別分為關節位置感覺正常及受損兩組。受試者在三種狀況下以平常速度進行行走,這三種狀況主要為沒有施予振動、患側阿基里斯腱振動、以及健側阿基里斯腱振動。受試者行走時會同時偵測踝關節肌肉的肌電圖活動。肌電圖活動參數分別針對健側及患側肌肉進行多變量統計分析(關節位置感覺×振動情形×步態時期),事後分析則採用LSD檢定。結果:健側肌電圖活動具有關節位置感覺×振動情形×步態時期的顯著交互作用,然而患側肌電圖活動則沒有這樣的結果。在關節位置感覺正常的受試者其肌電活動在振動情形下顯著地與沒有振動有所差異,而在關節位置感覺損傷受試者則較無振動情形的顯著差異。結論:衝突的感覺輸入會被關節位置感覺正常的中風患者之中樞神經用以作步行控制,但關節位置感覺異常的患者其神經肌肉控制較不會因衝突性感覺輸入而改變。這樣的結果可能暗示,關節位置感覺的正常與否可能會影響中風患者步行神經肌肉控制的感覺整合情形。
英文摘要 Introduction: Impaired joint position sense is a problem often seen in stroke patients and may affect the sensory control of locomotion. Mechanical vibration can selectively activate primary muscle spindle receptors and elicit additional and often conflicting proprioceptive inputs. For healthy adults, additional proprioceptive input elicited by vibration could alter the joint movement and muscle activation pattern during locomotion. However, for stroke patient, whether the integrity of the ankle and knee joint position sense would affect the processing of such additional proprioceptive inputs for locomotion control is still unknown. Therefore, the purpose of this study was to investigate how the integrity of the ankle and knee joint position sense influenced the effect of Achilles tendon vibration on ankle muscle activation in locomotion in stroke patients. Methods: Thirty-one stroke patients were grouped as intact and impaired joint position sense for ankle and knee separately. Subjects walked first without and then with the affected and unaffected Achilles tendon vibrated. The electromyographic (EMG) signals of bilateral ankle muscles were collected and footswitches were attached to bilateral big toe and heel center. Two multivariate repeated measure ANOVAs (joint position sense × vibration × gait phase) were conducted for the mean EMG amplitude and variance ratio of the affected and unaffected ankle muscles separately, while the LSD procedure was used as post-hoc tests as needed. Results: The results of ANOVAs showed that there was significant joint position sense × vibration × gait phase interaction on the EMG amplitude and variance ratio of the unaffected ankle muscles for ankle and knee joint separately, but not on the affected side ankle muscles. Post-hoc tests showed that the muscular activities were significant different between vibration and non-vibration condition in the joint position sense intact group, but not in the impaired group. Conclusion: The effects of additional proprioceptive inputs on the muscular activities were different for stroke patients with intact versus impaired joint position sense. First, additional sensory inputs were found to alter the neuromuscular control for locomotion only in patients with intact joint position sense. This result suggests that stroke patients with residual somatosensory function were capable of using spindle inputs from the affected side for locomotion control. Second, and most interestingly, such additional sensory inputs from the affected ankle joint did not alter the neuromuscular control of locomotion. Therefore, the contribution of muscle spindle information from the affected lower extremity to sensory integration was possibly reduced, and patients might rely on other sensory inputs for locomotion control. In conclusion, the integrity of the joint position sense might influence the contribution of proprioceptive input to the sensory integration process and thus affect the neuromuscular control of locomotion in stroke patients.
論文目次 中文摘要 1
英文摘要 3
致謝 5
表目錄 10
圖目錄 13
第一章 理論及文獻回顧 15
第一節 步行動作特徵 15
一、步態週期 15
二、步態運動學簡介 17
三、步態之肌肉活動特徵 19
四、步態之運動力學 21
第二節 步行控制系統簡介 24
一、中樞模式產生器對步行控制之影響 24
二、脊髓以上中樞對步行控制影響之簡介 25
三、感覺輸入對步行控制之影響 27
四、感覺整合對於步態控制之重要性 32
第三節 肌肉振動對於步行控制之影響 33
一、肌肉振動對關節感覺所造成之影響 33
二、肌肉振動對步行控制所造成之影響 34
第四節 腦血管中風病患步行表現缺失 37
一、腦血管中風簡介 37
二、腦血管中風所引起之動作失能 38
三、腦血管中風所造成之步態缺失 42
第五節 腦中風病患之感覺功能對於步態表現缺失之關係 47
一、本體感覺與腦中風病患步態缺失之關係 47
二、表皮感覺與腦中風病患步態缺失之關係 48
三、感覺整合能力對於腦中風病患步態缺失之影響 49
第二章 研究背景 51
第一節、研究動機 51
第二節、研究目的 52
第三節、研究假設 53
第三章 研究方法 54
第一節 研究設計 54
第二節 受試者 56
第三節 測試工具 57
第四節 測試步驟 62
第五節 資料處理與重要參數定義 71
第六節 統計分析 76
第四章 實驗結果 79
第一節 前置實驗結果 79
第二節 關節位置感覺分組情形 80
第三節 踝關節位置感覺功能的影響 82
一、 關節位置感覺表現及分組情形 82
二、 受試者基本資料 84
三、 理學檢查測量結果 85
四、 行走測試之步態時間參數結果 88
五、 行走測試之肌電活動參數結果 93
第四節 膝關節位置感覺功能的影響 107
一、 關節位置感覺表現及分組情形 107
二、 受試者基本資料 109
三、 理學檢查測量結果 110
四、 行走測試之步態時間參數結果 112
五、 行走測試之肌電活動參數結果 118
第五章 討論 127
第一節 中風患者踝關節及膝關節位置感覺表現 128
第二節 阿基里斯腱振動對於中風患者行走時間特徵的影響 130
第三節 阿基里斯腱振動對於中風患者行走神經肌肉控制的影響 132
一、阿基里斯腱振動對關節位置感覺正常組行走時神經肌肉控制的影響 132
二、阿基里斯腱振動對關節位置感覺受損組行走時神經肌肉控制的影響 137
三、結論 138
第四節 實驗限制 140
第五節 臨床應用 141
第六章 結論 142
第七章 參考文獻 143
附件 155
自述 156
參考文獻 1. Andersson O, Grillner S. Peripheral control of the cat's step cycle. I. Phase dependent effects of ramp-movements of the hip during "fictive locomotion". Acta Physiol Scand. 113(1):89-101, 1981.
2. Banks MA. Stroke. Churchill Living stone Inc., New York, USA. P3-16, 1986.
3. Barnett HJ, Stein BM, Mohr JP, Yatsu FM. Stroke: pathophysiology, diagnosis, and management. Churchill Living stone Inc., New York, USA. P3-30, 1992.
4. Bayat R, Barbeau H, Lamontagne A. Speed and temporal-distance adaptations during treadmill and overground walking following stroke. Neurorehabil Neural Repair. 19(2):115-24, 2005.
5. Beauchet O, Allali G, Berrut G, Dubost V.Is low lower-limb kinematic variability always an index of stability? Gait Posture.26(2):327-8, 2007.
6. Bohannon RW. Gait performance of hemiparetic stroke patients: selected variables. Arch Phys Med Rehabil. 68(11):777-81, 1987.
7. Bohannon RW, Larkin PA. Lower extremity weight bearing under various standing conditions in independently ambulatory patients with hemiparesis. Phys Ther. 65(9):1323-5, 1985.
8. Bonan IV, Colle FM, Guichard JP, Vicaut E, Eisenfisz M, Tran Ba Huy P, Yelnik AP. Reliance on visual information after stroke. Part I: Balance on dynamic posturography. Arch Phys Med Rehabil. 85(2):268-73, 2004.
9. Brand PW. Repetitive stress in the development of diabeticfoot ulcers. In: Levin NE, O'Neal LW, editors. The diabetic foot. ST. Louis, MO: CV Mosby, 792-811, 1990.
10. Brooke JD, Cheng J, Collins DF, McIlroy WE, Misiaszek JE, Staines WR. Sensori-sensory afferent conditioning with leg movement: gain control in spinal
reflex and ascending paths. Prog Neurobiol. 51(4):393-421, 1997.
11. Brown TG. The intrinsic factors in the act of progression in the mammal. Proc R Soc Lond Ser B. 84:308-319, 1911.
12. Cohen H. Neuroscience for rehabilitation. Lippinott Williams & Wilkins, Philadelphia, USA. P77-301, 1999.
13. Courtine G, Pozzo T, Lucas B, Schieppati M. Continuous, bilateral Achilles' tendon vibration is not detrimental to human walk. Brain Res Bull. 55(1):107-15, 2001.
14. Craik RL, Oatis CA. Gait analysis: theory and application. Mosby Inc., St. Louis, USA. P46-65, 1995.
15. Dickstein R, Nissan M, Pillar T, Scheer D. Foot-ground pressure pattern of standing hemiplegic patients. Major characteristics and patterns of improvement. Phys Ther. 64(1):19-23, 1984.
16. Delcomyn F. Neural basis of rhythmic behavior in animals. Sci Wash DC. 210:492-498, 1980.
17. Di Fabio RP, Badke MB. Stance duration under sensory conflict conditions in patients with hemiplegia. Arch Phys Med Rehabil. 72(5):292–295, 1991.
18. Dettmann MA, Linder MT, Sepic SB. Relationships among walking performance, postural stability, and functional assessments of the hemiplegic patient. Am J Phys Med. 66(2):77-90, 1987.
19. Duncan PW, Propst M, Nelson SG. Reliability of the Fugl-Meyer assessment of sensorimotor recovery following cerebrovascular accident. Phys Ther. 63(10):
1606-10, 1983.
20. Duysens J, Pearson KG. The role of cutaneous afferents from the distal hindlimb in the regulation of the step cycle of thalamic cats. Exp Brain Res. 24:245-55, 1976.
21. el-Abd MA, Ibrahim IK. Impaired afferent control in patients with spastic hemiplegia at different recovery stages: contribution to gait disorder. Arch Phys Med Rehabil. 75(3):312-7, 1994.
22. Eils E, Nolte S, Tewes M, Thorwesten L, Völker K, Rosenbaum D. Modified pressure distribution patterns in walking following reduction of plantar sensation. J Biomech. 35(10):1307-13, 2002.
23. Erni T, Colombo G. Locomotor training in paraplegic patients: a new approach to assess changes in leg muscle EMG patterns. Electroencephalogr Clin Neurophysiol. 109(2):135-9, 1998.
24. Folstein MF, Robins LN, Helzer JE. The Mini-Mental State Examination. Arch Gen Psychiatry. 40:812, 1983.
25. Fugl-Meyer AR, Jääskö L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J
Rehabil Med. 7:13-31, 1975.
26. Fung J, Barbeau H. A dynamic EMG profile index to quantify muscular activation disorder in spastic paretic gait. Electroencephalogr Clin Neurophysiol. 73(3):233-44, 1989.
27. Gabel RH, Brand RA. The effects of signal conditioning on the statistical analyses of gait EMG. Electroencephalogr Clin Neurophysiol. 93(3):188-201, 1994.
28. Garoutte B. Survey of functional neuroanatomy. Mill Valley Medical Publishers. California, USA, 1994.
29. Gillen G, Burkhardt A. Stroke rehabilitation: a function-based approach. Mosby Inc., St. Louis, USA. P1-10, 1998.
30. Goldie PA, Matyas TA, Evans OM. Gait after stroke: initial deficit and changes in temporal patterns for each gait phase. Arch Phys Med Rehabil. 82(8):1057-65, 2001.
31. Goodwin GM, McCloskey DI, Matthews PB. The contribution of muscle afferents to kinaesthesia shown by vibration induced illusions of movement and by the effects of paralysing joint afferents. Brain. 95(4):705-48, 1972.
32. Grillner S. Locomotion in vertebrates: central mechanisms and reflex interaction. Physiol Rev. 55: 247-304, 1975.
33. Gurfinkel VS, Levik YS, Kazennikov OV, Selionov VA. Locomotor-like movements evoked by leg muscle vibration in humans. Eur J Neurosci. 10(5):1608-12, 1998.
34. Heiderscheit BC. Movement variability as a clinical measure for locomotion. J applied biomech. 16: 419-427, 2000.
35. Hirschberg GG, Nathanson M. Electromyographic recording of muscular activity in normal and spastic gaits. Arch Phys Med Rehabil. 33(4):217-25, 1952.
36. Hislop HJ, Montgomery J. Muscle testing: techniques of manual examination. W.B. Saunders Company, Philadelphia, USA. In. Ch 5: Testing the muscles of the lower extremity. P169-234, 1995.
37. Horvat M, Croce R, Roswal G. Intratester reliability of the Nicholas Manual Muscle Tester on individuals with intellectual disabilities by a tester having minimal experience. Arch Phys Med Rehabil. 75(7):808-11, 1994.
38. Hsu AL, Tang PF, Jan MH. Analysis of impairments influencing gait velocity and asymmetry of hemiplegic patients after mild to moderate stroke. Arch Phys Med Rehabil 84(8):1185-93, 2003.
39. Hunphrey DR, Freund HJ. Motor control: concepts and issues. John Wiley & Sons. New York, USA. How do sensory and motor signals interact during locomotion? P199-211, 1991.
40. Hwang IS, Lee HM, Cherng RJ, Chen JJ. Electromyographic analysis of locomotion for healthy and hemiparetic subjects--study of performance variability and rail effect on treadmill. Gait Posture. 18(1):1-12, 2003.
41. Inglis JT, Frank JS. The effect of agonist/antagonist muscle vibration on human position sense. Exp Brain Res. 81(3):573-80, 1990.
42. Inglis JT, Frank JS, Inglis B. The effect of muscle vibration on human position sense during movements controlled by lengthening muscle contraction. Exp Brain Res. 84(3):631-4, 1991.
43. Ivanenko YP, Grasso R, Lacquaniti F. Influence of leg muscle vibration on human walking. J Neurophysiol. 84(4):1737-47, 2000.
44. Kandel ER, Schwarts JH, Jessell TM. Principle of neural science. McGraw Hill Inc., New York, USA. Ch37. P756–779, 2000.
45. Keenan MA, Perry J, Jordan C. Factors affecting balance and ambulation following stroke. Clin Orthop.182:165- 71, 1984.
46. Kendall FP, McCreary EK. Muscles testing and function. 3rd edition. Williams& Wilkins, USA, 1983.
47. Knutsson E, Richards C. Different types of disturbed motor control in gait of hemiparetic patients. Brain. 102(2):405-30, 1979.
48. Knutsson E, Mårtensson A. Dynamic motor capacity in spastic paresis and its relation to prime mover dysfunction, spastic reflexes and antagonist co-activation. Scand J Rehabil Med. 12(3):93-106, 1980.
49. Kusoffsky A, Wadell I, Nilsson BY. The relationship between sensory impairment and motor recovery in patients with hemiplegia. Scand J Rehabil Med. 14(1):27-32, 1982.
50. Lackner JR, DiZio P. Visual stimulation affects the perception of voluntary leg movements during walking. Perception. 17(1):71-80, 1988.
51. Laidler P. Stroke rehabilitation: structure and strategy. Singular Publishing Group Inc., San Diego, USA. P76-98, 1994.
52. Laufer Y, Schwarzmann R, Sivan D, Sprecher E. Postural control of patients with hemiparesis: force plates measurements based on the clinical sensory organization test. Physiother Theory Pract. 21(3):163-71, 2005.
53. Lamontagne A, Fung J, McFadyen BJ, Faubert J. Modulation of walking speed by changing optic flow in persons with stroke. J Neuroeng Rehabil. 4:22, 2007.
54. Lee MJ, Kilbreath SL, Refshauge KM. Movement detection at the ankle following stroke is poor. Aust J Physiother. 51(1):19-24, 2005.
55. Lin PY, Yang YR, Cheng SJ, Wang RY. The relation between ankle impairments and gait velocity and symmetry in people with stroke. Arch Phys Med Rehabil.
87(4):562-8, 2006.
56. Lin SI. Motor function and joint position sense in relation to gait performance in chronic stroke patients. Arch Phys Med Rehabil. 86(2):197-203, 2005.
57. MacKay-Lyons M. Central pattern generation of locomotion: a review of the evidence. Phys Ther. 82(1):69-83, 2002.
58. Marigold DS, Eng JJ, Tokuno CD, Donnelly CA. Contribution of muscle strength and integration of afferent input to postural instability in persons with stroke. Neurorehabil Neural Repair 18(4):222-9, 2004.
59. Mazzaro N, Nielsen JF, Grey MJ, Sinkjaer T. Decreased contribution from afferent feedback to the soleus muscle during walking in patients with spastic stroke. J Stroke Cerebrovasc Dis. 16(4):135-44, 2007.
60. Miller RA, Thaut MH, McIntosh GC, Rice RR. Components of EMG symmetry and variability in parkinsonian and healthy elderly gait. Electroencephalogr Clin
Neurophysiol. 101(1):1-7, 1996.
61. Milner M, Basmajian JV, Quanbury AO.Multifactorial analysis of walking by electromyography and computer. Am J Phys Med. 50(5):235-58, 1971.
62. Murray MP, Mollinger LA, Gardner GM, Sepic SB. Kinematic and EMG patterns during slow, free, and fast walking. J Orthop Res. 2(3):272-80, 1984
63. Nurse MA, Nigg BM. The effect of changes in foot sensation on plantar pressure and muscle activity. Clin Biomech (Bristol, Avon) 16:719-27, 2001.
64. Olney SJ, Richards C. Hemiplegic gait following stroke. Part I: Characteristics. Gait Posture. 4:136-148, 1996.
65. Peat M, Dubo HI, Winter DA, Quanbury AO, Steinke T, Grahame R. Electromyographic temporal analysis of gait: hemiplegic locomotion. Arch Phys
Med Rehabil. 57(9):421-5, 1976.
66. Perry J. Gait analysis: normal and pathological function. McGraw-Hill Inc., New York, USA. P1-149, 1992.
67. Perry J. The mechanics of walking in hemiplegia. Clin Orthop Relat Res. 63:23-31, 1969.
68. Rantanen T, Volpato S, Ferrucci L,Heikkinen E, Fried LP, Guralnik JM. Handgrip strength and cause-specific and total mortality in older disabled women: exploring the mechanism. J Am Geriatr Soc. 51: 636:641, 2003.
69. Roll JP, Vedel JP. Kinaesthetic role of muscle afferents in man, studied by tendon vibration and microneurography. Exp Brain Res. 47(2):177-90, 1982.
70. Roll JP, Vedel JP, Ribot E. Alteration of proprioceptive messages induced by tendon vibration in man: a microneurographic study. Exp Brain Res. 76(1):213-22, 1989.
71. Rosner B. Fundamentals of biostatistics. Thomson Company, Belmont, USA. In. Ch 12: Multiple Inference. P557-618, 2006.
72. Sanford J, Moreland J, Swanson LR, Stratford PW, Gowland C. Reliability of the Fugl-Meyer assessment for testing motor performance in patients following stroke. Phys Ther. 73(7):447-54, 1993.
73. Saunders JB, Inman VT, Eberhart HD. The major determinants in normal and pathological gait. J Bone Joint Surg Am35-A(3):543-58, 1953.
74. Schechtman O, Mann WC, Justiss ND. Grip strength in the frail elderly. Am J Phys Med Rehabil. 83:819-826, 2004.
75. Schindler-Ivens S, Brown DA, Brooke JD. Direction-dependent phasing of locomotor muscle activity is altered post-stroke. J Neurophysiol. 92(4):2207-16, 2004.
76. Shiavi R. Champion S, Freeman F, Griffin P. Variability of electromyographic
patterns for level-surface walking through a range of self-selected speeds. Bull Prosthet Res.10-35:5-14, 1981.
77. Shiavi R, Bugle HJ, Limbird T. Electromyographic gait assessment, Part 2: Preliminary assessment of hemiparetic synergy patterns. J Rehabil Res Dev.
24(2):24-30, 1987.
78. Shumway-Cook A, Woollacott MH. Motor control: theory and practical applications. Lippinott Williams & Wilkins, Philadelphia, USA. In. Ch 3: Mobility function. P305-377, 2001.
79. Simoneau GG, Ulbrecht JS, Derr JA, Becker MB, Cavanagh PR. Postural instability in patients with diabetic sensory neuropathy. Diabetes Care. 17(12):1411-21, 1994.
80. Smidt GL. Gait in rehabilitation. Churchill Livingstone Inc., New York, USA. P45-64, P253-266, 1990.
81. Soyuer F, Oztürk A. The effect of spasticity, sense and walking aids in falls of people after chronic stroke. Disabil Rehabil. 29(9):679-87, 2007.
82. Titianova EB, Pitkänen K, Pääkkönen A, Sivenius J, Tarkka IM. Gait characteristics and functional ambulation profile in patients with chronic unilateral stroke. Am J Phys Med Rehabil. 82(10):778-86, 2003.
83. Tombaugh TN, McIntyre NJ. The mini-mental state examination: a comprehensive review. J Am Geriatr Soc. 40:922-35, 1992.
84. Vallbo AB, Hulliger M, Nordh E. Do spindle afferents monitor joint position in man? A study with active position holding. Brain Res. 204(1):209-13, 1981.
85. Verschueren SM, Brumagne S, Swinnen SP, Cordo PJ. The effect of aging on dynamic position sense at the ankle. Behav Brain Res. 136(2):593-603, 2002.
86. Verschueren SM, Swinnen SP, Desloovere K, Duysens J. Effects of tendon vibration on the spatiotemporal characteristics of human locomotion. Exp Brain Res. 143(2):231-9, 2002.
87. Verschueren SM, Swinnen SP, Desloovere K, Duysens J. Vibration-induced changes in EMG during human locomotion. J Neurophysiol. 89(3):1299-307, 2003.
88. Vuillerme N, Boisgontier M, Chenu O, Demongeot J, Payan Y. Tongue-placed tactile biofeedback suppresses the deleterious effects of muscle fatigue on joint position sense at the ankle. Exp Brain Res. 183(2):235-40, 2007
89. Wang HY, Lin SI. Relaibility of quantitative measurements of vibration and joint position sense in young adults. FJPT. 28(3):129-138, 2003.
90. Wall JC, Turnbull GI. Gait asymmetries in residual hemiplegia. Arch Phys Med Rehabil. 67(8):550-3, 1986.
91. Winter DA. Biomechanics and motor control of human movement. Wiley, New York, USA. In. Ch 8: Kinesiological electromyography. P191-212, 1990.
92. 陳志成,王超然。功能性神經解剖學。合記圖書。台北市,中華民國。第六章:身體的運動系統。P75-94, 1999.
93. 胡名霞。動作控制與動作學習。金名圖書。台北市,中華民國。第四章:中樞理論學派。P31-38, 2001.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-08-27起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2013-08-27起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw