進階搜尋


 
系統識別號 U0026-0812200914341924
論文名稱(中文) 具雙眼攝影機與全方位攝影機之自主式移動機器人於障礙物迴避與目標物追蹤之研究
論文名稱(英文) Study on Obstacle Avoidance and Target Tracking for An Autonomous Mobile Robot Equipped with a Stereo Camera and an Omni Directional Camera
校院名稱 成功大學
系所名稱(中) 電機工程學系碩博士班
系所名稱(英) Department of Electrical Engineering
學年度 96
學期 2
出版年 97
研究生(中文) 山田真弘
研究生(英文) Masahiro Yamada
電子信箱 mahiro3178@hotmail.com
學號 n2695702
學位類別 碩士
語文別 英文
論文頁數 53頁
口試委員 口試委員-李祖聖
口試委員-張保榮
指導教授-鄭銘揚
中文關鍵字 深度圖  障礙物迴避  階層性的構造  目標追隨 
英文關鍵字 Hierarchical Architecture  Self Windowing  Target Tracking  U-V-Disparity  Depth Image  Obstacle Avoidance 
學科別分類
中文摘要 本論文提出一套階層式之切換策略,讓移動機器人能夠自動地偵測場景中的障礙物並追蹤特定目標物。首先,透過雙眼攝影機求得一連串含有深度資訊之影像,並利用「V-Disparity」來建立一個障礙物地圖。接著,利用目標物色彩資訊及「Self Windowing」之方法來進行目標物追蹤,同時也以階層式架構之切換策略來決定移動中的機器人必須進行障礙物迴避或是目標物追蹤。實驗結果顯示本論文所提出的方法效果良好,並具有可行性。
英文摘要 This thesis proposes a hierarchical switching strategy for a mobile robot to detect obstacles and to track a given target. In the proposed approach, the depth image obtained from a stereo camera is used to build an obstacle map based on V-Disparity. Color information and a Self Windowing technique are employed to track the target. A switching strategy based on a hierarchical architecture is employed to determine whether the mobile robot should perform obstacle avoidance or target tracking. To verify the effectiveness of the proposed approach, several experiments were conducted. The results indicate that the proposed approach is feasible.
論文目次 TTABLE OF CONTENTS
CHINESE ABSTRAUCT I
ABSTRACT II
CHINESE ACKNOELEDGEMENTS III
ACKNOELEDGEMENTS IV
LIST OF ACCESSORIES VII
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Purpose of Study 2
1.3 Literature Review 4
1.4 Organization of the Thesis 5
Chapter 2 Problem Formulation 6
2.1Vision Based Autonomous Mobile Robot Navigation 7
2.2Visual Servoing Structure 7
Chapter 3 Obstacle Avoidance 9
3.1 Stereo Camera 9
3.2 V-Disparity 13
Chapter 4 Target Tracking 18
4.1 Omni directional camera 19
4.2 Tracking Algorithm 20
4.2.1 Detection of Candidate Region Using Color Information 22
4.2.2 Self Windowing 23
4.2.3 Connected Target Region 24
4.2.4 Exception handling 26
Chapter 5 Switching Control 28
5.1 Hierarchical Architecture 28
5.2 Command for Each Rank Input 31
Chapter 6 Experimental Setup and Results 33
6.1 Mobile robot 33
6.1.1 Stereo Camera 33
6.1.2 Omni Directional Camera 35
6.2 Experimental Results 36
6.3 Discussion and Consideration 43
Chapter 7 Conclusion 48
7.1 Summary 48
7.2 Further Work 48
References 50
Vita 53
參考文獻 [1] Wikipedia, the free encyclopedia, “ロボット,” http://ja.wikipedia.org/wiki/%E3%83%AD%E3%83%9C%E3%83%83%E3%83%88
[2] Wikipedia, the free encyclopedia, “Robot,” http://en.wikipedia.org/wiki/Robot
[3] Wikipedia, the free encyclopedia, “George Devol,” http://en.wikipedia.org/ wiki/George_Devol
[4] M. Egerstedt, and X. Hu, “A hybrid control approach to action coordination for mobile robots,” Automatica, vol. 38, pp. 125-130, 2002.
[5] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, “Constrained model predictive control: Stability and optimality,” Automatica, vol. 36, pp. 789-814, 2000.
[6] H. Fukushima, K. Kon, and F. Matsuno, “Distributed model predictive control for multi-vehicle formation with collision avoidance constraints,” in Proceedings of the IEEE International Conference on Decision and Control, and the European Control Conference, pp. 5480-5485, 2005.
[7] J. L. Fernandez, R. Sanz, J. A. Benayas, and A. R. Dieguez, “Improving collision avoidance for mobile robots in partially known environments: the beam curvature method,” Robotics and Autonomous Systems, vol. 46, pp. 205-219, 2004.
[8] X. Jing, “Behavior dynamics based motion planning of mobile robots uncertain dynamic environments,” Robotics and Autonomous Systems, vol. 53, pp. 99-123, 2005.
[9] B. D. O. Anderson, C. Yu, and J. M. Hendrickx, “Use of meta-formations for cooperative control,” in Proceedings of the 17th International Symposium Mathematical Theory of Networks and Systems, pp. 2381-2387, 2006.
[10] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau, C. Oakley, M. Palatucci, V. Pratt, P. Stang, S. Strohband, C. Dupont, L.E. Jendrossek, C. Koelen, C. Markey, C. Rummel, J. van Niekerk, E. Jensen, P. Alessandrini, G. Bradski, B. Davies, S. Ettinger, A. Kaehler, A. Nefian, and P. Mahoney, “Stanley, the robot that won the DARPA Grand Challenge,” Journal of Field Robotics, vol. 23, pp. 661-669, 2006.
[11] G. N. DeSouza, and A. C. Kak “A Subsumptive, Hierarchical, and Distributed Vision-Based Architecture for Smart Robotics,” IEEE Transaction on System, Men, and Cybernetics, vol. 34, no. 5, pp. 1988-2002, 2004.
[12] D. Schrstein, and R. Szeliski, “Stereo matching with non-liner diffusion,” International Journal of Computer Vision, vol.28, no.2, pp.155-174, 1998.
[13] T. Kanade, and M. Okutomi, “A stereo matching algorithm with an adaptive window; Theory and experiment,” in Proceedings of the IEEE International Conference on Robotic and Auteomation, pp. 1008-1095, April 1991.
[14] S. D. Ma, “Conic-based stereo, mation estimation, and pose determination,” International Journal of Computer Vision, vol.10, no.1, pp. 7-25, 1993.
[15] R. Mahan, and R. Nevatia, “Using perceptual organization to extract 3-D structure,” IEEE Transaction on Pattern Analysis and Machine Intelligence, vol.11, no.11, pp.1121-1139, 1989.
[16] L. Robert, and O. D. Faugeras, “Curve-based stereo: Figural continuity and curvature,” in Proceedings of the Computer Vision and Pattern Recognition, pp. 57-62, 1991.
[17] M. Bertozzi, A. Broggi, A. Fascioli, and S. Nichele, “Stereo Vision based Vehicle Detection,” in Proceedings of the IEEE Intelligent Vehicle Symposium, pp. 39-44, 2000.
[18] A.Talukder, R. Manduchi, A. Rankin, and L. Matthies, “Fast and Reliable Obstacle Detection and Segmentation for Cross-country Navigation,” in Proceeding of the IEEE Intelligent Vehicles Symposium, vol.2, pp. 610-618, 2002.
[19] Y. Raja, S. J. MaKenna, and S. Gong “Colour Model Selection and Adaptation in Dynamic Scenes,” in Proceedings of the European Conference of Computer Vision, pp. 460-474, 1998.
[20] Z. Jia, A. Balasuriya, and S. Challa “Target Tracking with Bayesian Fusion Based Template Matching,” in Proceedings of the IEEE International Conference on Image Processing, vol. 2, pp. 826-829, 2005.
[21] R. Labayrade, D. Aubert, and J.P. Tarel, “Real Time Obstacle Detection in Stereovision on Non Flat Road Geometry Through "V-disparity" Representation,” in Proceedings of the IEEE Intelligent Vehicle Symposium, vol. 2, pp. 646-521, 2002.
[22] R. Labayrade, and D.Aubm, “In-Vehicle Obstacle Detection and Characterization by Stereo-Video,” in Proceedings of the International Workshop on In-Vehicle Cognitive Computer Vision System, pp. 13-19, 2003.
[23] I. Ishii, Y. Ndcabo, and M. Ishilrawa, ”Target Tracking Algorithm for lms Visual Feedback System Using Massively Parallel Processing,” in Proceedings of the IEEE International Conference on Robotics and Automation Minneapolis, vol. 3, pp. 2309-2317,1996
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-08-29起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2013-08-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw