進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0812200914315412
論文名稱(中文) 在晶片實現之變壓器的探討與模型及一應用於超寬頻射頻頻率合成器之3,168-MHz四相位壓控振盪器設計
論文名稱(英文) Study and Modeling of On-Chip Transformers and A 3,168-MHz QVCO Design for UWB RF Synthesizers
校院名稱 成功大學
系所名稱(中) 電機工程學系碩博士班
系所名稱(英) Department of Electrical Engineering
學年度 96
學期 2
出版年 97
研究生(中文) 賴佳助
研究生(英文) Chia-Chu Lia
學號 n2695172
學位類別 碩士
語文別 英文
論文頁數 122頁
口試委員 口試委員-楊子毅
口試委員-龐一心
口試委員-湯敬文
指導教授-黃尊禧
中文關鍵字 四相位  變壓器  參數萃取  注入鎖定式除頻器 
英文關鍵字 transformer  quadrature  injection-locked frequency divider  extract 
學科別分類
中文摘要 本論文主要著重的論述部分有二:ㄧ是在晶片上實現之變壓器模型之建立與參數萃取之探討,二是應用於超寬頻射頻頻率合成器之3,168MHz四相位壓控振盪器之設計。在變壓器方面,ㄧ般而言,此元件是被應用於濾波器、平衡訊號與非平衡訊號轉換、阻抗匹配以及阻抗轉換。然而近幾年來,已有文獻提出將此被動元件應用於回授電路上,並且此技術具有低電壓、低功率消耗之優勢。若是能應用於無線通訊網路系統或是其他整合系統,將能大大提升電池之持久性。在本文中,我們設計幾顆新穎的變壓器,利用電磁模擬軟體去模擬分析變壓器的特性,使其能有效應用於3~5GHz頻帶範圍內,且在將來能將其設計在切換式壓控振盪器中,主要切換頻率為3.6GHz/4.8GHz,再利用除二電路將其頻率減半,達到WLAN/GSM(Wireless Local Area Networks, WLAN; Global System for Mobile Communications, GSM)之頻帶切換;本論文的另外一個主要重點則是探討變壓器與矽基底效應之關係,利用電磁模擬軟體去建立新模型並萃取各元件參數。
根據頻率規劃,我們提出了一個新的頻率合成器架構應用在超寬頻多頻帶正交頻率分頻多工的系統中(UWB MB-OFDM System)。由於頻率合成器架構主要考量為包含提供14個頻帶之載波頻率及是否具有高度的整合性、電路零組件的多寡、能否降低成本及功率消耗。因此,為了符合新的頻帶規畫、達到低相位雜訊低功率消耗的效能,我們設計了一個3,168MHz四相位壓控振盪器電路。此振盪器為注入鎖定式除頻器架構,藉由6,336MHz振盪源訊號注入到除頻器共模端,加強兩倍頻訊號,之後靠著除頻器架構之正回授作用達到鎖定振盪而造成除頻的功能,並擁有四相位輸出。由於此架構簡單、消耗功率低以及擁有好的特性效能,故我們便採用此架構去進行整合壓控振盪器以及除二電路,達到低相位雜訊低功率消耗的目標。
本論文主要新穎性如下: 1) 探討在晶片上實現之變壓器與矽基底效應之關係,建立新模型並萃取各元件參數。2) 設計了一個3,168 MHz四相位壓控振盪器電路,使其應用於新的頻率合成器電路架構中。
英文摘要 The paper mainly presents: 1) the novel on-chip transformer modeling and discussion with extracting the parameters of the transformer, 2) 3,168-MHz QVCO design for UWB RF synthesizer application. In the aspect of the transformer, the element generally is applied to filters, balun, impedance matching, and impedance transformer. And then in recently, the papers whose contents are that put the passive element in using feedback circuits are presented gradually. The technique possesses the advantages of low voltage and low power consumption. If we can apply transformers to the wireless communication network system or other integrated system, it will improve the battery lifetime. In this text, we design several new transformers, and utilize the simulation software to simulate the properties of the transformers, as well as make the elements be applied inside 3~5GHz. In the future, we will make use of the elements to design a switch-able voltage-controlled oscillator, and the main switching frequency is 3.6GHz/4.8GHz. Further, utilize the divide-by-two circuits reducing the half frequency to achieve the switching bands of WLAN/GSM (Wireless Local Area Networks, WLAN; Global System for Mobile Communications, GSM); another main key of the paper is that discussing the relation between the transformer and Silicon substrate effect, and use simulation software to build up the novel modeling, as well as extract the parameters of each element.
According to a frequency plan, we propose a novel RF frequency synthesizer for ultra-wide band multi-band OFDM (UWB MB-OFDM System) applications. The main concerns of the frequency synthesizer include: Supply the carrier frequencies of the fourteen frequency bands. Does it have high integrated? How many elements of circuits in the system? Could the system reduce cost and power consumption? Therefore, in order to fit the new frequency plan, achieve the performance of having low phase noise and low power consumption, so we design a 3,168-MHz QVCO whose topology is injection-locked frequency divider. Relying on injecting 6,336-MHz oscillation signal into the common mode of the dividers to enhance the second harmonic signal, and achieve locking oscillation by the positive feedback of the divider topology, finally it results the function of the dividing frequency and has the quadrature signal outputs. Because the topology is simple, has lower power consumption, and possesses better performance, we adopt it to integrate the VCO and divide-by- two circuit, so that reaching a low phase noise and low power consumption goal.
The paper mainly has following creativity: 1) Discuss the relation between the on-chip transformer and Silicon substrate effect, and build up the novel modeling, as well as extract the parameters of each element. 2) Design a 3,168-MHz QVCO which is applied to new RF frequency synthesizer.
論文目次 Chinese Abstract I
English Abstract III
Acknowledgement V
List of Tables VIII
List of Figures IX

Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 3
1.3 Thesis Organization 4

Chapter 2 On-chip Transformer 5
2.1 Introduction 5
2.2 Physical Property 6
2.2.1 Self-induction and Mutual- induction 6
2.2.2 Mutual- induction Circuit 10
2.2.3 Mutual- induction Polarity 13
2.2.4 Coupling Factor 15
2.2.5 Ideal Transformer 17
2.2.6 Reflected Impedance 20
2.3 Transformer Design and Layout 22
2.3.1 Concentric Transformer 22
2.3.2 Interleaved Transformer 24
2.3.3 Parallel Transformer 25
2.4 Discussion about Parameter and Structures 27
2.4.1 Structures 27
2.4.2 Radius 31
2.4.3 Turns 34
2.4.4 Width 36
2.4.5 Space 37
2.5 Transformer Model 38
2.6 Parameter Extraction 41
2.7 VCO with Transformer 53

Chapter 3 Principles of VCO 56
3.1 Introduction 56
3.2 Passive Component 56
3.2.1 Varactor 56
3.2.2 Inductors 60
3.2.3 LC-Tank 62
3.3 Basic Theorems of VCO 65
3.3.1 Positive Feedback Analysis 65
3.3.2 LC-VCO Architecture 66
3.3.3 Transformer Feedback Architecture 68
3.3.4 Comparison of Different VCO Architectures 70
3.4 Characteristics of VCO 72
3.4.1 Phase Noise 72
3.4.2 Turning Range 78
3.4.3 Quality Factor 80
3.4.4 Pushing Effect 81
3.4.5 Pulling Effect 81
3.4.6 Harmonic Distortion 82

Chapter 4 Injection Locked Frequency Divider 85
4.1 Introduction 85
4.2 Generate Quadrature Technique 86
4.3 Major topologies of Quadrature VCO 92
4.3.1 Parallel QVCO (P-QVCO) and Series QVCO (S-QVCO) 92
4.3.2 Top-series QVCO (TS-QVCO) and
Bottom-series QVCO (BS-QVCO) 94
4.3.3 The QVCO using Super-harmonic Coupling 94
4.3.4 Injection-Locked Frequency Divider QVCO 97
4.4 Design of Injection Locked Frequency Divider 101
4.4.1 VCO Core 101
4.4.2 Dividers 107
4.4.3 Buffer stage 109
4.4.4 Architecture of Injection Locked Frequency Divider 109
4.4.5 Layout of Injection Locked Frequency Divider 115
4.4.6 Measurement 115

Chapter 5 Conclusion and Future Work 117
5.1 Conclusion 117
5.2 Future Work 118

References 119
參考文獻 [1] K. Kwok, and H. C. Luong, “Ultra-Low-Voltage High-Performance VCO Using Transformer Feedback,” IEEE J. Solid-State Circuits, Vol. 40, pp.652-660,132 March, 2005.
[2] K. Kwok and H. Luong, “A 0.35-V 1.46-mW low-phase-noise oscillator with transformer feedback in standard 0.18-um CMOS process,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), Sep. 2003, pp.551–554.
[3] D. J. Cassan, and J. R. Long, “A 1-V transformer-feedback low-noise amplifier for 5-GHz wireless LAN in 0.18-um CMOS,” IEEE Journal of Solid-State Circuits, vol. 38, pp. 427-435, Mar. 2003.
[4] I. Aoki, S. D. Kee, D. B. Rutledge, and A. Hajimiri, “Distributed active transformer—A new power combining and impedance-transformation technique,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 1,pp. 316–331, Jan. 2002.
[5] H. Y. D. Yang and J. A. Castaneda, “Design and analysis of on-chip symmetric parallel-plate coupled-line balun for silicon RF integrated circuits,” in Radio Freq. Integrated Circuits Symp., Philadelphia, PA,Jun. 2003, pp. 527–530.
[6] 謝振中, “電路學精釋”, 超級科技圖書股份有限公司, 2001.
[7] 何君揚, “電路學(下)”, 2003.
[8] Ali M Niknejad, “Electromagnetics for High-Speed Analog and Digital Communication Circuit,” CAMBRIDGE, 2007
[9] Donghyun Baek, Taeksang Song, Euisik Yoon, Songcheol Hong , “8-GHz CMOS quadrature VCO using transformer-based LC tank,” IEEE Microwave and Wireless Components Letters, Vol 13, pp. 446- 448, Oct. 2003.
[10] S. Y. Yue, D. Ma, and J. R. Long, “A 17.1–17.3-GHz image-reject down- converter with phase-tunable LO using 3X sub-harmonic injection locking,” IEEE J. Solid-State Circuits (JSSC), vol. 39, no. 12, pp. 2321–2332, Dec. 2004.
[11] 施俊仰,“對稱式平面螺旋型電感之研究”, 交通大學電信工程研究所碩士論文,2002.
[12] Iosu Cendoya, Joaquín de Nó, Beatriz Sedano, Andrés García-Alonso, Daniel Valderas, and Iñigo Gutiérrez, “A New Methodology for the On-Wafer Characterization of RF Integrated Transformers,” IEEE Trans. Microwave Theory Tech., vol. 55, no. 5, pp., MAY. 2007.
[13] 陳玟蕙 , “於互補式金氧半導體製程之對稱立體式被動元件及壓控振盪器設計,” 國立中央大學電機工程研究所碩士論文, July, 2003.
[14] Shu-Jun Pan, Wen-Yan Yin, Le-Wei Li, “Comparative Investigation on Various On-Chip Center-Tapped Interleaved Transformers,” International Journal of Microwave and Millimeter-Wave Computer-Aided Engineering, vol. 14, no. 9, pp. 424–432, September 2004.
[15] John Rogers, Calvin Plett, Foster Dai “Integrated circuit design for high-speed frequency synthesis”, ARTECH HOUSE, 2006.
[16] Andreani, P., and S. Mattison, “On the Use of MOS Varactors in RF VCOs,” IEEE J. Solid-State Circuits, Vol. 35, No. 6, June 2002, pp. 75-78.
[17] S. A. Wartenberg and J. R. Hauser, “Substrate Voltage and Accumulation-Mode MOS Varactor Capacitance,” IEEE Tran. on Electron Device, Vol. 52, No. 7, July 2005.
[18] Long, J. R., and M. A. Copeland, “The Modeling, Characterization, and Design of Monolithic Inductors for Silicon RF IC’s,” IEEE J. Solid-State Circuits, Vol. 32, March 1997, pp. 357-369.
[19] Danesh, M., et al., “A Q-Factor Enhancement Technique for MMIC Inductors,” Proc. RFIC Symposium, Baltimore, MD, June 1998, pp. 183-186.
[20] Yue, C. P., and S. S. Wong, “On-Chip Spiral Inductors with Patterned Ground Shields for Si-Based RF IC’s,” IEEE J. Solid-State Circuits, Vol. 33, May 1998, pp. 743-752.
[21] Niknejad, A. M., and R. G. Meyer, “Analysis, Design, and Optimization of Spiral Inductors and Transformers for Si RF IC’s,” IEEE J. Solid-State Circuits, Vol. 33, October 1998, pp. 1470-1481.
[22] Jan Craninckx, and M. S. J. Steyaert, “A 1.8-GHz Low-Phase-Noise CMOS VCO Using Optimized Hollow Spiral Inductors,” IEEE J. Solid-State Circuits, Vol. 32, No. 5, May 1997.
[23] Behzad Razavi, “Design of Analog CMOS Integrated Circuits,” MeGraw-Hill companies, New York USA, 2001.
[24] Straayer, M. Cabanillas, J. Rebeiz, G.M. “A low-noise transformer-based 1.7 GHz CMOS VCO” Proceedings of 2006 IEEE International Solid-State Circuits Conference (ISSCC), vol.1, pp. 286-287, Feb. 2002.
[25] Aly, A.H. Beishline, D.W. Badawy El-Sharawy , “Filter integration using on-chip transformers,” Proceedings of 2004 IEEE MTT-S International Microwave Symposium Digest, Vol. 3, pp. 1975- 1978, Jun. 2004.
[26] T. Song, S. Ko, D. H. Cho, H. S. Oh, C. Chung, and E. Yoon, “A 5GHz Transformer- Coupled CMOS VCO Using Bias-Level Shifting Technique,” 2004 IEEE Radio Frequency Integrated Circuits Symposium, pp. 127-130.
[27] A. Hajimiri and T. H. Lee, “The Design of Low Noise Oscillators,” Boston, MA: Kluwer, 1999.
[28] A. Annema, “DTMOS: Its Derivatives and Variations, and Their Potential Applications,” Proceedings of the 12th International Conference on Microeletrons, pp.9-10, Oct. 2000.
[29] Zheng Wang, Huseyin S. Savci, James Griggs, and Numan S. Dogan, “1-V Ultra-Low-Power CMOS LC VCO with Dynamic Body Biasing,” IEEE, 2007
[30] Ali Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, Vol. 33, NO. 2, pp. 179-194, Feb. 1998.
[31] Behzad Razavi, “RF MICROELECTRONICS”, PH PTR, 1997.
[32] 李俊毅,“射頻四相位壓控振盪器”,國立成功大學電機工程學系碩士論文,2003.
[33] Andreani, P., et al., “Analysis and Design of a 1.8GHz CMOS LC Quadrature VCO,” IEEE J. Solid-State Circuits, Vol. 37, No. 12, December 2002, pp. 1737-1747.
[34] Pietro Andreani Xiaoyan Wang, “On the Phase-Noise and Phase-Error Performances of Multiphase LC CMOS VCOs,” IEEE J. Solid-State Circuits, Vol. 39, No. 11, November 2004.
[35] Sander L. J. Gierkink, Salvatore Levantino, Robert C. Frye, Carlo Samori, and Vito Boccuzzi, “A Low-Phase-Noise 5-GHz CMOS Quadrature VCO Using Superharmonic Coupling,” IEEE J. Solid-State Circuits, Vol. 38, No. 7, July 2003.
[36] E. Hegazi, H. Sjőland, and A. A. Abidi, “A filtering technique to lower LC oscillator phase noise,” IEEE J. Solid-State Circuits, Vol. 36, pp. 1921-1930, December 2001.
[37] H. R. Rategh, H. Samavati. And Thomas H. Lee, “A CMOS Frequency Synthesizer with an Injection-Locked Frequency Divider for a 5-GHz Wireless LAN Receiver,” IEEE J. Solid-State Circuits, Vol. 50, pp. 780-787, May 2000.
[38] H. R. Rategh and Thomas H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, Vol. 34, pp. 813-821, June 1999.
[39] Andrea Mazzanti, Paola Uggetti, and Francesco Svelto, “Analysis and Design of Injecion-Locked LC Dividers for Quadrature Generation” IEEE J. Solid-State Circuits, Vol. 39, September 2004.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2010-08-22起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2107-08-22起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw