進階搜尋


 
系統識別號 U0026-0812200914302571
論文名稱(中文) 在固定前置時間下之易腐性產品聯合採購存貨模式
論文名稱(英文) An approximate joint ordering (s,c,Q) model for two perishable items with constant lead time
校院名稱 成功大學
系所名稱(中) 工業與資訊管理學系碩博士班
系所名稱(英) Department of Industrial and Information Management
學年度 96
學期 2
出版年 97
研究生(中文) 李唯廉
研究生(英文) Wei-Lian Lee
學號 r3693106
學位類別 碩士
語文別 中文
論文頁數 73頁
口試委員 口試委員-王清正
指導教授-李賢得
口試委員-利德江
中文關鍵字 參考點  批次訂購政策  易腐性產品  前置時間  聯合採購 
英文關鍵字 (s Q) policy  can-order point  lead time  perishable item  joint ordering 
學科別分類
中文摘要 在易腐性商品的相關研究中,由於數學困難度和演算複雜度的限制,多半只考慮單一產品問題,本研究探討在兩易腐性商品存貨系統中,考慮引進參考訂購點的聯合採購方式降低總成本,建構其期望成本模式,兩產品採用不同之(再訂購點,參考點,訂購批量)值,當存貨不足時採用遇缺補貨作業。系統運作方式為當其中一樣產品之存貨水準降至再訂購點並引發訂購,另一樣產品之存貨水準若大於其再訂購點,但小於或等於參考點,則同時訂購兩者,反之,若大於參考點,則只對存貨水準降至再訂購點的產品訂購。兩產品的販售均遵循先進先出的原則,且產品只要在其生命週期內,均視為可用品,其品質不會隨時間增加而腐敗,若在生命週期內未使用完,便為過期商品,並產生過期成本。
基於數學模式之複雜度,本研究發展兩易腐性產品聯合採購存貨模式之近似式,首先估計存貨水準的穩態機率,再根據該穩態機率推估其他成本項以求得單位時間總成本,總成本包含兩種產品之固定訂購成本、邊際訂購成本、取得成本、時間存貨持有成本、過期處理成本及缺貨成本,並在最小化單位時間總成本下,求得兩產品各自之最佳再訂購點、參考點、固定訂購批量。
依據所建構之期望成本模式,本論文發展一多維搜尋演算法求得最佳決策變數及最小期望成本。研究發現聯合採購模式在總成本整體上之表現較獨立採購為佳,平均總成本改善約百分之五,其中產品壽命長短對總成本有顯著影響,壽命越短,總成本越高。相對於其他參數,產品的過期處理成本對總成本之影響較不顯著。聯合採購模式中之單項成本,未必比獨立採購模式之對應成本為低,因為聯合採購可能稍微增加某項成本以大幅減少另一項成本使總成本最小化。
英文摘要 Existing researches have focused on the perishable inventory control in the one-product problem due to its intractable complexity. In this thesis, we consider a joint ordering (s,c,Q) inventory control policy for two perishable items, where the can-order point is introduced. An order is placed for an item either when its inventory position meets or falls below the reorder point, or when the other item orders, and its own inventory position is equal to or below its can-order point. A FIFO inventory policy is implemented for the joint ordering system. The value of an item remains constant during its lifetime.
The expected total cost model for the joint ordering system has been developed. The considered cost model includes procurement cost, ordering cost, can-ordering cost, inventory carrying cost, shortage cost, and outdate cost for the two products. The steady-state probablilty distribution of inventory position for the two items has been estimated. The outdate rate of each item is then approximated by the expected value from this steady-state distribution. The expected ordering cost, inventory carrying cost, shortage cost and outdate cost are finally derived to find the expected total cost model.
A discrete-search heuristic is developed to find the optimal inventory policy. The expected cost model and its solution procedure are illustrated by a numerical example. Based on fractional factorial design, additional numerical experiments have shown that the joint ordering policy consistently outperforms the independent ordering policy. The lifetime of a perishable item has a significant impact on the expected cost value. The expected total cost is higher when the lifetime of a perishable product gets shorter. In comparison with other factors, the outdate cost has less impact on the expected total cost.
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VI
圖目錄 VII

第一章 緒論 1
1.1研究動機 1
1.2研究目的 1
1.3研究範圍和假設 2
1.4研究方法和流程 2
第二章 文獻回顧 4
2.1易腐性產品之存貨管理 4
2.2多產品之存貨管理 7
2.3易腐品之多產品存貨管理 8
第三章 期望成本模式建構 9
3.1問題描述 9
3.2最舊批次之可用水準和存貨水準之間的關係 13
3.3兩易腐性產品(s,c,Q)存貨模式之單位時間期望成本模式 16
3.3.1 case 1分析 19
3.3.2 case 2分析 24
3.3.3 case 3分析 27
3.3.4 case 4分析 30
3.3.5單位時間期望成本模式 33
第四章 搜尋方法與演算實驗 35
4.1演算方法與搜尋流程 35
4.2演算範例 39
4.3演算實驗與參數分析 43
4.4聯合採購與獨立採購之績效比較 49
4.5小結 55
第五章 結論與未來研究方向 56
5.1模式分析與研究結果 56
5.2未來研究方向 57
參考文獻 58
附錄A 演算法之程式碼 61
附錄B 32個實驗組合之各項成本詳細資料 72
參考文獻 Atkins, D., and P. Iyogun. 1988. Periodic versus ‘Can-order' policies for coordinated multi-item inventory systems. Management Science.34,791-796.
Balintfy, J.L., 1964. On a basis class of multi-items inventory problems. Management Science.10,287-297.
Chazan, D., and S. GAL. 1977. A markovian model for a perishable product inventory.Management Science.23,512-521.
Chern, C.H., 1974. A multi product joint ordering model with dependent setup cost.Management Science.20,1081-1091.
Chiu, H.N., 1995. An approximation to the continuous review inventory model with perishable items and lead times. European Journal of Operations Research.87,95-108.
Cohen, M. A., 1976. Analysis of single critical number order policies in perishable inventory theory. Operations Research.24,726-741.
Cohen, M. A., 1977. Joint pricing and ordering policy for exponentially decaying inventory with known demand. Naval Research Logistics Quarterly.24,257-268.
Cohen, M. A., and W. P. Pierskalla. 1975. Management policies for a regional blood bank. Transfusion.15,58-67.
Cohen, M. A., and W. P. Pierskalla. 1979. Target inventory levels for a hospital blood bank or a decentralized regional blood banking system.Transfusion. 19,444-454.
Covert, R., and G. Phillip. 1973. An EOQ model for items with Weibull distribution deterioration. AIIE Transactions.5,323-326.
Duermeyer, B. L., 1979. A multi-type production system for perishable inventories.Operations Research.27,935-943.
Federgruen, A., and P. Zipkin. 1984. A combined vehicle routing and inventory allocation problem. Operations Research.32,1019-1037.
Fries, B., 1975. Optimal order policy for a perishable commodity with fixed lifetime.Operations Research.23,46-61.
Ghare, P., and G. Schrader. 1963. A model for exponentially decaying inventories.Journal of Industrial Engineering.14,238-243.
Ignall, E. J., and A. F. Veinott. 1969. Optimality of myopic inventory policies for several substitute products. Management Science.15,284-304.
Jackson, P., W. Maxwell, and J.Muckstadt. 1985. The joint replenishment with a powers-of-two restrictions. IIE Transactions.17,25-32.
Jennings, J. B., 1973. Blood bank inventory control. Management Science.19,637-645.
Kalpakam, S., and K. P. Sapna. 1994. Continuous review (s,S) inventory system with random life times and positive lead times. Operations Research Letters.16,115-119.
Kalpakam, S., and S. Shanthi. 1998. A continuous review perishable system with positive leadtime. International Journal of Management and Systems.14,123–134.
Liu, L., and Z. Lian. 1999. (s, S) continuous review models for products with fixed lifetimes. Operations Research.47,150–158.
Nahmias, S., 1975. Optimal ordering policies for perishable inventory-II. Operations Research.23,735-749.
Nahmias, S., 1976. Myopic approximations for the perishable inventory problem. Management Science.22,1002-1008.
Nahmias, S., 1982. Perishable inventory theory: a review. Operations Research.30,680-707.
Nahmias, S., and W. P. Pierskalla. 1973. Optimal ordering policies for a product that perishes in two periods subject to stochastic demand. Naval Research Logistics Quarterly.20,207-229.
Nahmias, S., and S. Wang. 1978. Approximating partial inverse moments for Certain normal variates with an application to decaying inventories. Naval Research Logistics Quarterly.25,405-414.
Ravichandran, N., 1995. Stochastic analysis of a continuous review perishable inventory system with positive lead time and Poisson demand. European Journal of Operations Research.84,444-457.
Schmidt,C.P., and S. Nahmias. 1985. (S− 1, S) policies for perishable inventory.Management Science.31,719-728.
Silver, E.A., 1974. A control system for coordinated inventory replenishment. International Journal of Production Research.12,647-671.
Silver, E.A., 1981. Estabilishing reorder points in the (S,c,s) coordinated control system under compound Poisson demand. International Journal of Production Research.19,743-750.
Tadikamalla, P. R., 1978. An EOQ model for items with Gamma distributed deterioration.AIIE Transactions.10,100-103.
Thompstone, R. M., and A. SILVER.1975. A cordinated inventory control system for compound Poisson demand and zero lead time. International Journal of Production Research.13,581-602.
Weiss,H. J., 1980. Optimal ordering policies for continuous review perishable inventory models. Operations Research.28,365-374.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-08-20起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-08-20起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw