系統識別號 U0026-0812200914302063
論文名稱(中文) 基於解剖結構之力學模型用以顏面變化預測
論文名稱(英文) Anatomy-Based Force Model for Predicting Facial Morphological Change
校院名稱 成功大學
系所名稱(中) 醫學工程研究所碩博士班
系所名稱(英) Institute of Biomedical Engineering
學年度 96
學期 2
出版年 97
研究生(中文) 王聰睿
研究生(英文) Tsung-Ruei Wang
電子信箱 p8694412@mail.ncku.edu.tw
學號 P8694412
學位類別 碩士
語文別 英文
論文頁數 91頁
口試委員 指導教授-鄭國順
中文關鍵字 軟組織形變預視  手術模擬  模型重建  有限元素法  正顎手術 
英文關鍵字 surgery simulation  soft tissue change prediction  model reconstruction  orthognathic surgery  finite elements method 
中文摘要 電腦輔助顏面變化預測系統可以協助醫師預視病患治療後的顏面外觀,同時也可以增進醫病溝通說明,本研究是以本實驗室過去所發展的顏面變化預測系統為基礎,加以研究改進,以提高顏面變化預視的準確度。本研究增加顏面肌肉模型,從電腦斷層資料建立通用頭顱模型及建立非均勻網格模型;臉部可變形模組則是應用節點施力法與有限元素法整合而成,透過節點施力法可以提供每個節點相對應的力量,而節點間則使用彈簧參數,建立骨骼模型和人臉外廓間非均勻關係;有限元素法則提供一連續且平滑的形變方式來計算顎骨位移時,顏面外廓模型所產生的形變量,最後使用三維繪圖函式庫(OpenGL)來呈現立體顏面變化的情形。比較臨床病患經正顎手術後與系統產生的顏面變化預視結果顏面的側面輪廓圖,分析臨床量化顏面軟組織變化的四個參數(FCA、NFCA、LL-LE、LL-E),探討顏面變化預視的準確性。從實驗結果顯示,FCA相差4.89度,NFCA相差1.28度,LL-LE相差0.3 mm,和LL-E相差0.33 mm,因此改良後的系統在顏面預視方面確實較原系統更加準確,顏面變化預視結果也更符合實際病患術後的臉形。
英文摘要 Computer-aided system for predicting the facial changes can help the clinician to preview the face of the patient after surgical procedure. It may also facilitate the communication between the orthodontists and patients. In this study, it is to improve the accuracy of the facial change predicting system previously developed in our lab. A facial musculature model built from the CT image data with non-uniform mesh is developed for the generic model. The nodal loading force and finite element method are applied to integrate in the deformable face model. Thus, the force is applied rough the nodes, and the spring stiffness is set between neighboring nodes. The internal bone model and surface muscle model is then correlated in non-linear relationship. The finite element method is employed to provide the continuous and smooth deformation for computing the displacement of mandible. The resulting facial changes in three-dimension are obtained and previewed using OpenGL software. Comparing the actual facial profiles for the patient after treatment and predicted using proposed system with four parameters (FCA、NFCA、LL-LE、LL-E), the accuracy are analyzed. From experimental results of one case, the errors for FCA is 4.89 degree, NFCA 1.28 degree, LL-LE 0.3 mm, and LL-E 0.33 mm, respectively. It is demonstrated that the proposed system is improved in accuracy of facial change prediction, and the resulting facial profile is also very matching to the patient.

1.1 Background 1
1.2 Literature Review 3
1.3 Motivation 5
1.4 Purposes 6
1.5 The Organization of Thesis 6
Chapter 2 METHODS 8
2.1 System Description 8
2.2 A Generic 3D Head Model Reconstruction 10
2.3 Finite Element Method Based Deformable Facial Model 14
3.1 Case Application 39
3.2 Generic Head Model Improvement 41
3.3 Muscle Modification 47
3.4 The Verification for Orthognathic Surgical Simulation 48
3.5 Prediction of the 3D Facial Changes 56
3.6 Quantitative Interface for Clinical Verification 59
3.7 Discussion 63
4.1 Conclusion 67
4.2 Prospects 70
參考文獻 [1]. Y. Aoki, S. Hashimoto, M. Terajima, and A. Nakasima, “Simulation of postoperative 3D facial morphology using a physics-based head model,” The Visual Computer, vol. 17(2), pp. 121-131, 2001.
[2]. W. H. Bell, Modern Practice in Orthognathic and Reconstructive Surgery, W.B. Saunders Company, vol. 3, pp. 2170-2196, 1992.
[3]. M. Chabanas, V. Luboz, and Y. Payan, “Patient specific finite element model of the face soft tissues for computer-assisted maxillofacial surgery,” Medical Image Analysis, vol. 7(2), pp. 131-151, June 2003.
[4]. Y.-R. Chen and J.-Y. Wang, A Textbook of Craniofacial Teratology, Taipei, HO-CHI book publishing Co., 2002, Chapter 12, pp. 161-173.
[5]. H.-C. Cheng and W.-Y. Chiou, A Textbook of Basic Orthodontics, Taipei, HO-CHI book publishing Co., 1990.
[6]. S. Cotin, H. Delingette, and N. Ayache, “Real-time elastic deformations of soft tissues for surgery simulation,” IEEE Transactions on Visualization and Computer Graphics, vol. 5(1), pp. 63-73, 1999.
[7]. Y.-C. Guo, The Study of SSOR Preconditioned Conjugate Gradient Method on Personal Computer Clusters, Master thesis, Department of Mechanical Engineering, National Cheng Kung University, 2002.
[8]. M. Y. Hajeera, A. F. Ayoubb and D. T. Millett, “Three-dimensional assessment of facial soft-tissue asymmetry before and after orthognathic surgery,” British Journal of Oral and Maxillofacial Surgery, vol. 42(5), pp. 396-404, Oct. 2004.
[9]. H. H. S. Ip, C. S. B. Kot, and J. Xia, “Simulated patient for orthognathic surgery,” Proceedings of Computer Graphics International Conference, pp. 239-245, 2000.
[10]. A. Jacobson and R. L. Jacobson, Radiographic Cephalometry from Basics to 3-D Imaging (Second Edition), Quintessence Publishing Co Inc., 2006.
[11]. E. Keeve, S. Girod, P. Pfeifle, and B. Girod, “Anatomy-based facial tissue modeling using the finite element method,” Proceedings of IEEE Int. Conf. Visualization, pp. 21-28, 1996.
[12]. R. M. Koch, M. H. Gross, F. R. Carls, D. F. von Büren, G. Fankhauser, and Y. I. H. Parish, ”Simulating facial surgery using finite element model,” Proceedings of Int. Conf. Computer Graphics, pp. 421-428, 1996.
[13]. R. M. Koch, S. H. M. Roth, M. H. Gross, A. P. Zimmermann, and H. F. Sailer, ”A framework for facial surgery simulation,” Proceedings of the 18th spring conference on Computer graphics, pp. 33-42, 2002
[14]. W. F. Larrabee, Jr., “A finite element model of skin deformation. I. biomechanics of skin and soft tissue: a review,” Laryngoscope, vol. 96(4), pp. 399-405, April 1986.

[15]. C.-Y. Liao, Facial Modeling and Animation Based on Muscle and Skull, Master thesis, Department of Computer Science, National Tsing Hua University, 2002.
[16]. N. Molino, R. Bridson, J. Teran, and R. Fedkiw, “A crystalline, red green strategy for meshing highly deformable objects with tetrahedral,” Proceedings of 12th Int. Meshing Roundtable, pp. 103-114, 2003.
[17]. A. Nakasima, M. Terajima, N. Mori, Y. Hoshino, K. Tokumori, Y. Aoki and S. Hashimotof, “Three-dimensional computer-generated head model reconstructed from cephalograms, facial photographs, and dental cast models,” American Journal of Orthodontics and Dentofacial Orthopedics, vol. 127(3), pp. 282-292, 2005
[18]. E. N. Marieb, J. Mallatt, and P. B. Wilhem, HUMAN ANATOMY (fourth edition), Benjamin Cummings, an imprint of Addison Ewsley Longman, Inc., March, 2004, chapter 7 and chapter 11, pp 148-163 and pp. 265-270.
[19]. W. R. Proffit and H. W. Fields, Contemporary Orthodontics, USA: Mosby-Year Book Inc., 2000.
[20]. E. Sifakis, T. Neverov, and R. Fedkiw, “Automatic determination of facial muscle activations from sparse motion capture marker data”. ACM SIGGRAPH/ Eurographics Symposium on Computer Animation, Vol. 24(3), pp. 417-425, 2005.
[21]. G.. R. J. Swennen, F. Schutyser, and J.-E. Hausamen, Three-Dimensional Cephalometry, Springer-Verlag Berlin Heidelberg, 2006.
[22]. M. Soncul and M. A. Bamber, “Evaluation of facial soft tissue changes with optical surface scan after surgical correction of class III deformities,” Journal of Oral Maxillofac. Surg., vol. 62, pp. 1331-1340, 2004.
[23]. W.-H. Ting, Computer-Aided System for Predicting the Facial Changes in Orthognathic Surgery, Master thesis, Institute of Biomedical Engineering, National Cheng Kung University, 2000.
[24]. J. Teran, S. Blemker, V. N. Thow-Hing, and R. Fedkiw, “Finite volume methods for the simulation of skeletal muscle,” ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 68–74, 2003.
[25]. J. Teran, E. Sifakis, S. S. Blemker, V. N. Thow-Hing, C. Lau, and R. Fedkiw, “Creating and simulating skeletal muscle from the visible human data set,” IEEE Transactions on Visualization and Computer Graphics, vol. 11(3), pp. 317-328, June 2005.
[26]. K. Waters, “A muscle model for animating three-dimensional facial expression,” ACM SIGGRAPH/Eurographics Computer Graphics, vol. 21(4), pp. 17-24, 1987.
[27]. H. J. Wang, S. C. Chen, and Y. C. Liu, The Principle and Application of Finite Element Method, Central Library Publisher, 1997.
[28]. J. Xia, N Samman., C. K. Chua, R. W. K. Yeung, D Wang, S. G.. Shen, H. H. S. Ip, and H. Tideman, ”PC-based virtual reality surgical simulation for orthognathic surgery,” Proceedings of 3rd International Conference on Medical Image Computing and Computer Assisted Intervention, Springer, pp. 1019–1028, 2000.
[29]. J. Xia, D. Wang, R. W. K. Yeung, C. S. B. Kot, and H. Tideman, “Three-dimensional virtual-reality surgical planning and soft-tissue prediction for orthognathic surgery,” IEEE Transactions on Information Technology in Biomedicine, vol. 5(2), pp. 97-107, June 2001.
[30]. J. Xia, D. Wang, and N. Samman, “Computer-assisted three-dimensional surgical planning and simulation – 3D color facial model generation,” Journal of Oral Maxillofac. Surg., vol. 29, pp. 2-10, 2000.
[31]. J Xia, H. H. S. Ip, and N. Samman, “Computer-assisted three-dimensional surgical planning and simulation – 3D virtual osteotomy,” Journal of Oral Maxillofac. Surg., vol. 29, pp. 11-7, 2000.
[32]. J. Xia, N. Samman and R. W. K. Yeung, “Computer-assisted three-dimensional surgical planning and simulation – 3D soft tissue planning and prediction,” Journal of Oral Maxillofac. Surg., vol. 29, pp. 250-258, 2000.
[33]. Y. Zhang, E. C. Prakash, and E. Sung, “A physically-based model with adaptive refinement for facial animation,” Proceedings of 4th Conference on Computer Animation, pp. 28-39, 2001.
[34]. Y. Zhuang, Real-time Simulation of Physically Realistic Global Deformation, Doctoral dissertation, Computer Science Department, University of California, Berkeley, CA, USA, 2000.
  • 同意授權校內瀏覽/列印電子全文服務,於2009-08-20起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2009-08-20起公開。

  • 如您有疑問,請聯絡圖書館