參考文獻 |
[1] W. H. Zurek, Phys. Today 44 (10), 36 (1991); Rev. Mod. Phys. 75, 715 (2003).
[2] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge
Univ. Press, Cambridge, 2000).
[3] R. Brown, Phil. Mag. 4, 161 (1828).
[4] A. Einstein, Ann. Phys. (Leipzig) 17 549 (1905).
[5] P. Langevin, CR Acad. Sci. 146 530 (1908).
[6] M. Smoluchowski, Phys. Z. 13 1069 (1912).
[7] S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).
[8] I. R. Seniztky, Phys. Rev. 119 670 (1960).
[9] G.W. Gardiner and P. Zoller, Quantum Noise : A Handbook of Markovian and Non-
Markovian Quantum Stochastic Methods with Applications to Quantum Optics (Springer,
Berlin, 2004).
[10] H. B. Callen, T. A. Welton, Phys. Rev. 83, 34 (1951).
[11] R. H. Koch, D. J. Van Harlingen, and J. Clarke, Phys. Rev. Lett. 45, 2132 (1980).
[12] P. Caldirola, Nuovo Cim. 18, 393 (1941).
[13] E. Kanai, Prog. Thoer. Phys. 3, 440 (1948).
[14] H. Dekker, Phys. Rev. A 16, 2126 (1977).
[15] W. H. Louisell, Quantum Statistical Properties of Radiation (Wiley, New York, 1973).
[16] S. Nakajima, Prog. Theor. Phys. 20, 948 (1958).
[17] H. Mori, Prog. Theor. Phys. 33, 423 (1965).
[18] R. Zwanzig, J. Chem. Phys. 33, 1338 (1960).
[19] H. Haken, Rev. Mod. Phys. 47, 67 (1975).
78
[20] G. W. Ford, M. Kac and P. Mazur, J. Math. Phys. 6, 504 (1965); G. W. Ford, J. T. Lewis
and R. F. O’Connell, Phys. Rev. A 37, 4419 (1988).
[21] F. Haake, Statistical Treatment of Open Systems by Generalized Master Equation (Springer,
Berlin, 1973).
[22] L. Mandel and E. Wolf, Quantum Coherence and quantum optics (Cambridge University
Press, Cambridge, 1995).
[23] H. Risken, The Fokker Planck Equation (Springer, Berlin, 1984).
[24] A. D. Fokker, Ann. Phys. (Leipzig), 43, 310 (1915).
[25] M. Planck, Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl., 325 (1917)
[26] E. P. Wigner, Phys. Rev. 40, 749 (1932).
[27] J. R. Oppenheimer, Phys. Rev. 31, 66 (1928).
[28] G. Gamow, Z. Physik 51, 204 (1928).
[29] R. W. Gurney and E. U. Condon, Nature (London), 122, 439 (1928).
[30] T. Holstein, Ann. Phys. (New York) 8, 325 (1959); D. Emin and T. Holstein,ibid 53, 439
(1969).
[31] C. P. Flynn and A. M. Stoneham, Phys. Rev. B 1, 3966 (1970).
[32] N. Takigawa and M. Abe, Phys. Rev. C 41, 2451 (1990).
[33] A.B. Balantekin and N. Takigawa, Rev. Mod. Phys. 70, 77 (1998).
[34] A. N. Cleland, J. M. Martinis, and J. Clarke, Phys. Rev. B 37, 5950 (1988).
[35] P. W. Anderson, B. I. Halperin and C. M. Varma, Phil. Mag. 25, 1 (1972).
[36] W. A. Phillips, J. Low Temp. Phys. 7, 351 (1972).
[37] J. L. Black, Glassy Metlas I, Topics in Applied Physics, Vol. 46, ed. by H.-J. G¨untherodt
and H. Beck (Springer Verlag, Berlin, 1981).
[38] J. Stockburger, U. Weiss and R. G¨orlich, Z. Phys. B 84, 457 (1991).
[39] A. J. Leggett, Directions in Condensed Matter Physics, Vol. 1, ed. by G. Grinstein and G.
Mazenko (World Scientific, Singapore, 1986).
[40] Y. Makhlin, G. Sch¨on, and A. Shnirman, Rev. Mod. Phys. 73, 357 (2001).
[41] F. Guinea, V. Hakim, and A. Muramatsu, Phys. Rev. B 32, 4410(1985).
[42] J. T. Stockburger and H. Grabert, Chem. Phys. 268, 249 (2001); Phys. Rev. Lett. 88,
170407 (2002).
79
[43] M. Grifoni and P. H¨anggi, Phys. Rep. 304, 229 (1998).
[44] F. B. Anders and A. Schiller, Phys. Rev. B 74, 245113 (2006).
[45] A. Warshel, Z.T. Chu, W.W. Parson, Science 246, 112 (1989).
[46] J. M. Martinis, S. Nam, J. Aumentado, K. M. Lang and C. Urbina, Phys. Rev. B 67,
094510 (2003).
[47] L. M. K. Vandersypen and I. L. Chuang, Rev. Mod. Phys. 76, 1037 (2005).
[48] X. Hu and S. Das Sarma, Phys. Rev. Lett. 96, 100501 (2006).
[49] G. C. Ghirardi, A. Rimini and T. Weber, Phys. Rev. D 34, 470 (1986).
[50] G. J. Milburn, Phys. Rev. A 44, 5401 (1991).
[51] R.C. Ashoori, Nature 379, 413 (1996).
[52] L.P. Kouwenhoven, T.H. Oosterkamp, M.W.S. Danoesastro, M. Eto, D.G. Austing, T.
Honda and S. Tarucha, Science 278, 1788 (1997).
[53] D.R. Stewart, D. Sprinzak, C.M. Marcus, C.I. Duruoz and J.S. Harris Jr., Science 278
1784 (1997).
[54] H. Grabert and M.H. Devoret (Ed.), Single Charge Tunneling, NATOASI Series B, vol.
294 (Plenum Press, NewYork, 1991).
[55] S.M. Reimann and M. Manninen, Rev. Mod. Phys. 74 1283 (2002).
[56] M. Tews, Annalen der Physik 13 249 (2004).
[57] E. Schr¨odinger, Naturwiss. 14, 664 (1926).
[58] R. P. Feynman and F. L. Vernon, Ann. Phys. 24, 118 (1963).
[59] A. O. Caldeira and A. J. Leggett, Physica 121A, 587 (1983).
[60] J.W. Negele and H. Orland, Quantum Many-Particle Systems (AddisonWesley, Singapore,
1988).
[61] W. H. Zurek, Phys. Rev. D 26, 1862 (1982).
[62] A. O. Caldeira and A. J. Leggett, Ann. Phys. 149, 374 (1983); 153, 445 (1984).
[63] F. Haake, and R. Reibold, Phys. Rev. A 32, 2462 (1985).
[64] H. Grabert, P. Schramm and P. -L. Ingold, Phys. Rev. Lett. 58, 1285(1987).
[65] W. G. Unruh and W. H. Zurek, Phys. Rev. D 40, 1071 (1989).
[66] B. L. Hu, J. P. Paz, and Y. H. Zhang, Phys. Rev. D 45, 2843 (1992); ibid. 47 1576 (1993).
80
[67] J. P. Paz, S. Habib and W. H. Zurek, Phys. Rev. D 47, 488 (1993).
[68] D. Braun, P. A. Braun, and F. Haake, Opt. Commun. 179, 411 (2000).
[69] G. W. Ford and R. F. O’Connell, Phys. Rev. D 64, 105020 (2001).
[70] W. T. Strunz and F. Haake, Phys. Rev. A 67, 022102 (2003); W. T. Strunz, F. Haake and
D. Braun, ibid. 67, 022101 (2003).
[71] K. Shiokawa and B. L. Hu, Phys. Rev. A 70, 062106 (2004).
[72] G. W. Ford and R. F. O’Connell, Phys. Rev. A 73, 032103 (2006).
[73] J. H. An and W. M. Zhang, Phys. Rev. A 76, 042127 (2007).
[74] C. H. Chou, T. Yu, and B. L. Hu, Phys. Rev. E 77, 011112 (2008).
[75] B. H. Bransden, and C. J. Joachen, Physics of Atoms and Molecules (Longman, London,
1983)
[76] R. Bl¨ume, R. Graham, L. Sirko, U. Smilansky, H. Walther, and K. Yamada, Phys. Rev.
Lett. 62, 341 (1991).
[77] C. Brif, H. Rabitz, A. Wallentowitz, I. A. Walmsley, Phys. Rev. A 63, 063404 (2001)
[78] M. Spanner, E. A. Shapiro and M. Ivanov, Phys. Rev. Lett. 92, 093001 (2004); E. A.
Shapiro, I. A. Walmsley, and M. Y. Ivanov, ibid. 98, 050501 (2007)
[79] S. Yoshida, C. O. Reinhold, J. Burgdorfer, W. Zhao, J. J. Mestayer, J. C. Lancaster, and
F. B. Dunning, Phys. Rev. A 75, 013414 (2007).
[80] R. F. O’Connell, Physica E19, 77 (2003).
[81] J. J. Halliwell, Phys. Rev. D 63, 085013 (2001).
[82] G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E.
Blankenship, and G. R. Fleming, Nature, 446, 782 (2007); H. Lee, Y.-C. Cheng, G. R.
Fleming, Science 316, 1462 (2007).
[83] A. J. Legget, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg and W. Zwerger,
Rev. Mod. Phys. 59, 1 (1987).
[84] H. Grabert, P. Schramm, and G.-L. Ingold, Phys. Rep. 168, 115 (1988).
[85] H. Carmichael, An open systems approach to quantum optics (Springer-Verlag, New York,
1993).
[86] U. Weiss, Quantum Dissipative Systems (World Scientific, Singapore, 1999).
[87] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University
Press, Oxford, New York, 2002).
81
[88] J. J. Halliwell and T. Yu, Phys. Rev. D 53, 2012 (1996).
[89] K. Lindenberg and B. J. West, Phys. Rev. A30, 568 (1984); H. Callen and T. Weldon,
Phys. Rev. 83, 34 (1951); R. Kubo, Lectures in Theoretical Physics Vol. 1(Interscience, New
York, 1959), pp. 120-203.
[90] See the discussion in Ref. [62] on page 388-391, also in private communications with A. J.
Leggett.
[91] R. Feynman and A. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New
York, 1965).
[92] K. Shiokawa and R. Kapral, J. Chem. Phys. 117, 7852 (2002).
[93] W. M. Zhang, D. H. Feng and R. Gilmore, Rev. Mod. Phys. 62, 867 (1990).
[94] E. Sch¨odinger, Ber. Kgl. Akad. Wiss. Berlin, 296 (1930).
[95] J. H. An, M. Feng and W. M. Zhang, Phys. Rev. A 76, 042127 (2007).
[96] R. H. Brandenberger, Rev. Mod. Phys. 57, 1 (1985); A. Linde, Particle Physics and Infla-
tionary Cosmology (Harwood Academic, Chur, 1990) and references therein.
[97] J. P. Sethna, Phys. Rev. B 24, 698 (1981); ibid. B 25, 5050 (1982).
[98] L. Santos, G. V. Shlyapnikov, P. Zoller, and M. Lewenstein, Phys. Rev. Lett. 85, 1791
(2000).
[99] L. D. Landau and E. M. Lifschitz, Statistical Physics (Pergamon, London, 1969).
[100] F. Bloch, Z. Phys. 74, 295 (1932).
[101] W. G. van der Wiel, S. DeFranceschi, J. M. Elzerman, T. Fujisawa, S. Tarucha, and L.
P. Kouwenhoven, Rev. Mod. Phys. 75, 1 (2003).
[102] T. Brandes, Phys. Rep. 408, 315 (2005).
[103] R. H. Blick and H. Lorenz, Proceedings of the IEEE International Symposium on Circuits
and Systems, II245 (2000).
[104] T. Tanamoto, Phys. Rev. A 61, 022305 (2000)
[105] L. Fedichkin and A. Fedorov, Phys. Rev. A 69, 032311 (2004); L. Fedichkin, M.
Yanchenko, and K. A. Valiev, Nanotechnology 11, 387 (2000).
[106] J. M. Elzerman, R. Hanson, J. S. Greidanus, L. H.Willems van- Beveren, S. DeFranceschi,
L. M. K. Vandersypen, S. Tarucha, and L. P. Kouwenhoven, Phys. Rev. B 67, 161308(R)
(2003)
82
[107] A. K. H¨uttel, S. Ludwig, K. Eberl, and J. P. Kotthaus, Phys. Rev. B 72, 081310(R)
(2005).
[108] T. Hayashi, T. Fujisawa, H. D. Cheong, Y. H. Jeong and Y. Hirayama, Phys. Rev. Lett.
91, 226084(2003);T. Hayashi, T. Fujisawa, H. D. Cheong, Y. H. Jeong and Y. Hirayama,
Physica E(Amsterdam) 21, 2046 (2004); T. Fujisawa, T. Hayashi and S. Sasaki, Rep. Prog.
Phys. 69, 759 (2006).
[109] J. R. Petta , A. C. Johnson, J. M. Taylor, E. A. Laird, A Yacoby, M. D. Lukin, C. M.
Marcus, M. P. Hanson, A. C. Gossard. Science 309, 1280 (2005).
[110] J. Gorman, D. G. Hasko, and D. A. Williams, Phys. Rev. Lett. 95, 090502 (2005).
[111] T. Brandes and T. Vorrath, Phys. Rev. B 66, 075341 (2002).
[112] U. Hartmann and F. K. Wilhelm, Phys. Rev. B 69, 161309(R) (2004).
[113] M. J. Storcz, U. Hartmann, S. Kohler, and F. K. Wilhelm, Phys. Rev. B 72, 235321
(2005).
[114] Z. J.Wu, K. D. Zhu, X. Z. Yuan, Y.W. Jiang, and H. Zheng, Phys. Rev. B 71, 205323
(2005).
[115] S. Vorojtsov, E. R. Mucciolo, and H. U. Baranger, Phys. Rev. B 71, 205322 (2005).
[116] V. N. Stavrou and X. Hu, Phys. Rev. B 72, 075362 (2005).
[117] M. Thorwart, J. Eckel and E. R. Micciolo, Phys. Rev. B 72, 235320 (2005).
[118] U. Hohenester, Phys. Rev. B 74, 161307(R) (2006).
[119] S. R. Woodford, A. Bringer and K. M. Indelkofer, Phys. Rev. B 76, 064306 (2007).
[120] Y. Y. Liao, Y. N. Chen, W. C. Chou, and D. S. Chuu, Phys. Rev. B 77, 033303 (2008).
[121] T.H. Stoof and Yu.V. Nazarov, Phys. Rev. B 53, 1050 (1996).
[122] S. A. Gurvitz and Ya. S. Prager, Phys. Rev. B 53, 15932 (1996).
[123] The choice of the energy reference shall not be E1 = E2 = 0 because when the two
localized states are degenerate, E1 = E2, the energy of the dots, EDQD = ((E1+E2)/
2 )(1−ρ00)+
((E1−E2)/)
2 (ρ11 − ρ22) + (ρ12 + ρ21), where the normalization condition 1 − ρ00 = ρ11 + ρ22
is used, becomes EDQD = E1+E2
2 (1 − ρ00) + (ρ12 + ρ21). When there is no electrons in
the dots, ρ00 = 1, the energy of the dots is simply zero. And the choice of E1 = E2 = 0
will cause that the energy of the dots when there is one electron in double dots, ρ11 = 1
or ρ22 = 1 is also 0. In the case where there is no charge leakage this choice of energy
reference is ok. However for the charge qubit being an open system, charge leakage shall be
considered and the choice of energy reference would matter if we look at the time evolution
of the energy of the dots. Otherwise, this choice of energy reference matters nothing as
long as the total energy configuration, the relations between the dot energy levels and the
chemical potentials in the electron reservoirs, remains the same. We can see identical time
evolutions of the density matrix at the energy references E = 0 and E = 0 with the relations
between E and μ1,2 fixed. But the dot energy EDQD given above is of course influenced by
the energy reference.
[124] D.P. DiVincenzo, Science 269, 225(1995).
|