進階搜尋


 
系統識別號 U0026-0812200914283198
論文名稱(中文) 氣候與圍岩差異對台灣三個河源上游化學風化的影響
論文名稱(英文) Climate and ambient rock influence upon riverine chemical weathering of three headwater tributaries in Taiwan
校院名稱 成功大學
系所名稱(中) 地球科學系碩博士班
系所名稱(英) Department of Earth Sciences
學年度 96
學期 2
出版年 97
研究生(中文) 李欣珮
研究生(英文) Hsin-Pei Lee
學號 L46944022
學位類別 碩士
語文別 中文
論文頁數 101頁
口試委員 指導教授-游鎮烽
召集委員-何恭算
口試委員-楊懷仁
中文關鍵字 矽酸鹽風化速率  河源上游支流  化學風化 
英文關鍵字 silicate weathering rate  headwater tributaries  chemical weathering 
學科別分類
中文摘要 台灣河水化學的變化反應了地質條件改變與氣候因素的影響,也顯示了水文循環的變異,本研究藉此了解當地環境的矽酸鹽類風化強度,以及圍岩組成的差異加上海水鹽沫的貢獻,如何共同影響著河水的化學特性,並解算矽酸鹽風化的貢獻比例以及其對於二氧化碳消耗速率的影響,尤其針對河川上游源頭區的河水,進行時間序列元素分析,明確建立岩石化學風化的通量以及對於河水化學確切的影響。
六龜區域雨水Ca2+濃度增高,可指示2007年3月份的沙塵暴以及8月颱風事件。濕季時,台灣處於夏季的濕暖氣候,福山地區的地下水位上升,因而影響到土壤水中化學特性的改變,使得9月份的元素濃度明顯有比其他月份偏高的趨勢。福山集水區的河水1~3月最接近海水線,正好是東北季風盛行的時期,且此地距離海岸邊大約只有20公里,因此河水化學中還能保有較多海水的訊號。相較之下,畢祿溪與六龜集水區河水化學特性可明顯反映出岩石風化的情況。
福山以及六龜集水區岩石化學風化主要受到矽酸鹽風化的影響,碳酸鹽的貢獻相對較不明顯;畢祿溪集水區則有相反的趨勢。Nasil加上Ksil共佔總陽離子的比例,在福山集水區平均為31%;畢祿溪集水區約為10%;六龜集水區大約為25%。可確切的知道矽酸鹽風化在畢祿溪流域並非主要的離子輸入來源。福山集水區與六龜集水區的Xsil與降雨量以及流量的變化趨勢有一致性,推測此兩流域內矽酸鹽風化的貢獻明顯受到大氣降水的影響。
七個集水區域來自矽酸鹽風化的溶解物質總量約為5.3x104 tons/yr,總共佔全世界總通量的0.01%,流域面積卻僅佔全球陸地面積的0.00076%。河源上游部份濕季的[ΦCO2]sil將可達乾季的6~80倍,雖然台灣地區河源上游流域岩石風化造成的二氧化碳消耗速率非常的大(平均約為9.5 x105mol/km2/yr),但由於流域面積小,因此對全球整體岩石風化造成的二氧化碳消耗通量卻顯得微不足道,並可推論岩石化學風化發生的位置主要集中在河源上游區域。
英文摘要 The variation of river water chemical characteristics of Taiwan will reflect the tectonic and climatic factors and also reveal the evolution of hydrologic cycle. This study try to present a new compilation of chemical and physical erosion rates in small catchments and show that silicate weathering rates are not governed by any single parameter but require consideration in multiple dimensions.
The three watersheds from north to south Taiwan are FuShan, PiLuHsi and LiuKuei, respectively. There are extremely high Ca concentrations of LK rainwater; it indicated the sand storm event in March and typhoon in August 2007. In wet season, the groundwater level arise then varied the composition of soil water. It has a significantly trend that the concentration of major elements are much higher in September than other month. River water of FuShan watershed can reflect the monsoon strength, so from January to March it much nears seawater line.
The total dissolved solid derived from silicate weathering is about 5.3x104 tons/yr; estimate near 0.01% of world total flux but the overall watershed area just accounts 0.00076% of worldwide continental area. The headwater tributaries CO2 consumption rate derived from silicate weathering in wet season is 6~80 times than in dry season, especially during typhoon period. Although CO2 consumption rate derived from rock weathering in Taiwan headwater tributaries are very large (average about 9.5x105mol/km2/yr), but due to the area of watershed are all very small were make the CO2 consumption fluxes become not worth mentioning. It is reasonable to make the conjectures that the main place of rock chemical weathering falls in the headwater tributaries.
論文目次 第一章 緒論 6
1.1研究背景 6
1.2 前人研究 13
1.2.1 岩石的化學風化作用 13
1.2.2 河水的化學組成 15
1.3研究目的 17

第二章 研究區域概況 18
2.1 地理環境與地質 18
2.1.1 福山集水區 18
2.1.2 畢祿溪集水區 19
2.1.3 六龜集水區 19
2.2 氣候與水文概況 22
2.2.1 福山集水區 22
2.2.2 畢祿溪集水區 22
2.2.3 六龜集水區 23

第三章 研究原理與方法 27
3.1化學分析 27
3.1.1樣品採集與保存 27
3.1.2 前處理與實驗流程 30
3.1.3標準品配置與檢量線 31
3.1.4多元素標準品的標定 33
3.2儀器分析 35
3.2.1感應耦合電漿質譜分析法 35
3.2.2 儀器長時間測量精確度評估 39

第四章 結果與討論 42
4.1 實驗評估 42
4.1.1 酸化、過濾與酸洗採樣瓶的評估實驗 42
4.1.2 每週、每月取樣樣品品質評估 48
4.2 雨水 50
4.3 地下水 55
4.4 土壤水 58
4.5 河水 62
4.5.1 Sea-salt與稀釋效應 62
4.5.2 河水溶解性固體總量與化學成分 67
4.5.3 圍岩的風化作用 70
4.5.4季節性效應 73
4.5.5 矽酸鹽與碳酸鹽的化學風化貢獻比例 79
4.5.6 矽酸鹽與碳酸鹽風化速率以及二氧化碳消耗速率 86

第五章 結論 93
第六章 參考文獻 95
參考文獻 中文書籍
魏國彥、許晃雄 (1997) 全球環境變遷導論。教育部環境保護小組,時英出版社,共378頁。
鍾小良 (2002) 二仁溪河水地球化學和同位素初探。國立成功大學地球科學所碩士論文,共85頁。
何春蓀 (1981) 普通地質學。五南圖書出版社,共751頁。
陳靜生 (1992) 水環境化學。曉園出版社,共403頁。
紀文榮 (2003) 地質學淺論。
朱啟豪 (2002) 台灣長期氣候變化。國立臺灣大學大氣科學研究所碩士論文。
陳正改 (1992) 台灣氣候變化的百年觀察。中央氣象局。

中文期刊文獻
鄧屬予 (2002) 台灣新生代大地構造。台灣的大地構造,中國地質年會,49-93。
高弘 (2002) 台灣地區新生代上部岩石圈構造。台灣的大地構造,中國地質年會,95-129。
吳大銘 (1990) 台灣地質科學的研究與展望。科學月刊雜誌。
江旭楨、楊惠珍 (1992) 質譜分析術專輯。行政院國家科學委員會精密儀器發展中心,台北,共390頁。
李珠 (2002) 感應耦合電漿質譜儀技術及其在材料分析上的應用。工業材料雜誌,181期,87-93。
蘇聲欣 (2006) 福山森林動態樣區的生態特色與重要性。林業研究專訊,Vol.13 No.2 ,9-12。
陳肇夏、朱傚祖、莊德永 (1983) 台灣中央山脈的一些構造問題。經濟部中央地質調查所彙刊,第二號,第1-61頁。
西文書籍
Ruddiman, William F., Earth’s Climate Past and Future, W. H. Freeman and Company, New York, 2001.
Stumm W. and Morgan J., Aquatic Chemistry, 2nd Edition, John Wiley & Sons, 1981
Kump L., Kasting J., Crane R., The Earth System, 2nd Edition, Person Education, Inc. New Jersey, 1999.
Gunter Faure, Principles and Applications of Geochemistry, 2nd Edition, Prentice Hall, 625 pages, 1998.
Berner, E. K., and R. A. Berner, 1987, The Global Water Cycle, Prentice-Hall, Upper Saddle River, NJ, 397 pp.


西文期刊文獻
Aleksandra Mihajlidi-Zeklic, Ivana Dersek-Timotic, Dubravka Relic, Aleksandar Popovic, Dragana Dordecvic, 2006. Contribution of marine and continental aerosols to the content of major ions in the precipitation of the central Mediterranean. Science of the Total Environment 370, 441-451.
Al-Momani, 2003. Trace elements in atmospheric precipitation at Northern Jordan measured by ICP-MS: acidify and possible sources. Atmospheric Environment 37, 4507-4515.
Al-Momani, I.F., Aygun, S., Tuncel, G., 1998. Wet deposition of major ions and trace elements in the Eastern Mediterranean basin. Journal of Geophysical Research 103 (D7), 8287-8299.
Bernard Dupre, Celine Dessert, Priscia Oliva, Yves Godderis, Jerome Viers, Louis Francois, Romain Millot, Jerome Gaillardet, 2003. Rivers, chemical weathering and Earth's climate. Surface Geoscience. 335, 1141-1160.
Berner, E., Berner, R., 1987. The Global Water Cycle: Geochemistry and Environment. Prentice-Hall, Englewood Cliffs, USA, 397 pp.
Berner, R.A., Lassaga, A.C., Garrels, R.M., 1983. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci., 284 :1183-1192.
Blum, J.D., Gazis, C.A., Jacobson, A.D., Chamberlain, C.P., 1998. Carbonate versus silicate weathering in the Raikhot watershed within the High Himalayan Crystalline Series. Geology, 26: 411-414.
Bricker, O.P., Jones, B.F., Bowser, C.J., 2003. Mass-balance approach to interpreting weathering reactions in watershed systems. In: Drever, J.P. (Ed.), Surface and Ground Water, Weathering, and Soils. Treatise on Geochemistry, vol. 5. Elsevier-Pergamon, Oxford, pp. 119-132.
Camarrero, L., Catalian, J., 1993. Chemistry of bulk precipitation in the central and eastern Pyrenees, northeast Spain. Atmospheric Environment 27, 83-94.
Chen, C. T. and J. J. Hung, 1987. Acid rain and lake acidification in Taiwan. Proc. Natl. Sci. Counc. (ROC), 11, 436-442.
Chu Hui-Yao, You Chen-Feng, 2007. Dissolved constituents and Sr isotopes on river weaters from a mountainous island- The Danshuei drainage system in northern Taiwan. Applied Geochemistry 22, 1701-1714
Dadson, S.J., Hovius, N., Chen, H., Dade, W.B., Hsieh, M.-L., Willett, S.D., Hu, J.-C., Horng, M.-J., Chen, M.-C., Stark, C.P., Lague, D., Lin, J.-C., 2003. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature 426, 648-651.
Dalai, T.K, Krishnaswami, S., Sari 557 n, M.M., 2002. Major ion chemistry in the headwaters of the Yamuna river system: Chemical weathering, its temperature dependence and CO2 consumption in the Himalaya. Geochim. Cosmochim. Acta, 66: 3397-3416.
Dalai, T.K., Krishnaswami, S., Sarin, M.M., 2002. Major ion chemistry in the headwaters of the Yamuna river system: chemical weathering, its temperature dependence and CO2 consumption in the Himalaya. Geochim. Cosmochim. Acta 66, 3397-3416.
Dasch, J.M., Wolff, G., 1989. Trace inorganic species in precipitation and their potential use in source apportionment studies. Water, Air, and Soil Pollution 43, 401-412.
Gabet, E.J., Burbank, D.W., Putkonen, J.K., Pratt-Sitaula, B.A., Ojha, T., 2004. Rainfall thresholds for landsliding in the Himalayas of Nepal. Geomorphology 63, 131-143.
Gaillardet, J., Dupre, B., Allegre, C.J., Negrel, P., 1997. Chemical and physical denudation in the Amazon River Basin. Chem. Geol. 142, 141-173.
Gaillardet, J., Dupré, B., Louvat, P., Allègre, C.J., 1999. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 159, 3-30.
Galloway, J.N., G. E. Likens, W. C. Keene, and J. M. Miller, 1982. The composition of precipitation in remote areas of the world. J. Geophy. Res., 87, 8771-8786
Galloway, J.N., Thornton, J.D., Norton, S.A., Volchok, H.L., McLean, R.A., 1982. Trace metals in atmospheric deposition: a review and assessment. Atmospheric Environment 16, 1677-1700.
Galy A., France-Lanord C., 1999. Weathering processes in the Ganges-Brahmaputra basin and the riverine alkalinity budget. Chem. Geol. 159, 31-60.
Garrels, R.M., 1967. Genesis of some ground waters from igneous rocks. In: Abelson, P.H. (Ed.), Researchs in Geochemistry. Wiley, pp. 405-420.
Gibbs, R.J., 1970. Mechanisms controlling world water chemistry. Science 170, 1088-1090.
Gislason, S.R., Arnorsson, S.,Armannsson, H., 1996.Chemicalweathering of basalt in SWIceland: effects of runoff, age of rocks and vegetative/glacial cover. Am. J. Sci. 296, 837–907.
Gislason, S.R., Oelkers, E.H., Snorrason, A., 2006. The role of river suspended material in the global carbon cycle. Geology 34, 49-52.
Glavas, S., Moschonas, N., 2002. Origin of observed acidic-alkaline rains in a wet-only precipitation study in a Mediterranean coastal site. Patras, Greece. Atmospheric Environment 36, 3089-3099.
Grzymko T.J., Marcantonio F., Mckee B.A., Stewart C.M., 2007. Temporal variability of uranium concentrations and 234U/238U activity ratios in the Mississippi river and its tributaries. Chem. Geol. 243, 344-356.
Heaton, R.W., Rahn, K.A., Lowenthal, D.H., 1990. Determination of trace elements, including regional tracers, in Rhode Island precipitation. Atmospheric Environment 24A (1), 147-153.
Herut, B., Starinsky, A., Katz, A., Rosenfeld, D., 2000. Relationship between the acidity and chemical composition of rainwater and climatological conditions a long a transition zone between large deserts and Mediterranean climate, Israel. Atmospheric Environment 34, 1281-1292.
Hoefs, J., 1997. Stable isotope geochemistry. Springer-Verlag, Berlin.pp.201.
Huh, Y., 2003. Chemical weathering and climate — a global experiment: a review. Geosci. J. 7, 277-288.
Huh, Y., Tsoi, M.Y., Zaitsev, A., Edmond, J., 1998. The fluvial geochemistry of the rivers of Eastern Siberia:Ⅰ .Tributaries of the Lena River draining the sedimentary platform of the Siberian Craton. Geochim. Cosmochim. Acta, 62: 1657-1676.
Krishnaswami S., Singh S. K., and Dalai T. K. (1999) Silicate weathering in the Himalaya: Role in contributing to major ions and radiogenic Sr to the Bay of Bengal. In Ocean Science, Trends and Future Directions (ed. B. L. K. Somayajulu), pp. 23–51. Indian National Science Academy and Akademia International, New Delhi.
Li, Y.H., 1976. Denudation of Taiwan island since the Pleistocene epoch. Geology 4, 105-107.
Liu, C.C., Yu, S.B., 1990. Vertical crystal movements in eastern Taiwan and their tectonic implications. In: Angelier, J. (Ed.), Geodynamic Evolution of the Eastern Eurasian Margin. Tectonophys. 183, 111–119.
Livingstone, D. A., 1963. Chemical composition of rivers and lakes. In M. Fleischer (Ed.), Data of geochemistry, 6th ed. U.S. Geol. Surv. Prof. Paper 440.
Lu SY, Huang HH, Chen CH, Hwong JL. 2000. Compilation of meteorological and streamflow records for Fushan experimental watershed (1982-1999). Taipei:Taiwan Forestry Research Institute.
Meybeck, M., 1979. Concentrations des eaux fluviales en elements majeurs et apports en solution aux oceans. Rev. Geol. Dyn. Geogr. Phys., 21(3), 215-246.
Meybeck, M., 1983. Atcospheric inputs and river transport of dissolved substances. Proceeding of the Hamburg Symposium. IAHS Publ., vol. 141, pp. 173-192
Meybeck, M., 1994. Origin and variable composition of present day riverborne maerial. Material Fluxes on the Surface of the Earth. National Acadeny Press, Washington, DC, 61-73.
Millot, R., 2002. Etude chimique et isotopique des produits derosion des grands fleuves canadiens. Impact des rivie`res boreales sur les bilans globaux dalteration. These de lUniversite Paris 7-Denis Diderot. 270 pp.
Millot, R., Gaillardet, J., Dupre’, B., Alle`gre, C.J., 2002. The global control of silicate weathering rates and the coupling with physical erosion: new insights from rivers of the Canadian Shield. Earth Planet. Sci. Lett. 196, 83-98.
Millot, R., Gaillardet, J., Dupre’, B., Alle`gre, C.J., 2003. Northern latitude chemical weathering rates: clues from the Mackenzie River Basin, Canada. Geochim. Cosmochim. Acta 67 (7), 1305-1329.
Moody, J.A., Meade, R.H., 1994. Evaluation of the method of collecting suspended sediment from large rivers by discharge-weighted pumping and separating by continuous-flow centrifugation. Hydrological Processes 8, 513-530.
Moon, S., Huh, Y., Qin, J., van Pho, N., 2007. Chemical weathering in the Hong (Red) River basin: rates of silicate weathering and their controlling factors. Geochim. Cosmochim. Acta 71, 1411-1430.
Mortatti, J., Probst, J.-L., 2003. Silicate rock weathering and atmospheric/soil CO2 uptake in the Amazon basin estimated from river water geochemistry: seasonal and spatial variations. Chem. Geol. 197, 177-196.
Mortatti, J., Probst, J.-L., 2003. Silicate rock weathering and atmospheric/soil CO2 uptake in the Amazon basin estimated from river water geochemistry: seasonal and spatial variations. Chem. Geol. 197, 177-196.
Negrel, P., Allegre, C.J., Dupre, B., Lewin, E., 1993. Erosion sources determined by inversion of major and trace element ratios and strontium isotopic ratios in river water: the Congo Basin Case. Earth Planet. Sci. Lett. 120, 59-76.
Oliva, P., Viers, J., Dupre, B., 2003. Chemical weathering in granitic environments. Chem. Geol. 202, 225-256.
Qin, J.H., Huh, Y., Edmond, J.M, Gu, D., Ran, J., 2006. Chemical and physical weathering in the Min Jing, a headwater tributary of the Yangtze River. Chem. Geol., 227:53-69.
Raymo, M.E., Ruddiman, W.F., 1992. Tectonic forcing of late Cenozoic climate. Nature 359, 117-122.
Riebe, C.S., Kirchner, J.W., Finkel, R., 2004. Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes. Earth Planet. Sci. Lett. 224, 547-562.
Roy, S., Gaillardet, J., Allegre, C.J., 1999. Geochemistry of dissolved and suspended loads of the Seine river, France: Anthropogenic impact, carbonate and silicate weathering. Geochim. Cosmochim. Acta 63, 1277-1292.
Ryu Jong-Sik, Lee Kwang-Sik, Chang Ho-Wan, Shin Hyung-Seon, 2008. Chemical weathering of cabonates and silicates in the Han River basin, South Korea. Chem. Geol. 247, 66-80
Santos, A., Alonso, E., Callejon, M., Jimenez, J.C., 2002. Heavy metal content and speciation in groundwater of the Guadiamar river basin. Chemosphere 48, 279-285.
Sequeira, R., 1981. Acid rain: some preliminary results from global data. J. Geophy. Res., 8, 147-150
Sharma, C. K., 1997. A Treatise on Water Resource of Nepal. Sangeeta Sharma, Kathmandu, p. 493.
Stallard, R.F., Edmond, J.M., Geochemistry of the Amazon: II. The influence of the geology and weathering environment in the dissolved load at the time of the peak discharge. J. Geophys. Res. 86, 9844-9858
Tipper E.T., Bickle M.J., Galy Albert, West A.J., Pomies Catherine, Chapma H.J., 2006. The short term climatic sensitivity of carbonate and silicate weathering fluxes: Insight from seasonal variations in river chemistry. Geochimica et Cosmochimica Acta 70, 2737-2754.
Walker, J.C.G., Hays, P.B., Kasting, J.F., 1981. A negative feedback mechanism for the long-term stabilization of Earth's surface temperature. J. Geophys. Res. 86, 9776-9782.
Weihua Wu, Shijin Xu, Jiedong Yang, Hongwei Yin, 2008. Silicate weathering and CO2 consumption deduced from the seven Chinese rivers originating in the Qinghai-Tibet Plateau. Chemical Geology, vol 249, Issues 3-4, 307-320.
West, A.J., Galy, A., Bickle, M., 2005. Tectonic and climatic controls on silicate weathering. Earth Planet. Sci. Lett. 235, 211-228.
White, A.F., Blum, A.E., 1995. Effects of climate on chemical weathering in watersheds. Geochim. Cosmochim. Acta 59, 1729-1747.
Wu, L., Huh, Y., Qin, J., Du, G., van Der Lee, S., 2005. Chemical weathering in the Upper Huang He (Yellow River) draining the eastern Qinghai–Tibet Plateau. Geochim. Cosmochim. Acta 69, 5279-5294.
You, C.F., Lee, T., Brown, L., Shen, J.J., Chen, J.C., 1988. 10Be study of rapid erosion in Taiwan. Geochim. Cosmichim. Acta 52, 2687-2691.
Yuan, F., Miyamoto, S., 2005. Dominant processes controlling water chemistry of the Pecos River in American southwest. Geophys. Res. Lett. 32, L17406. doi:10.1029/2005GL023359
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2009-08-15起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2009-08-15起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw