進階搜尋


 
系統識別號 U0026-0812200914270766
論文名稱(中文) 水庫淤泥應用於無機聚合膠結材
論文名稱(英文) Reservoir sludge utilized as a geopolymeric material
校院名稱 成功大學
系所名稱(中) 土木工程學系碩博士班
系所名稱(英) Department of Civil Engineering
學年度 96
學期 2
出版年 97
研究生(中文) 張瑜文
研究生(英文) Yu-wen Chang
學號 n6695435
學位類別 碩士
語文別 中文
論文頁數 123頁
口試委員 口試委員-黃錦煌
口試委員-林育芸
口試委員-劉玉雯
指導教授-黃忠信
口試委員-郭文毅
中文關鍵字 高強度  環保型材料  無機聚合  廢棄物再回收  水庫淤泥 
英文關鍵字 reservoir sludge  green material  high compressive strength  geopolymer 
學科別分類
中文摘要 波特蘭水泥為土木建築工程不可或缺之膠結材料,但其生產過程因須消耗大量能源,所以,對環境生態所造成之衝擊相當大。無機聚合膠結材為近年土木界熱門研究之環保材料,其特色為製造耗能小、低污染且具高強度,但受限於原料價格昂貴,至今仍無法普及應用於土木建築工程上。台灣本島之水庫淤泥含有大量鋁矽酸鹽礦物,本研究將利用此化學特性,探討水庫淤泥應用於無機聚合膠結材之可行性,除提供水庫淤泥另一再生資源化之途徑外,亦能降低無機聚合膠結材之成本。
本研究採用阿公店水庫淤泥,分析其化學成分後,仿照高嶺土之製程,以煅燒方式提升水庫淤泥之活性,進而取代高嶺土成為無機聚合膠結材之原料,藉由改變配比、水膠比、養護溫度、攪拌時間、水庫淤泥細度等控制因素,比較水庫淤泥取代前後無機聚合膠結材之強度變化。試驗結果顯示,於850 環境下持溫6小時後所得之煅燒阿公店水庫淤泥,較未煅燒時具有較高之活性,而且若以此溫度煅燒後之阿公店水庫淤泥,完全取代高嶺土所製成之無機聚合膠結材,其齡期28天時最佳抗壓強度可達956 kgf/cm2,而齡期91天之抗壓強度更高達1348 kgf/cm2。上述試驗結果證明,台灣本島水庫淤泥於無機聚合膠結材之應用上,具有相當潛力與發展空間。
英文摘要 Portland cement used as a bonding material is essential and important in construction and building engineering. However, high energy consumption in producing Portland cement causes some considerable ecological impacts. Inorganic geopolymeric material made at low temperatures is low energy-consumption, low ecological impact and high compressive strength and thus can be treated as a green material. But, inorganic geopolymeric materials are expensive and limits their application. In Taiwan, reservoir sludge is composed of lots of aluminum-silicates, which is the primary chemical compound of inorganic geopolymeric materials. In the study, the feasibility of using reservoir sludge as an inorganic geopolymeric material is investigated.
At first, the chemical constituents of A-kung-tien reservoir sludge are characterized. Then, the A-kung-tien reservoir sludge is calcined at different temperatures to enhance its chemical activity. Next, the calcined A-kung-tien reservoir sludge partially replaces the expensive calcined metakaolin which is typically used as a geopolymeric material. Some factors including mix proportion, water-cement ratio, curing temperature, stirring time, and fineness of reservoir sludge are taken into account in determining the maximum compressive strength of the geopolymeric material. Experimental results indicate that the optimum calcination temperature of A-kung-tien reservoir sludge is 850 for lasting six hours. When calcined reservoir sludge is used as a geopolymeric material, its maximum 28-day and 91-day compressive strengths are 956kgf/cm2 and 1348kgf/cm2, respectively. Consequently, reservoir sludge used as a geopolymeric material is promising and preferred when construction cost and compressive strength are concerned.
論文目次 摘要.................................................. I
Abstract.............................................. II
誌謝.................................................. IV
目錄.................................................. VI
表目錄................................................ X
圖目錄................................................ XI
第一章 緒論......................................... 1
1.1 研究動機......................................... 1
1.2 研究目的..........................................3
1.3 本文組織與內容....................................4
第二章 相關理論與文獻回顧 ............................5
2.1 水庫淤泥之簡介............................... 5
2.1.1 水庫淤泥之物理與化學特性........................ 5
2.1.2 水庫淤泥之疏浚與處置方式........................ 6
2.1.2.1 水庫淤泥之疏浚................................ 7
2.1.2.2 水庫淤泥之處置方式............................ 7
2.1.3 阿公店水庫淤泥.................................. 8
2.2 膠凝材料之起源與發展......................... 9
2.2.1 鹼礦渣膠凝材料.................................. 10
2.2.2 無機聚合膠結材.................................. 11
2.2.2.1 無機聚合膠結材之優點.......................... 12
2.2.2.2 複合型態之無機聚合膠結材...................... 13
2.3 無機聚合膠結材之組成......................... 14
2.3.1 矽鋁酸鹽礦物 .....................................14
2.3.1.1 高嶺土........................................ 14
2.3.1.2 爐石粉........................................ 17
2.3.2 鹼性溶液........................................ 18
2.3.3 鹼金屬矽酸鹽溶液................................ 19
2.4 無機聚合膠結材之反應機制與結構................... 21
2.4.1 無機聚合膠結材之反應機制........................ 21
2.4.2 無機聚合膠結材之結構............................ 22
第三章 試驗方法與步驟............................... 34
3.1 試驗規劃......................................... 34
3.2 試驗材料及設備................................... 34
3.2.1 試驗材料........................................ 34
3.2.2 試驗設備........................................ 36
3.3 試驗方法及步驟................................... 39
3.3.1 水庫淤泥之煅燒與研磨............................ 40
3.3.2 水庫淤泥之性質分析.............................. 40
3.3.2.1 比重分析...................................... 40
3.3.2.2 熱重分析(TGA)................................. 41
3.3.2.3 傅立葉紅外線光譜分析(FTIR).................... 41
3.3.2.4 雷射繞射粒徑分析(EPCS)........................ 42
3.3.2.5 比表面積分析(BET)............................. 42
3.3.2.6 X射線繞射分析(XRD)........................... 43
3.3.2.7 X射線螢光分析(XRF) ...........................43
3.3.3 試體之配比設計與製作............................ 43
3.3.3.1 試體配比設計.................................. 43
3.3.3.2 試體製作...................................... 45
3.3.4 試體之變因規劃.................................. 46
3.3.4.1 水庫淤泥煅燒溫度之決定........................ 46
3.3.4.2 活化劑之最佳配比.............................. 46
3.3.4.3 水膠比........................................ 47
3.3.4.4 養護溫度...................................... 47
3.3.4.5 水庫淤泥攪拌時間.............................. 48
3.3.4.6 水庫淤泥細度.................................. 48
3.3.4.7 砂漿拌合...................................... 48
3.3.5 流度試驗........................................ 49
3.3.6 抗壓強度試驗.................................... 49
3.3.7 比重與吸水率試驗................................ 50
第四章 試驗結果與討論............................... 65
4.1 水庫淤泥之性質分析............................... 65
4.1.1 X射線螢光分析(XRF)............................. 65
4.1.2 X射線繞射分析(XRD)............................. 66
4.1.3 熱重分析(TGA)................................... 67
4.1.4 傅立葉紅外線光譜分析(FTIR)...................... 68
4.1.5 雷射繞射粒徑分析................................ 69
4.1.6 比重分析........................................ 70
4.2 水庫淤泥最佳煅燒溫度............................. 70
4.2.1 純漿體之抗壓強度................................ 70
4.2.2 卜作嵐活性試驗.................................. 71
4.3 活化劑最佳配比................................... 72
4.3.1 水庫淤泥未取代高嶺土之配比...................... 72
4.3.2 水庫淤泥取代高嶺土後之配比...................... 73
4.4 水膠比之影響..................................... 74
4.5 養護溫度之影響................................... 76
4.6 攪拌時間之影響................................... 77
4.7 水庫淤泥細度之影響............................... 78
4.8 拌合砂漿......................................... 79
4.9 成本分析與比較................................... 80
第五章 結論與建議................................... 118
參考文獻.............................................. 120
參考文獻 [1] 黃忠信、郭文毅、彭淑娟,「水庫淤泥生態性利用之整體研究」,國立成功大學,2004。
[2] 施國欽,「大地工程學(一)土壤力學篇」,文笙書局,1996。
[3] 黃兆龍、洪盟峰、葉春爐、葉叔通,「不同水庫淤泥製作輕質骨材之探討,水庫淤泥輕質骨材混凝土產製及規範研討會─論文集,P.23,2003。
[4] 吳文隆,「大地工程學」,九樺出版社,1990。
[5] 戴詩潔,「高嶺石鋁矽酸鹽聚合材料之研究」,碩士論文,台北科技大學材料及資源工程系,2005。
[6] 吳靖然,「鹼凝膠材料微觀結構與物理性質之研究」,碩士論文,國立成功大學土木工程學系,2006。
[7] 陳志榮,「改質水庫淤泥對水泥砂漿工程性質之影響」,碩士論文,國立成功大學土木工程學系,2005。
[8] 李宜桃,「鹼活化還原渣漿體收縮及抑制方法之研究」,碩士論文,國立中央大學土木工程學系,2003。
[9] He, C., Makovicky, E. and Osbaeck, B., “Thermal treatment and pozzolanic activity of Na- and Ca-montmorillonite,” Applied Clay Science, Vol. 10, pp. 351-368, 1996.
[10] Yip, C. K., Lukey, G. C. and van Deventer* J. S. J., “The coexistence of geopolymeric gel and calcium silicate hydrateat the early stage of alkaline activation,” Cement and Concrete Research, Vol. 35, pp. 1688-1697, 2005.
[11] 張孟弘,「利用水庫淤泥造粒燒製濾料之研究」,碩士論文,國立中央大學環境工程研究所,2004。
[12] 代新祥,「鹼激活土聚水泥的製備、結構與性能」,博士論文,華南理中大學,2005。
[13] Davidovits, J., “Geopolymers : Inorganic Polymeric New Materials,” Journal of Thermal Analysis, Vol. 37, 1633-1656, 1991.
[14] Davidovits, J., “X-Ray Analysis and X-Ray Diffraction of Casing Stones from the Pryramids of Egypt, and the Limestone of the Associated Quarries,” Science In Egyptology Symposta, pp. 511-520, 1984.
[15] Phair, J. W. and Van Deventer, J. S. J., “Effect of Silicate Activator pH on Leaching of Waste Based inorganic polymer,” Minerals Engineering, Vol. 14, No. 3, pp. 289-304, 200l.
[16] Van Jaarsveld, J. G. S., Van Deventer, J. S. J. and Lukey, G. C., “The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers,” Chemical Engineering Journal Vol. 89, pp. 63-73, 2002.
[17] Davidovits, J., “Chemistry of geopolymeric systems terminology,” Proceeding of Geopolymer 99 Second International Conference, Editors: Davidovits, J., Davidovits, R. and James, C., France, pp. 9-37, 1999.
[18] Van Jaarsveld, J. G. S. and Van Deventer, J. S. J., “Effect of the alkali metal activator on the properties of fly ash-based geopolymers,” International Engineering Chemical Research, Vol. 38, pp. 3932-3941, 1999c.
[19] 陳松,李玉香,「模擬含鹼高放廢液“鹼-偏高嶺土-礦渣”固化性能研究」,矽酸鹽通報,第25卷第3期,第42-47頁,2006。
[20] Davidovits, J., “Early high-strength mineral polymer,” United States Patent 4,509,985, 1985.
[21] Davidovits, J., “Method for obtaining a geopolymeric binder allowing to stabilize, solidify and consolidate toxic or waste materials,” United States Patent 5,349,118, 1994.
[22] 金漫彤、樓梅曉、韓懁芬,「摻加礦渣的土壤聚合物對重金屬的固化」,浙江工業大學學報,第34卷第6期,第599-602頁,2006。
[23] Xu, H. and Van Deventer, J. S. J., “The geopolymerisation of alumino- silicate minerals,” International Journal Minerals Process, Vol. 59, pp. 247-266, 2000.
[24] Xu, H., Van Deventer, J. S. J. and Lukey, G. C., “Effect of alkali metals on the preferential geopolymerization of stilbite/kaolinite mixtures,” International Engineering Chemical Research, Vol. 40, pp. 3749-3756, 2001.
[25] Klein, C. and Hurlbut Jr, C. S., “Manual of Mineralogy 21st ed,” John Wiley & Sons, Inc., 2000.
[26] Charles, M. E. “Compostional analysis by thermogravimetyr,” American Society Testing and Materials, pp. 272-289, 1988.
[27] 劉慧玲,「台東樟原黏土資源之有機黏土備製研究」, 國立成功大學資源工程研究所,2001。
[28] He, C., Osback, B. and Makovicky, E., “Pozzolanic reactions of six principal clay minerals: activation, reactivaty assessments and technological effects,” Cement and Concrete Research, Vol. 25, No. 8, pp. 1691- 1702, 1995.
[29] Mehta, P. K., “Concrete Structure Properties and Materials Prentice- Hall,” Inc., Englewood Cliffs, New Jersey, U.S.A, 1986.
[30] Bakharev, T., Sanjayan, J. G., and Cheng, Y. B., “Effect of elevated temperature curing on properties of alkali-activated slag concrete,” Cement and Concrete Research, Vol. 29, No. 10, pp. 1619-1625, 1999.
[31] Fernandez-Jimenez, A., Palomob, J.G. and Puertas, F., “Alkali- Activated Slag Mortars Mechanical Strength Behaviour,” Cement and Concrete Research, Vol. 29, pp. 1313-1321, 1999.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2011-08-12起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2013-08-12起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw