進階搜尋


 
系統識別號 U0026-0812200914263212
論文名稱(中文) 蕈毒鹼受體在薑黃素產生的降血糖作用關係之研究
論文名稱(英文) Role of Muscarinic M1 Receptor in the Hypoglycemic Mechanisms of Curcumin
校院名稱 成功大學
系所名稱(中) 藥理學研究所
系所名稱(英) Department of Pharmacology
學年度 96
學期 2
出版年 97
研究生(中文) 許志傑
研究生(英文) Chih-Chieh Hsu
電子信箱 S2695407@mail.ncku.edu.tw
學號 S2695407
學位類別 碩士
語文別 中文
論文頁數 70頁
口試委員 指導教授-鄭瑞棠
口試委員-張文正
口試委員-許朝添
中文關鍵字 降血糖  胰島素  薑黃素 
英文關鍵字 hypoglycemic  insulin  curcumin 
學科別分類
中文摘要 薑黃素(curcumin)是從植物薑黃(Curcuma longa)的根莖部所萃取的化合物。文獻指出,薑黃素可以降低第一型和第二型糖尿病老鼠的血糖和改善體內代謝平衡。然而,薑黃素降血糖的作用機轉尚未被深入探討。因此,本實驗首先利用雄性Wistar大鼠骨骼肌和副睪脂肪細胞,處理不同濃度薑黃素,結果發現薑黃素在不需要胰島素的情形下,就能刺激骨骼肌和脂肪細胞攝取葡萄糖(glucose uptake),且呈劑量相關的趨勢,而此作用會被蕈毒鹼M1受體拮抗劑pirenzepine (muscarinic M1 receptor antagonist)抑制。然後,利用放射性標定配體結合分析法(radioligand binding assay)確認薑黃素具有和蕈毒鹼M1受體結合的能力。在分別處理U73122 (phospholipase C抑制劑; PLC抑制劑)以及LY294002 (phosphoinositide 3-kinase抑制劑; PI3-kinase 抑制劑)之後,發現薑黃素所刺激的葡萄糖攝取作用亦被抑制。Western blot的實驗中證實,薑黃素可以顯著增加細胞膜GLUT4蛋白的表現,並且可被pirenzepine, U73122, LY294002所抑制。根據文獻報導,活化胰島細胞的蕈毒鹼M1受體會刺激胰島素的釋放。我們也證明薑黃素處理HIT-T15 cells之後可以刺激胰島素釋放,而且此作用在處理pirenzepine之後會被抑制。若給予Wistar大鼠60 mg/kg的薑黃素,可以增加牠們血液中胰島素含量和降低血糖,此作用亦可被pirenzepine所阻擋。另外,我們發現薑黃素可以透過蕈毒鹼M1受體改善第一型糖尿病鼠(streptozotocin-induced diabetic rats)對胰島素的敏感性。總結以上實驗結果,薑黃素可以結合並活化蕈毒鹼M1受體,藉著下游PLC和PI3-kinase訊息傳遞路徑,增加細胞膜GLUT4蛋白表現量和刺激葡萄糖攝取;而薑黃素活化蕈毒鹼M1受體也可以刺激胰島素釋放和增加胰島素敏感性。這些透過蕈毒鹼M1受體產生的作用都是薑黃素降血糖的機轉。
英文摘要 Curcumin is one of the polyphenolic compounds extracted from the rhizome of Curcuma longa. It is reported to be beneficial against diabetes. However, the mechanisms for these actions of curcumin remained obscure. In the present study, we found that curcumin caused a dose-dependent but insulin-independent increase of glucose uptake in skeletal muscle and epididymal adipocytes isolated from Wistar rats, and the action of curcumin was inhibited by pirenzepine, a muscarinic M1 receptor antagonist. Using radioligand binding assay, it was characterized that the binding of [3H]-pirenzepine was displaced by curcumin in a concentration-dependent manner. The curcumin-stimulated glucose uptake was also reduced by U73122 (phospholipase C inhibitor; PLC inhibitor) and LY294002 (phosphoinositide 3-kinase inhibitor; PI3-kinase inhibitor). Western blot analysis showed that curcumin significantly increased membrane protein levels of glucose transporter 4 (GLUT4), which was also attenuated by pirenzepine, U73122, and LY294002. It has been documented that activation of muscarinic M1 receptor stimulates β-cells to release insulin. We also found that curcumin induced insulin release from HIT-T15 cells, which was blocked by pirenzepine. Oral administration of 60 mg/kg curcumin to Wistar rats increased insulin release from pancreatic β-cells and caused the hypoglycemic effect, both of which were antagonized by pirenzepine. Furthermore, curcumin is able to improve insulin sensitivity through muscarinic M1 receptor in type 1 streptozotocin-induced diabetic rats. In summary, our results suggested that the effects of curcumin to increase membrane protein levels of GLUT4 and glucose uptake through activation of muscarinic M1 receptor and downstream PLC/PI3-kinase pathway, to induce insulin release from β-cells, and to improve insulin sensitivity are all responsible for the lowering of plasma glucose.
論文目次 中文摘要..........................................Ⅰ
英文摘要..........................................Ⅳ
縮寫表............................................Ⅶ
第一章 緒論........................................1
第二章 實驗方法與材料..............................7
第三章 實驗結果...................................26
第四章 討論.......................................33
第五章 結論.......................................38
參考文獻..........................................40
附圖..............................................48
自述..............................................70
參考文獻 1. Salsali A, Nathan M. A review of types 1 and 2 diabetes mellitus and their treatment with insulin. Am. J. Ther. 13, 349-361 (2006)

2. Ginsberg H.N. Insulin resistance and cardiovascular disease. J. Clin. Invest. 106, 453-458 (2000)

3. Goldstein D.A., Massry S.G. Diabetic nephropathy: clinical course and effect of hemodialysis. Nephron 20, 286-296 (1987)

4. Weidmann P., Boehlen L.M., de Courten M. Pathogenesis and treatment of hypertension associated with diabetes mellitus. Am. Heart J. 125, 1498-1513 (1993)

5. Inzucchi S.E. Oral antihyperglycemic therapy for type 2 diabetes: scientific review. JAMA 287, 360-372 (2002)

6. Watkins P.J. ABC of Diabetes. Insulin treatment. Br. Med. J. (Clin. Res. Ed.) 284, 1929-1932 (1982)

7. Greenlee C., Hill J., Umpierrez G. Diabetes and Exercise. J. Clin. Endocrinol. Metab. 93 (2008)

8. Turner R.C., Cull C.A., Frighi V., Holman R.R. Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). UK Prospective Diabetes Study (UKPDS) Group. JAMA 281, 2005-2012 (1999)

9. Ammon H., Wahl M.A. Pharmacology of Curcuma longa. Planta Med. 57, 1-7 (1991)

10. Brouk B. Plants consumed by man. New York, NY: Academic Press (1975)

11. Srimal R.C., Dhawan B.N. Pharmacology of diferuloyl methane (curcumin), a non-steroidal anti-inflammatory agent. J. Pharm. Pharmacol. 25, 447-452 (1973)

12. Hatcher H., Planalp R., Cho J., Torti FM., Torti SV. Curcumin: From ancient medicine to current clinical trials. Cell Mol. Life Sci. 65, 1631-1652 (2008)

13. Pari L., Tewas D., Eckel J. Role of curcumin in health and disease. Arch. Physiol. Biochem. 114, 127-149 (2008)

14. Shishodia S., Sethi G., Aggarwal B.B. Curcumin: getting back to the roots. Ann. N. Y. Acad. Sci. 1056, 206-217 (2005)

15. Amit S., Ben-Neriah Y. NF-kappaB activation in cancer: a challenge for ubiquitination- and proteasome-based therapeutic approach. Semin. Cancer Biol. 13, 15-28 (2003)

16. Barnes P.J., Karin M. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N. Engl. J. Med. 336, 1066-1071 (1997)

17. Piper J.T., Singhal S.S., Salameh M.S., Torman R.T., Awasthi Y.C., Awasthi S. Mechanisms of anti-carcinogenic properties of curcumin: the effect of curcumin on glutathione linked detoxification enzymes in rat liver. Int. J. Biochem. Cell Biol. 30, 445-456 (1998)

18. Watanabe S., Fukui T. Suppressive effect of curcumin on trichloroethylene- induced oxidative stress. J. Nutr. Sci. Vitaminol. (Tokyo) 46, 230-234 (2000)

19. Anuchapreeda S., Limtrakul P., Thanarattanakorn P., Sittipreechacharn S., Chanarat P. Inhibitory effect of curcumin on WT1 gene expression in patient leukemic cells. Arch. Pharm. Res. 29, 80-87 (2006)

20. Hussain A.R., Al-Rasheed M., Manogaran P.S., Al-Hussein K.A., Platanias L.C., Al Kuraya K. Curcumin induces apoptosis via inhibition of PI3'-kinase/AKT pathway in acute T cell leukemias. Apoptosis 11, 245-254 (2006)

21. Hong J.H., Ahn K.S., Bae E., Jeon S.S., Choi H.Y. The effects of curcumin on the invasiveness of prostate cancer in vitro and in vivo. Prostate Cancer Prostatic Dis. 9, 147-152 (2006)

22. Mohan R., Sivak J., Ashton P., Russo L.A., Pham B.Q., Kasahara N. Curcuminoids inhibit the angiogenic response stimulated by fibroblast growth factor-2, including expression of matrix metalloproteinase gelatinase B. J. Biol. Chem. 275, 10405-10412 (2000)

23. Singh A.K., Sidhu G.S., Deepa T., Maheshwari R.K. Curcumin inhibits the proliferation and cell cycle progression of human umbilical vein endothelial cell. Cancer Lett. 107, 109-115 (1996)

24. Lim G.P., Chu T., Yang F., Beech W., Frautschy S.A., Cole G.M. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J. Neurosci. 21, 8370-8377 (2001)

25. Frautschy S.A., Hu W., Kim P., Miller S.A., Chu T., Harris-White M.E., Cole G.M. Phenolic anti-inflammatory antioxidant reversal of Abeta- induced cognitive deficits and neuropathology. Neurobiol. Aging 22, 993-1005 (2001)

26. Morimoto T., Sunagawa Y., Kawamura T., Takaya T., Wada H., Nagasawa A., Komeda M., Fujita M., Shimatsu A., Kita T., Hasegawa K. The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats. J. Clin. Invest. 118, 868-878 (2008)

27. Srivastava K.C., Bordia A., Verma S.K. Curcumin, a major component of food spice turmeric (Curcuma longa) inhibits aggregation and alters eicosanoid metabolism in human blood platelets. Prostaglandins Leukot. Essent. Fatty Acids 52, 223-227 (1995)

28. Venkatesan N. Curcumin attenuation of acute adriamycin myocardial toxicity in rats. Br. J. Pharmacol. 124, 425-427 (1998)

29. Deodhar S.D., Sethi R., Srimal R.C. Preliminary study on anti-rheumatic activity of curcumin (diferuloyl methane). Indian J. Med. Res. 71, 632-634 (1980)

30. Wang R., Xu Y., Wu H.L., Li Y.B., Li Y.H., Guo J.B., Li X.J. The antidepressant effects of curcumin in the forced swimming test involve 5-HT1 and 5-HT2 receptors. Eur. J. Pharmacol. 578, 43-50 (2007)

31. Babu P.S., Srinivasan K. Influence of dietary curcumin and cholesterol on the progression of experimentally induced diabetes in albino rat. Mol. Cell. Biochem. 152, 13-21 (1995)

32. Arun N., Nalini N. Efficacy of turmeric on blood sugar and polyol pathway in diabetic albino rats. Plant Foods Hum. Nutr. 57, 41-52 (2002)

33. Babu P.S., Srinivasan K. Hypolipidemic action of curcumin, the active principle of turmeric (Curcuma longa) in streptozotocin-induced diabetic rats. Mol. Cell. Biochem. 166, 169-175 (1997)

34. Srinivasan M. Effect of curcumin on blood sugar as seen in a diabetic subject. Indian J. Med. Res. 26, 269-270 (1972)

35. Pari L., Murugan P. Antihyperlipidemic effect of curcumin and tetrahydrocurcumin in experimental type 2 diabetic rats. Renal Failure 29, 881-889 (2007)

36. Suryanarayana P., Saraswat M., Mrudula T., Krishna T.P., Krishnaswamy K., Reddy G.B. Curcumin and turmeric delay streptozotocin-induced diabetic cataract in rats. Invest. Ophthalmol. Vis. Sci. 46, 2092-2099 (2005)

37. Kuhada A., Chopra K. Curcumin attenuates diabetic encephalopathy in rats: Behavioral and biochemical evidences. Eur. J. Pharmacol. 576, 34-42 (2007)

38. Babu P.S., Srinivasan K. Amelioration of renal lesions associated with diabetes by dietary curcumin in streptozotocin diabetic rats. Mol. Cell. Biochem. 181, 87-96 (1998)

39. Cheng J.T., Liu I.M., Yen S.T., Chen P.C. Role of alpha1A-adrenoceptor in the regulation of glucose uptake into white adipocyte of rats in vitro. Auton. Neurosci. 84, 140-146 (2000)

40. Chernogubova E., Cannon B., Bengtsson T. Norepinephrine increases glucose transport in brown adipocytes via beta3-adrenoceptors through a cAMP, PKA, and PI3-kinase-dependent pathway stimulating conventional and novel PKCs. Endocrinology 145, 269-280 (2004)

41. Nonogaki K. New insights into sympathetic regulation of glucose and fat metabolism. Diabetologia 43, 533-549 (2000)

42. Hosey M.M. Diversity of structure, signaling and regulation within the family of muscarinic cholinergic receptors. FASEB J. 6, 845-852 (1992)

43. Liu T.P., Yu P.C., Liu I.M., Tzeng T.F., Cheng J.T. Activation of muscarinic M1 receptors by acetylcholine to increase glucose uptake into cultured C2C12 cells. Auton. Neurosci. 96, 113-118 (2002)

44. Biddlecome G.H., Berstein G., Ross E.M. Regulation of phospholipase C-beta1 by Gq and m1 muscarinic cholinergic receptor. J. Biol. Chem. 271, 7999-8007 (1996)

45. Elmendorf J.S. Signals that regulate GLUT4 translocation. J. Membrane Biol. 190, 167-174 (2002)

46. Hutchinson D.S., Bengtsson T. α1A-adrenoceptors activate glucose uptake in L6 muscle cells through a phospholipase C-, phosphatidylinositol-3 kinase-, and atypical protein kinase C- dependent pathway. Endocrinology 146, 901-912 (2005)

47. Renuka T.R., Robinson R., Paulose C.S. Increased insulin secretion by muscarinic M1 and M3 receptor function from rat pancreatic islets in vitro. Neurochem. Res. 31, 313-320 (2006)

48. Miguel J.C., Abdel-Wahab Y.H., Mathias P.C., Flatt P.R. Muscarinic receptor subtypes mediate stimulatory and paradoxical inhibitory effects on an insulin-secreting beta cell line. Biochim. Biophys. Acta. 1569, 45-50 (2002)

49. Nawrocki A.R., Scherer P.E. The delicate balance between fat and muscle: adipokines in metabolic disease and musculoskeletal inflammation. Curr. Opin. Pharmacol. 4, 281-289 (2004)

50. Gliemann J., Rees W.D., Foly J.A. The fate of labeled glucose molecules in the rat adipocyte dependence on glucose concentration. Biochim. Biophys. Acta. 804, 68-76 (1984)

51. Rodbell M. Localization of lipoprotein lipase in fat cells of rat adipose tissue. J. Biol. Chem. 239, 753-755 (1964)

52. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275 (1951)

53. Smith R.J., Sam L.M., Justen J.M., Bundy G.L., Bala G.A., Bleasdale J.E. Receptor-coupled signal transduction in human polymorphonuclear neutrophils: effects of a novel inhibitor of phospholipase C-dependent processes on cell responsiveness. J. Pharmacol. Exp. Ther. 253, 688-697 (1990)

54. Shepherd P.R., Kahn B.B. Glucose transporters and insulin action- implications for insulin resistance and diabetes mellitus. N. Engl. J. Med. 341, 248–257 (1999)

55. Krook A., Wallberg-Henriksson H., Zierath J.R. Sending the signal: molecular mechanisms regulating glucose uptake. Med. Sci. Sports Exerc. 36, 1212-1217 (2004)

56. López-Lázaro M. Anticancer and carcinogenic properties of curcumin: Considerations for its clinical development as a cancer chemopreventive and chemotherapeutic agent. Mol. Nutr. Food Res. 52, S103-S127 (2008)

57. Herman M.A., Kahn B.B. Glucose transport and sensing in the maintenance of glucose homeostasis and metabolic harmony. J. Clin. Invest. 116, 1767-1775 (2006)


58. Grill V., Ostenson C.G. Muscarinic receptor in the pancreatic islets of the rats. Demonstration and dependence on long term glucose environment. Biochim. Biophys. Acta. 756, 159-162 (1983)

59. Iversen J. Effect of acetylcholine on the secretion of glucagons and insulin from isolated, perfused canine pancreas. Diabetes 23, 381-387 (1973)

60. Karlsson S., Ahren B. Muscarinic receptor subtypes in carbachol-stimulated insulin and glucagons secretion in the mouse. J. Auton. Pharmacol. 13, 439-446 (1993)

61. Miller R.E. Pancreatic neuroendocrinology: peripheral neural mechanisms in the regulation of the islets of Langerhans. Endocr. Rev. 2, 471-494 (1981)

62. Murugan P., Pari L. Effect of tetrahydrocurcumin on lipid peroxidation and lipids in streptozotocin-nicotinamide-induced diabetic rats. Basic Clin. Pharmacol. Toxicol. 99, 122-127 (2006)

63. Xu J., Fu Y., Chen A. Activation of peroxisome proliferator-activated receptor-γ contributes to the inhibitory effects of curcumin on rat hepatic stellate cell growth. Am. J. Physiol. Gastrointest. Liver Physiol. 285, G20-G30 (2003)

64. Semple R.K., Chatterjee V.K., O’Rahilly S. PPARγ and human metabolic disease. J. Clin. Invest. 116, 581-589 (2006)

65. Chan M.M. Inhibition of tumor necrosis factor by curcumin, a phytochemical. Biochem. Pharmacol. 26, 1551-1556 (1995)

66. Sharma S., Chopra K., Kulkarni S.K. Effect of insulin and its combination with resveratrol or curcumin in attenuation of diabetic neuropathic pain: participation of nitric oxide and TNF-alpha. Phytother. Res. 21, 278-283 (2007)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-08-08起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2013-08-08起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw