進階搜尋


 
系統識別號 U0026-0812200914262296
論文名稱(中文) 前氧化對UF膜處理含藻原水阻塞現象之研究
論文名稱(英文) The fouling of UF membrane by algae suspension and the effect of preoxidation
校院名稱 成功大學
系所名稱(中) 環境工程學系碩博士班
系所名稱(英) Department of Environmental Engineering
學年度 96
學期 2
出版年 97
研究生(中文) 謝孟伶
研究生(英文) Meng-ling Hsieh
學號 p5695119
學位類別 碩士
語文別 中文
論文頁數 115頁
口試委員 口試委員-曾怡禎
指導教授-葉宣顯
口試委員-田倩蓉
口試委員-黃文鑑
中文關鍵字 薄膜阻塞  臨界通量  比通量  氧化  EPS 
英文關鍵字 Specific flux  Membrane fouling  EPS  Oxidant  Critical flux 
學科別分類
中文摘要 淨水程序中,低壓薄膜系統可用來取代混凝、沉澱及砂濾等程序,但操作上常面臨阻塞(fouling)之問題。根據文獻,處理優養化原水時,藻體胞外物之多醣體會影響薄膜程序之操作。而前處理時添加之氧化劑,主要是用來控制生物阻塞(biofouling),但同時也可能會刺激藻體釋出更多胞外物或使藻體破裂,而造成負面影響。
本研究係以含藍綠藻(Microcystis sp.)及綠藻(Chodatella sp.)之人工原水來模擬優養化之水庫水,首先進行高錳酸鉀及臭氧之前氧化實驗,以螢光顯微鏡分析藻體細胞表面胞外黏質層之變化,同時分析含藻膠羽粒徑分佈及溶解態胞外物量及質之變化情形,然後將未氧化及氧化後之含藻懸浮液及僅含溶解性胞外物之溶液經UF膜(Regenerated cellulose)過濾,觀察於固定過膜壓力下,通量之變化情形。最後以衰減式全反射傅立葉紅外光譜儀(ATR-FTIR)分析UF膜上阻塞物之官能基。
實驗結果顯示,Microcystis sp.較之Chodatella sp.有較高之胞外物量,經前氧化後,兩藻種之溶解性胞外物量均升高,就胞外物成份之改變而言,兩種氧化劑均會造成Chodatella sp.醣份之增加,但對蛋白質之影響較少。就Microcystis sp.而言,則高錳酸鉀對醣及蛋白質含量之改變不大,但臭氧則明顯增加兩者之濃度。而在UF膜過濾方面,亦顯示前氧化對Chodatella sp.藻液過濾阻塞之影響較小,但對Microcystis sp.而言,則前氧化均會加劇阻塞現象,而臭氧之作用更較高錳酸鉀明顯。再者經由ATR-FTIR之圖譜亦發現,過濾經臭氧氧化之含溶解性Microcystis sp.胞外物溶液的UF膜上,亦較未氧化及以高錳酸鉀氧化者,殘餘較多種類之有機物。
將實驗後之結果以Hermia模式進行模擬分析,含Microcystis sp.之藻體懸浮液對UF膜之阻塞,主要為膜孔受到不同程度之阻塞,而含Chodatella sp.之藻體懸浮液,大部分都無法判斷其主要阻塞機制。以僅含Soluble EPS進行過膜實驗,Microcystis sp.部分經氧化後,主要是膜孔阻塞,而Chodatella sp.部份可能因通量下降並不明顯,因此無法判斷其阻塞機制。
以含Chodatella sp.之藻體懸浮液經高錳酸鉀氧化後之Soluble EPS溶液進行過膜實驗,雖有觀察到紅棕色物質累積,但卻未有明顯阻塞發生,因此可推測高錳酸鉀之還原物質並不會對UF膜造成阻塞。
英文摘要 In water treatment process, low-pressure membrane can substitute for coagulation, sedimentation and sand filtration, but the main problem is fouling. According to the literature, when treating eutrophic source waters, the polysaccharide from extracellular polymeric substance (EPS) of algae could affect the operation of membrane process. Further, pretreatment with oxidants are commonly used in membrane process for biofouling control. However, oxidation may change the quantity and quality of EPS, and, therefore, may also change its effect on membrane fouling.
In this research, synthetic water, containing cyanobacteria (Microcystis sp.) and green algae (Chodatella sp.), was used to simulate the source water from eutrophic reservoirs. First, preoxidation with either potassium permanganate or ozone were conducted, the variation of extracellular mucilage with oxidants type and dosage was analyzed by fluorescent microscopic method. The variation of size distribution of algae-containing floc, and the quantity and quality of the soluble extracellular polymeric substance (EPS) before and after oxidation were also monitored. Then the algae-contained synthetic water and its filtrate through 0.45µm membrane filter, either with or without preoxidation, were filtered through UF membrane (regenerated cellulose). Both the variation of flux with transmembrane pressure and the decreasing of flux with the cumulated permeate volume were monitored. Finally ATR-FTIR was used to study the functional groups of the possible foulants on UF membranes.
The results show that Microcystis sp. has higher amount of EPS than that of Chodatella sp. Preoxidation was found to increase the concentration of soluble EPS of both algae species. Both potassium permanganate and ozone would increase the carbohydrate concentration in the soluble EPS of Chodatella sp., but their effects on protein were minor. For Microcystis sp., the effect of potassium permanganate on carbohydrate and protein was minor, while ozone would significantly increase the concentration of both. As far as the effect on UF membrane fouling is concerned, preoxidation was found to have minor effect on the fouling caused by Chodatella sp. While both permanganate and ozone would aggravate the fouling caused by Microcystis sp., the effect of ozone was more significant than that of permanganate. Further, based on ATR-FTIR spectrum, more organic compounds also could be detected on the fouled UF membrane after treating preozonated solution containing dissolved EPS from Microcystis sp., compared to those from Chodatella sp.
Next, Hermia’s model was used to perceive membrane fouling mechanism. Those caused by suspension and soluble EPS of Microcystis sp.were found to be dominated by different degree of pore blocking. While those caused by Chodatella sp. could not be determined at this stage.
When the soluble EPS contained solution, which was prepared from permanganate preoxidated Chodatella sp. suspension, was filtered through UF membrane, no fouling was noticed during the testing period. However, brown particles, probably MnO2(S) from the reduced permanganate, were accumulated on membrane surface. Therefore, it was assumed that the reducing product from permanganate probably would not cause membrane fouling.
論文目次 摘要 I
Abstract III
誌謝 VII
目錄 IX
表目錄 XIII
圖目錄 XV
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 藻類對淨水程序之影響 3
2-2 薄膜程序 3
2-2-1 薄膜種類 3
2-2-2 薄膜材質 4
2-2-3 薄膜模組 7
2-2-4 過濾濾液之流動情形 7
2-3 UF膜之簡介與應用 8
2-4 臨界通量(Critical flux) 11
2-5 EPS之簡介及對淨水之影響 13
2-5-1 藻類胞外物(Extracellular polymeric substances, EPS) 13
2-5-2 EPS對薄膜阻塞之影響 15
2-6 前氧化劑之作用 16
2-6-1 過錳酸鉀( Potassium permanganate,KMnO4 ) 16
2-6-2 臭氧(Ozone,O3) 17
第三章 實驗材料與方法 19
3-1 實驗流程規劃 19
3-2 含藻懸浮液配製 21
3-2-1 藻類純種培養 21
3-2-2 人工藻液之備製 21
3-2-3 僅含Soluble EPS之人工藻液 22
3-2-4 藻類計數 25
3-3 氧化試驗 28
3-3-1 高錳酸鉀 28
3-3-2 臭氧 29
3-4 薄膜試驗 32
3-4-1 薄膜裝置 32
3-4-2 臨界通量試驗 33
3-4-3 比通量試驗 33
3-5 胞外物分子量之分析 34
3-6 藻體胞外物之觀察 36
3-7 EPS特性分析 37
3-7-1 多醣體分析 37
3-7-2 蛋白質分析 38
3-8 胞外物及膜表面官能基之分析 39
3-9 一般水質分析 39
3-9-1 pH 39
3-9-2 顆粒數分析 40
3-9-3 導電度 (Conductivity, EC) 40
3-9-4 非揮發溶解性有機碳 40
第四章 結果與討論 43
4-1 前氧化對藻體胞外物特性之影響 43
4-1-1 Soluble EPS之蛋白質及醣類含量 43
4-1-2 Soluble EPS之分子量分佈 45
4-2 含藻懸浮液及Soluble EPS之臨界通量試驗 48
4-3 含藻懸浮液及Soluble EPS溶液比通量隨累積濾液量增加之變化 57
4-3-1 不同劑量高錳酸鉀氧化 57
4-3-2 不同劑量臭氧進行氧化 61
4-3-3 不同氧化劑(KMnO4及O3)氧化之比較 63
4-4 UF膜表面阻塞物質之官能基 75
4-5 探討薄膜之阻塞機制 79
第五章 結論與建議 85
5-1 結論 85
5-2 建議 86
參考文獻 87
附錄 93
參考文獻 Allpike, B. P., Heitz, A., Joll C. A., and Kagi, R. I. Size exclusion chromatography to characterize DOC removal in drinking water treatment. Environmental Science and Technology, 39, 2334-2342 (2005).
Babel, S., and Takizawa, S. A study on membrane fouling due to algal deposition Water Science and Technology, 41, 327–335 (2000 ).
Babel, S., Takizawa, S., and Ozaki, H. Factors affecting seasonal variation of membrane filtration resistance caused by Chlorella algae. Water Research, 36, 1193-1202 (2002).
Benoufella, F., Laplanche, A., Boisdon, V., and Bourbigot, M. M. Elimination of microcystis cyanobacteria (blue-green algae) by an ozoflotation process: a pilot plant study. Water Science and Technology 30, 245–257 (1994).
Bernhardt, H. Treatment disturbances with water out of eutrophic reservoirs as consequence of extensive algae development. Water Supply: the Reviews Journal of The International Water Supply Association, 2, ss.4-7~ss.4-15 (1984).
Bernhardt, H. Studies on the treatment of eutrophic water. Water Supply: the Reviews Journal of The International Water Supply Association, 17, ss.12-1~ss.12-16 (1989).
Chan, R., Chen, V., and Bucknall, M. P. Ultrafiltration of protein mixtures: measurement of apparent critical flux, rejection performance, and identification of protein deposition. Desalination, 146, 83-90 (2002).
Chang, J. S., Tsai, L. J. And Vigneswaran, S. Experimental investigation of the effect of particle size distribution of suspended particles on microfiltration. Water Science and Technology 34, 133-140 (1996).
Chen, J. C., Li, Q., and Elimelech, M. In situ monitoring techniques for concentration polarization and fouling phenomena in membrane filtration. Advances in Colloid and Interface Science, 107, 83-108 (2004).
Cheryan, M. Ultrafiltration and microfiltration handbook. Technomic Lancaster, (1998).
Chio, K. Y.-J., and Dempsey, B. A. Bench-scale evaluation of critical flux and TMP in low-pressure membrane filtration. Journal AWWA, 97:7, 134-145 (2005).
Comte, S., Guibaud, G., and Baudu, M. Biosorption properties of extracellular polymeric substances (EPS) resulting from activated sludge according to their type: soluble or bound. Process Biochemistry, 41, 815-823 (2006).
Decho, A. W., and Herndl, G. J. Microbial activities and the transformation of organic matter within mucilaginous material. Science of The Total Environment, 165, 33-42 (1995).
Drews, A., Lee, C.-H., and Kraume, M. Membrane fouling - a review on the role of EPS. Desalination, 200, 186-188 (2006).
Field, R. W., Wu, D., Howell, J. A., and Gupta, B. B. Critical flux concept for microfiltration fouling. Journal of Membrane Science, 100, 259-272 (1995).
Galvín, R. M., and Mellado, J. M. R. Potassium permanganate as pre-oxidant in a reverse osmosis water plant. Water SA, 24, 361-363 (1998).
Habarou, H., Croué, J.P.,Heim, V., Franiatte, A., and Démocrate, C. Identification of organic foulants of nanofiltration membranes used for drinking water production. Water Practice and Technology 1(2006).
Hammes, F., Meylan, S., Salhi, E., Koster, O., Egli, T., and Von Gunten, U. Formation of assimilable organic carbon (AOC) and specific natural organic matter (NOM) fractions during ozonation of phytoplankton. Water Research, 41, 1447-1454 (2007).
Her, N., Amy, G., Park, H.-R., and Song, M. Characterizing algogenic organic matter (AOM) and evaluating associated NF membrane fouling. Water Research, 38, 1427-1438 (2004).
Hermia, J. Constant pressure blocking filtration laws—application to power law non-Newtonian flows. Transactions of the Institution of Chemical Engineers, 60, 183-187 (1982).
Huisman, I. H., Vellenga, E., Trägårdh, G., and Trägårdh, C. The influence of the membrane zeta potential on the critical flux for crossflow microfiltration of particle suspensions. Journal of Membrane Science, 156, 153-158 (1999).
Hung, M. T., and Liu, J. C. Microfiltration for separation of green algae from water. Colloids and Surfaces B: Biointerfaces, 51, 157-164 (2006).
John, C. C. Water treatment : principles and design. John Wiley and Sons, Inc, (2005).
Kemp, H. T., Fuller, R. G., and Davidson, R. S. Potassium permanganate as algicide. Journal AWWA, 58, 255-263 (1966).
Kosvintsev, S., Holdich, R. G., Cumming, I. W., and Starov, V. M. Modelling of dead-end microfiltration with pore blocking and cake formation. Journal of Membrane Science, 208, 181-192 (2002).
Lee, N., Amy, G., and Croue, J.-P. Low-pressure membrane (MF/UF) fouling associated with allochthonous versus autochthonous natural organic matter. Water Research, 40, 2357-2368 (2006).
Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, 265-275 (1951).
Myklestad, S. M. Release of extracellular products by phytoplankton with special emphasis on polysaccharides. Science of The Total Environment, 165, 155-164 (1995).
Nagaoka, H., Yamanishi, S., and Miya, A. Modeling of biofouling by extracellular polymers in a membrane separation activated sludge system. Water Science and Technology, 38, 497-504 (1998).
Nakatsuka, S., Nakate, I., and Miyano, T. Drinking water treatment by using ultrafiltration hollow fiber membranes. Desalination, 106, 55-61 (1996).
Nguyen, M.-L., Westerhoff, P., Baker, L., Qiang, H., Esparza-Soto, M., and Sommerfeld, M. Characteristics and reactivity of algae-produced dissolved organic carbon. Journal of Environmental Engineering, 131, 1574-1582 (2005).
Norris, L., Norris, R. E., and Calvin, M. A survey of the rates and products of short-term photosynthesis in plants of Nine Phyla. Journal of experimental botany, 6, 64-74 (1955).
Olvera-Ramírez, R., Coria-Cedillo, M., Cañizares-Villanueva, R. O., Martínez-Jerónimo, F., Ponce-Noyola, T., and Ríos-Leal, E. Growth evaluation and bioproducts characterization of Calothrix sp. Bioresource Technology, 72, 121-124 (2000).
Parikh, A., and Madamwar, D. Partial characterization of extracellular polysaccharides from cyanobacteria. Bioresource Technology, 97, 1822-1827 (2006).
Park, Y. G. Effect of ozonation for reducing membrane-fouling in the UF membrane. Desalination, 147, 43-48 (2002).
Petruševski, B., A.N., V. B., and Alaerts, G. J. Effect of permanganate pre-treatment and coagulation with dual coagulants on algae removal in direct diltration. Journal water SRT-Aqua, 45, 316-326 (1996).
Ramesh Babu, P., and Gaikar, V. G. Membrane characteristics as determinant in fouling of UF membranes. Separation and Purification Technology, 24, 23-34 (2001).
Rositano, J., Newcombe, G., Nicholson, B., and Sztajnbok, P. Ozonation of nom and algal toxins in four treated waters. Water Research, 35, 23-32 (2001).
Schlichter, B., Mavrov, V., and Chmiel, H. Study of a hybrid process combining ozonation and microfiltration/ultrafiltration for drinking water production from surface water. Desalination, 168, 307-317 (2004).
Suthersan, S. S. Remediation Engineering Design Concepts. Gerahhty& Miller Environmental Science and Engineering series, (1997).
Wingender, J., and Neu, T. R. F., Hans-Curt Microbial extracellular polymeric substances: characterization, structure and function. Springer-Verlag Berlin Heidelberg, (1999).
Zularisam, A. W., Ismail, A. F., and Salim, R. Behaviours of natural organic matter in membrane filtration for surface water treatment -- a review. Desalination, 194, 211-231 (2006).

彭惠君 高錳酸鉀對水中有機物去除機制之研究,國立成功大學, (2002).
林惠玲、陳正倉 統計學方法與應用 第三版,台北,雙葉書廊有限公司, (2004).
邱鈺婷 藻類胞外物對UF膜阻塞現象之影響,國立成功大學, (2007).
陳是瑩、曾怡禎 澄清湖生態的研究 I:澄清湖水質與藻類季節性變遷的研究. 中華民國自來水協會第一屆給水技術研討會論文集, (1984).
陳是瑩、曾怡禎 澄清湖藻類圖鑑,國立成功大學, (1986).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2009-08-08起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2009-08-08起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw