進階搜尋


 
系統識別號 U0026-0812200914261485
論文名稱(中文) 速度追蹤活動之學習效應與大腦皮質塑性改變
論文名稱(英文) Learning Effect of Speed Tracking Maneuver and Related Changes in Cortical Plasticity
校院名稱 成功大學
系所名稱(中) 物理治療研究所
系所名稱(英) Department of Physical Therapy
學年度 96
學期 2
出版年 97
研究生(中文) 陳彥廷
研究生(英文) Yen-Ting Chen
電子信箱 t6695105@mail.ncku.edu.tw
學號 T6695105
學位類別 碩士
語文別 中文
論文頁數 51頁
口試委員 口試委員-李新民
指導教授-黃英修
口試委員-王淳厚
口試委員-楊政峰
中文關鍵字 腦電圖  錯誤修正  動作學習  速度追蹤 
英文關鍵字 error correction  EEG  speed tracking  motor learning 
學科別分類
中文摘要 研究目的:
追蹤動作活動主要可以分成不連續動作、連續動作與系列動作(serial movement)
三大類。不論在日常生活或是在實驗室,連續追蹤動作都是非常常見的活動,其中軌
跡追蹤與補償追蹤常被用於實驗探討。然而在軌跡追蹤的實驗中,多數研究探討控制
肢體位置的追蹤動作,控制肢體速度的實驗卻很少人觸及。本實驗主要目的為探討連
續動作的速度追蹤活動中,不同動作頻率的追蹤學習是否有所差異,且以腦電圖觀察
在此學習效應下產生的皮質塑性變化。

研究方法:
本實驗收集12 位健康受試者,要求受試者依據視覺回饋,學習控制上肢移動速
度追蹤螢幕上的正弦波型。受試者一共需要追蹤三種不同頻率的正弦波型,分別為
0.6Hz、1.2Hz、2.4Hz,每次追蹤40 秒,且間隔至少40 秒供受試者休息。受試者間三
種頻率追蹤任務的順序,以平衡方式(balance order)安排,實驗開始前,首先進行一次
學習前測驗,並經過九次學習後,以同樣順序執行三次學習後測驗,且選擇其中最佳
的一次當成學習後的表現。本實驗使用雷射感應器紀錄受試者之速度表現,且依照國
際10-20 標準位置測量受試者在F3、F4、C3、C4、P3、P4、O1、O2、Fz、Cz、Pz
等區的腦波;最後針對受試者三種不同頻率任務之學習前後,在動作表現之交互相關
性、羈延時間、中心動作頻率、頻率修正現象以及腦波等五方面進行統計分析,比較
受試者在學習前後以及不同頻率下之差異。

研究結果:
實驗結果顯示,受試者可經由學習來控制肢體移動速度,進行正弦波型追蹤任
務。不論在波型相關性或是中心頻率分析,受試者在學習前後皆有顯著的進步,且在
2.4Hz 任務情形下,發現學習後在中心頻率的含量較0.6Hz、1.2Hz 任務少;同時羈延
時間在學習後也有顯著縮短的現象;從頻率修正現象中也可以看出受試者減少不適當
的高頻或低頻動作訊號,往正確的中心頻率集中。在腦波部份,則是看到學習前後在
1.2Hz 任務中,在大腦區域的腦波連結變化最為複雜,而三種頻率任務皆在C3-Cz、
Fz-Cz 這兩個腦區有顯著連結強度的變化。

結論:
本研究發現經過學習後受試者皆能有效控制肢體速度來追蹤正弦波型,從頻率
修正現象可以發現三種不同頻率的修正行為並不相同,對應的腦波改變可以看出:動
作學習產生的修正行為是大腦塑性改變的結果,且大腦存在與頻率相關的神經學習策
略。
英文摘要 Objective:
Tracking maneuver can be grossly divided into three different schemes: discrete, continuous, and serial forms of tracking. Both continuous tracking and compensatory tracking tasks are commonly used in laboratory research. Most previous studies focused on position tracking during which attentional control of limb position in pursuit of moving target is required. However, only few researches have been devoted to speed tracking that requires the control of extremities’ velocity in the tracking task. The purpose of this experiment was to examine the difference in learning effect of speed tracking maneuver at different rates, and the corresponding changes in cortical plasticity
with the use of EEG.

Methods:
There were twelve subjects participated in this experiment. In provision of real-time visual feedback, all subjects conducted speed tracking test by coupling sinusoidal waves at 0.6Hz, 1.2Hz, and 2.4Hz on monitor with meticulous control of their arm velocity. The subjects tracked target wave for 40 seconds in an each trial, interlaced with a resting period of at least 40 seconds. The subjects had to complete a pre-learning trial as well as nine learning trials. Finally, three post-learning trails were performed for all three rates.
The net learning effect was determined with the difference between pre-learning trial and the best post-learning trial that scored with the highest task congruence between target and performance curve. The speed tracking tasks were arranged in a balanced order between subjects. To characterized cortical activities, the Electro- encephalography(EEG)
electrodes were placed on the following areas including F3、F4、C3、C4、P3、P4、O1、O2、Fz、Cz、Pz, according to the standard 10-20 system. The statistical analyses were conducted to examine the effects of learning and tracking rate upon target- performance congruence, performance time lag, percentage of central frequency, correction of movement frequency, and correlation coefficients of EEG among difference cortical areas.

Results:
The result showed that all subjects could effectively learn speed tracking in this study. Task performance of different tracking rates was significantly improved, in light of enhanced task congruency between target and performance as well as percentage of central frequency. A smaller time lag was noted for all thee tasks after training. In addition, learning effect was manifested with an increase in central frequency of tracking movement, in association with reduction in of biased movement frequency at higher or lower frequency bands. The EEG finding showed that learning consistently resulted in a general
increment of correlation between C3-Cz, Fz-Cz for all three tacking tasks, and the 1.2Hz tracking task presented additional complex correlation pattern with enhanced correlation among different electrodes.

Conclusion:
This experiment validated the fact that subjects were able to learn speed tracking at various rates, though. High-rate tracking task was performed worse than that of low-rate task in the beginning. The present study also suggested a rate-dependent learning strategy, in support of correction pattern of movement frequency. Motor learning of
tracking maneuvers was a result of modulation of cortical plasticity, and human brain was coded with rate-dependent strategy for speed tracking.
論文目次 第一章 前言……………………………………………………………………...……….1
第一節 研究背景與文獻回顧……………………………………………...……….1
第二節 研究目的…………………………………………………………...……….7
第三節 研究問題的重要性……………………………………………...………….8
第四節 研究問題與假說……………………………………………...………….....9
第二章 研究方法……………………………………………………………………......10
第一節 受試者……………………………………………………………………..10
第二節 實驗步驟與流程…………………………………………………………..11
第三節 實驗儀器以及設置………………………………………………………..14
第四節 訊號處理…………………………………………………………………..16
第五節 統計分析……………………………………………………………………..18
第三章 研究結果………………………………………………………………………..19
第一節 受試者表現………………………………………………………………..19
第二節 腦波………………………………………………………………………..28
第四章 討論……………………………………………………………………………..33
第一節 波形相關性與中心頻率含量……………………………………………..34
第二節 羈延時間…………………………………………………………………..36
第三節 頻率修正現象……………………………………………………………..38
第四節 腦波………………………………………………………………………..39
第五章 結論……………………………………………………………………………..41
第一節 總結………………………………………………………………………..41
第二節 實驗限制…………………………………………………………………..42
第三節 未來發展與臨床應用……………………………………………………..43
參考文獻…………………………………………………………………………………..44
自述………………………………………………………………………………………..51
參考文獻 1. Babiloni C, Vecchio F, Cappa S, Pasqualetti P, Rossi S, Miniussi C, and Rossini PM. Functional frontoparietal connectivity during encoding and retrieval processes follows HERA model. A high-resolution study. Brain Res Bull 68: 203-212, 2006.
2. Backs RW. Psychophysiological aspects of selective and divided attention during continuous manual tracking. Acta Psychol (Amst) 96: 167-191, 1997.
3. Bares M, Nestrasil I, and Rektor I. The effect of response type (motor output versus mental counting) on the intracerebral distribution of the slow cortical potentials in an externally cued (CNV) paradigm. Brain Res Bull 71: 428-435, 2007.
4. Blum J, Lutz K, and Jancke L. Coherence and phase locking of intracerebral activation during visuo- and audio-motor learning of continuous tracking movements. Exp Brain Res 182: 59-69, 2007.
5. Boyd LA, and Winstein CJ. Cerebellar stroke impairs temporal but not spatial accuracy during implicit motor learning. Neurorehabil Neural Repair 18: 134-143, 2004.
6. Brown SH, and Cooke JD. Initial agonist burst duration depends on movement amplitude. Exp Brain Res 55: 523-527, 1984.
7. Brown SH, and Cooke JD. Initial agonist burst is modified by perturbations preceding movement. Brain Res 377: 311-322, 1986.
8. Brown SH, and Cooke JD. Responses to force perturbations preceding voluntary human arm movements. Brain Res 220: 350-355, 1981.
9. Carey JR, Baxter TL, and Di Fabio RP. Tracking control in the nonparetic hand of subjects with stroke. Arch Phys Med Rehabil 79: 435-441, 1998.
10. Carey JR, Kimberley TJ, Lewis SM, Auerbach EJ, Dorsey L, Rundquist P, and UgurbilK. Analysis of fMRI and finger tracking training in subjects with chronic stroke. Brain 125: 773-788, 2002.
11. Chung YJ, Cho SH, and Lee YH. Effect of the knee joint tracking training in closed kinetic chain condition for stroke patients. Restor Neurol Neurosci 24: 173-180, 2006.
12. de Rugy A, Oullier O, and Temprado JJ. Stability of rhythmic visuo-motor tracking does not depend on relative velocity. Exp Brain Res 184: 269-273, 2008.
13. Deiber MP, Wise SP, Honda M, Catalan MJ, Grafman J, and Hallett M. Frontal and parietal networks for conditional motor learning: a positron emission tomography study. J Neurophysiol 78: 977-991, 1997.
14. Dielman TE. Applied Regression Analysis: A Second Course in Business and Economic statistics. American: Curt Hinrichs, 2005, p. 226-227.
15. Eliassen JC, Souza T, and Sanes JN. Human brain activation accompanying explicitly directed movement sequence learning. Exp Brain Res 141: 269-280, 2001.
16. Ferree TC, Luu P, Russell GS, and Tucker DM. Scalp electrode impedance, infection risk, and EEG data quality. Clin Neurophysiol 112: 536-544, 2001.
17. Fries P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9: 474-480, 2005.
18. Frutiger SA, Strother SC, Anderson JR, Sidtis JJ, Arnold JB, and Rottenberg DA. Multivariate predictive relationship between kinematic and functional activation patterns in a PET study of visuomotor learning. Neuroimage 12: 515-527, 2000.
19. Gerloff C, Richard J, Hadley J, Schulman AE, Honda M, and Hallett M. Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements. Brain 121 ( Pt 8): 1513-1531, 1998.
20. Gordon J, and Ghez C. Trajectory control in targeted force impulses. II. Pulse heightcontrol. Exp Brain Res 67: 241-252, 1987a.
21. Gordon J, and Ghez C. Trajectory control in targeted force impulses. III. Compensatory adjustments for initial errors. Exp Brain Res 67: 253-269, 1987b.
22. Grafton ST, Mazziotta JC, Woods RP, and Phelps ME. Human functional anatomy of visually guided finger movements. Brain 115 ( Pt 2): 565-587, 1992.
23. Grafton ST, Hazeltine E, and Ivry RB. Motor sequence learning with the nondominant left hand. A PET functional imaging study. Exp Brain Res 146: 369-378, 2002.
24. Hamzei F, Dettmers C, Rijntjes M, Glauche V, Kiebel S, Weber B, and Weiller C. Visuomotor control within a distributed parieto-frontal network. Exp Brain Res 146: 273-281, 2002.
25. Hazeltine E, Grafton ST, and Ivry R. Attention and stimulus characteristics determine the locus of motor-sequence encoding. A PET study. Brain 120 ( Pt 1): 123-140, 1997.
26. Hefter H, and Langenberg U. Sinusoidal forearm tracking with delayed visual feedback. II. Dependence of the relative phase on the relative delay. Exp Brain Res 118: 171-179, 1998.
27. Hikosaka O, Sakai K, Miyauchi S, Takino R, Sasaki Y, and Putz B. Activation of human presupplementary motor area in learning of sequential procedures: a functional MRI study. J Neurophysiol 76: 617-621, 1996.
28. Huys R, Studenka BE, Rheaume NL, Zelaznik HN, and Jirsa VK. Distinct timing mechanisms produce discrete and continuous movements. PLoS Comput Biol 4: e1000061, 2008.
29. Indovina I, and Sanes JN. On somatotopic representation centers for finger movements in human primary motor cortex and supplementary motor area. Neuroimage 13: 1027-1034, 2001.
30. Inoue K, Kawashima R, Satoh K, Kinomura S, Sugiura M, Goto R, Ito M, and Fukuda H. A PET study of visuomotor learning under optical rotation. Neuroimage 11: 505-516, 2000.
31. Kakei S, Hoffman DS, and Strick PL. Direction of action is represented in the ventral premotor cortex. Nat Neurosci 4: 1020-1025, 2001.
32. Karni A, Meyer G, Jezzard P, Adams MM, Turner R, and Ungerleider LG. Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 377: 155-158, 1995.
33. Kawahira K, Shimodozono M, Ogata A, Etoh S, Ikeda S, Yoshida A, Tanaka N, and Tsujio S. Impaired visuo-motor skills in the unaffected lower limb of patients with stroke. Int J Neurosci 115: 1315-1332, 2005.
34. Kutner MH, Nachtsheim CJ, Neter J, and Li W. Applied Linear Statistical Models. America: McGraw- Hill Companies, Inc., 2005.
35. Lange RK, Godde B, and Braun C. EEG correlates of coordinate processing during intermanual transfer. Exp Brain Res 159: 161-171, 2004.
36. Lange RK, Braun C, and Godde B. Coordinate processing during the left-to-right hand transfer investigated by EEG. Exp Brain Res 168: 547-556, 2006.
37. Liang N, Murakami T, Funase K, Narita T, and Kasai T. Further evidence for excitability changes in human primary motor cortex during ipsilateral voluntary contractions. Neurosci Lett 433: 135-140, 2008.
38. Liu X, Tubbesing SA, Aziz TZ, Miall RC, and Stein JF. Effects of visual feedback on manual tracking and action tremor in Parkinson's disease. Exp Brain Res 129: 477-481, 1999.
39. Martin JC. Muscle power: the interaction of cycle frequency and shortening velocity. Exerc Sport Sci Rev 35: 74-81, 2007.
40. Miall RC. Task-Dependent Changes in Visual Feedback Control: A Frequency Analysis of Human Manual Tracking. J Mot Behav 28: 125-135, 1996.
41. Miall RC, and Jackson JK. Adaptation to visual feedback delays in manual tracking: evidence against the Smith Predictor model of human visually guided action. Exp Brain Res 172: 77-84, 2006.
42. Mochizuki H, Huang YZ, and Rothwell JC. Interhemispheric interaction between human dorsal premotor and contralateral primary motor cortex. J Physiol 561: 331-338, 2004.
43. Muellbacher W, Facchini S, Boroojerdi B, and Hallett M. Changes in motor cortex excitability during ipsilateral hand muscle activation in humans. Clin Neurophysiol 111: 344-349, 2000.
44. Munro BH. Statistical Methods for Health Care Research. Philadelphia: Lippincott Williams & Wilkins, 2005, p. 56-57.
45. Mutha PK, and Sainburg RL. Control of velocity and position in single joint movements. Hum Mov Sci 26: 808-823, 2007.
46. Newton AT, Morgan VL, and Gore JC. Task demand modulation of steady-state functional connectivity to primary motor cortex. Hum Brain Mapp 28: 663-672, 2007.
47. Notley SV, Turk R, Pickering R, Simpson DM, and Burridge JH. Analysis of the quality of wrist movement during a simple tracking task. Physiol Meas 28: 881-895, 2007.
48. Reed DW, Liu X, and Miall RC. On-line feedback control of human visually guided slow ramp tracking: effects of spatial separation of visual cues. Neurosci Lett 338: 209-212, 2003.
49. Roerdink M, Peper CE, and Beek PJ. Effects of correct and transformed visual feedback on rhythmic visuo-motor tracking: tracking performance and visual search behavior. Hum Mov Sci 24: 379-402, 2005.
50. Russell DM, and Sternad D. Sinusoidal visuomotor tracking: intermittent servo-control or coupled oscillations? J Mot Behav 33: 329-349, 2001.
51. Schmidt RA, and Lee TD. Motor control and learning: a behavioral emphasis. American: Humen Kinetics, 2005, p. 123-145.
52. Scott SH. Optimal feedback control and the neural basis of volitional motor control. Nat Rev Neurosci 5: 532-546, 2004.
53. Seitz RJ, Roland E, Bohm C, Greitz T, and Stone-Elander S. Motor learning in man: a positron emission tomographic study. Neuroreport 1: 57-60, 1990.
54. Serrien DJ, and Brown P. The integration of cortical and behavioural dynamics during initial learning of a motor task. Eur J Neurosci 17: 1098-1104, 2003.
55. Shadmehr R, and Holcomb HH. Neural correlates of motor memory consolidation. Science 277: 821-825, 1997.
56. Stark E, Drori R, Asher I, Ben-Shaul Y, and Abeles M. Distinct movement parameters are represented by different neurons in the motor cortex. Eur J Neurosci 26: 1055-1066, 2007.
57. Svoboda J, Sovka P, and Stancak A. Intra- and inter-hemispheric coupling of electroencephalographic 8-13 Hz rhythm in humans and force of static finger extension. Neurosci Lett 334: 191-195, 2002.
58. Turner RS, Desmurget M, Grethe J, Crutcher MD, and Grafton ST. Motor subcircuits mediating the control of movement extent and speed. J Neurophysiol 90: 3958-3966, 2003.
59. Vallbo AB, and Wessberg J. Organization of motor output in slow finger movements in man. J Physiol 469: 673-691, 1993.
60. van Mier H, Tempel LW, Perlmutter JS, Raichle ME, and Petersen SE. Changes in brain activity during motor learning measured with PET: effects of hand of performance and practice. J Neurophysiol 80: 2177-2199, 1998.
61. Womelsdorf T, and Fries P. Neuronal coherence during selective attentional processing and sensory-motor integration. J Physiol Paris 100: 182-193, 2006.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2008-08-08起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2008-08-08起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw