進階搜尋


 
系統識別號 U0026-0812200914224355
論文名稱(中文) Sp1過度表現造成癌細胞走向p53依賴性凋亡
論文名稱(英文) Overexpression of Sp1 Leads to p53-Dependent Apoptosis in Cancer Cells
校院名稱 成功大學
系所名稱(中) 藥理學研究所
系所名稱(英) Department of Pharmacology
學年度 96
學期 2
出版年 97
研究生(中文) 吳建興
研究生(英文) Chien-hsing Wu
電子信箱 b323091095@hotmail.com
學號 S2695107
學位類別 碩士
語文別 中文
論文頁數 83頁
口試委員 指導教授-張文昌
口試委員-呂佩融
指導教授-洪建中
中文關鍵字 p53  Sp1  細胞凋亡 
英文關鍵字 p53  apoptosis  Sp1 
學科別分類
中文摘要 Sp1在很多腫瘤會累積且調控很多基因,如致癌基因和腫瘤抑制基因。在本篇研究,藉由感染adeno-GFP-Sp1病毒在癌細胞,發現Sp1過度表現會造成癌細胞生長抑制,最後死亡。在感染adeno-GFP-Sp1病毒的癌細胞,顯示會抑制cyclin B1, 誘導 p21WAF1/CIP1 和p16INK4a,和增加acetyl-H3,使細胞週期滯留在G1期間。更進一步,sub-G1片段的檢測,caspase-3的切除和annexin-V 的訊號都顯示了細胞凋亡會發生在感染adeno-GFP-Sp1病毒的癌細胞。本篇研究也顯示在癌細胞中過度表現Sp1所造成的細胞凋亡只會發生在p53 wild-type 癌細胞而不會發生在 p53突變或刪除的癌細胞。此外,在A549 (p53+/+)肺癌細胞,利用p53 shRNA 將p53 降低後,過度表現Sp1並不會造成細胞凋亡。最後,在H1299 (p53-/-)肺癌細胞,利用Tet-off p53將p53在細胞內過度表現後,過度表現Sp1會造成細胞生存率降低。總結來說,Sp1在p53 wild-type 癌細胞的過度表現會藉由細胞週期停滯而造成細胞凋亡。這個發現將有利於利用Sp1過度表現來治療p53 wild-type腫瘤和利用Sp1和p53過度表現來治療p53突變或刪除的腫瘤。
英文摘要 Sp1 is accumulated in many tumors and regulates a number of genes, including oncogenes and tumor suppressor genes. In this study, Sp1 that was overexpressed by infecting cancer cells with the adeno-GFP-Sp1 virus caused cell growth inhibition and consequently, death. Examination of cyclin B1 repression, p21WAF1/CIP1 and p16INK4a induction, and acetyl-H3 increase proved that cell cycle is arrested in the G1 phase in the adeno-GFP-Sp1 virus-infected cells. Furthermore, detection of the sub-G1 fraction, caspase-3 cleavage, and annexin-V signal revealed that apoptosis occurred in the Sp1-overexpressed cells. Many adeno-GFP-Sp1 virus-infected tumor cell lines were used to demonstrate that apoptosis could be induced only in e p53 wild-typ cancer cells but not in p53-mutant or -deleted cancer cells. In addition, A549 (p53+/+) cells could be protected from apoptosis under Sp1 overexpression after p53 knockdown was induced by p53 shRNA. Finally, H1299 (p53-/-) cells viability was significantly inhibited by adeno-GFP-Sp1 virus infection in the expression of p53. In conclusion, Sp1 overexpression induces apoptosis through cell cycle arrest in p53 wild-type cancer cells. This finding would be beneficial in discovering p53 wild-type tumor therapy using Sp1 overexpression and p53-mutant or -deleted tumor therapy using Sp1 and p53 overexpression.
縮 寫 檢 索 表
論文目次 中文摘要.............................................1
英文摘要.............................................2
縮寫檢索表...........................................3
第一章 序論..........................................6
第二章 實驗材料......................................9
第三章 實驗方法.....................................16
第四章 實驗結果.....................................35
第一節 探討感染adeno-GFP-Sp1病毒的細胞是否會產生內質網壓力和影響p21WAF1/CIP1
和p16INK4a啟動子活性....................... ..................... 35
第二節 探討Sp1過度表現是否會造成細胞死亡和影響裸鼠腫瘤生長........... 37
第三節 探討Sp1過度表現是否會影響細胞週期............................ 38
第四節 探討Sp1過度表現是否會造成活細胞死亡.......................... 39
第五節 探討Sp1過度表現會滯留在哪一期間.............................. 40第六節 探討Sp1過度表現是否會造成細胞凋亡............................ 42
第七節 探討Sp1過度表現是否會造成p53依賴性細胞凋亡.................... 43
第五章 綜合討論.....................................47
第六章 參考文獻.....................................52
附圖................................................61
附表................................................79
附錄................................................80
參考文獻 1. Kadonaga JT, Carner KR, Masiarz FR, Tjian R. Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain. Cell 1987;51(6):1079-90.
2. Bouwman P, Philipsen S. Regulation of the activity of Sp1-related transcription factors. Mol Cell Endocrinol 2002;195(1-2):27-38.
3. Hagen G, Muller S, Beato M, Suske G. Cloning by recognition site screening of two novel GT box binding proteins: a family of Sp1 related genes. Nucleic acids research 1992;20(21):5519-25.
4. Bigger CB, Melnikova IN, Gardner PD. Sp1 and Sp3 regulate expression of the neuronal nicotinic acetylcholine receptor beta4 subunit gene. The Journal of biological chemistry 1997;272(41):25976-82.
5. Su K, Roos MD, Yang X, Han I, Paterson AJ, Kudlow JE. An N-terminal region of Sp1 targets its proteasome-dependent degradation in vitro. The Journal of biological chemistry 1999;274(21):15194-202.
6. Chu S, Ferro TJ. Sp1: regulation of gene expression by phosphorylation. Gene 2005;348:1-11.
7. Deniaud E, Baguet J, Mathieu AL, Pages G, Marvel J, Leverrier Y. Overexpression of Sp1 transcription factor induces apoptosis. Oncogene 2006;25(53):7096-105.
8. Firestone GL, Bjeldanes LF. Indole-3-carbinol and 3-3'-diindolylmethane antiproliferative signaling pathways control cell-cycle gene transcription in human breast cancer cells by regulating promoter-Sp1 transcription factor interactions. J Nutr 2003;133 (7 Suppl):2448S-55S.
9. Wong CF, Barnes LM, Dahler AL, Smith L, Popa C, Serewko-Auret MM , Saunders NA . E2F suppression and Sp1 overexpression are sufficient to induce the differentiation-specific marker, transglutaminase type 1, in a squamous cell carcinoma cell line. Oncogene 2005;24(21):3525-34.
10. Courey AJ, Holtzman DA, Jackson SP, Tjian R. Synergistic activation by the glutamine-rich domains of human transcription factor Sp1. Cell 1989;59(5):827-36.
11. Abdelrahim M, Safe S. Cyclooxygenase-2 inhibitors decrease vascular endothelial growth factor expression in colon cancer cells by enhanced degradation of Sp1 and Sp4 proteins. Mol Pharmacol 2005;68(2):317-29.
12. Han I, Kudlow JE. Reduced O glycosylation of Sp1 is associated with increased proteasome susceptibility. Mol Cell Biol 1997;17(5):2550-8.
13. Hung JJ, Wang YT, Chang WC. Sp1 deacetylation induced by phorbol ester recruits p300 to activate 12(S)-lipoxygenase gene transcription. Mol Cell Biol 2006;26(5):1770-85.
14. Spengler ML, Brattain MG. Sumoylation inhibits cleavage of Sp1 N-terminal negative regulatory domain and inhibits Sp1-dependent transcription. The Journal of biological chemistry 2006;281(9):5567-74.
15. Ryu H, Lee J, Olofsson BA, Mwidau A, Dedeoglu A, Escudero M, Flemington E, Azizkhan-Clifford J, Ferrante RJ ,Ratan RR.
Histone deacetylase inhibitors prevent oxidative neuronal death independent of expanded polyglutamine repeats via an Sp1-dependent pathway. Proc Natl Acad Sci U S A 2003;100(7):4281-6.
16. Chuang JY, Wang YT, Yeh SH, Liu YW, Chang WC, Hung JJ. Phosphorylation by c-Jun NH2-terminal kinase 1 regulates the stability of transcription factor Sp1 during mitosis. Molecular biology of the cell 2008;19(3):1139-51.
17. Wang YT, Chuang JY , Shen MR, Yang WB, Chang WC , Hung JJ. Sumoylation of specificity protein 1 augments its degradation by changing the localization and increasing the specificity protein 1
proteolytic process. J. Mol. Biol. 2008 ; 380:869–85.
18. Hung JJ, Wu CY, Liao PC, Chang WC. Hsp90α recruited by Sp1 is
important for transcription of 12(S)-lipoxygenase in A431 cells. The
Journal of biological chemistry 2005;280(43): 36283-92.
19. El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW ,Vogelstein B.WAF1, a potential mediator of p53 tumor suppression. Cell 1993; 75(4):817-25.
20. Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 1995;80(2):293-9.
21. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW. Participation of p53 protein in the cellular response to DNA damage. Cancer research 1991;51(23 Pt 1):6304-11.
22. Luo J, Su F, Chen D, Shiloh A, Gu W. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature 2000;408(6810):377-81.
23. Polyak K, Waldman T, He TC, Kinzler KW, Vogelstein B. Genetic determinants of p53-induced apoptosis and growth arrest. Genes & development 1996;10(15):1945-52.
24. Abdelrahim M, Smith R, 3rd, Burghardt R, Safe S. Role of Sp proteins in regulation of vascular endothelial growth factor expression and proliferation of pancreatic cancer cells. Cancer research 2004;64(18):6740-9.
25. Chiefari E, Brunetti A, Arturi F, Bidart JM, Russo D, Schlumberger M, Filetti S. Increased expression of AP2 and Sp1 transcription factors in human thyroid tumors: a role in NIS expression regulation? BMC cancer 2002;2:35.
26. Hosoi Y, Watanabe T, Nakagawa K, Matsumoto Y, Enomoto A, Morita A, Nagawa H, Suzuki N.Up-regulation of DNA-dependent protein kinase activity and Sp1 in colorectal cancer. International journal of oncology 2004;25(2):461-8.
27. Wang L, Wei D, Huang S, Peng Z, Le X, Wu TT, Yao J, Ajani J, Xie K.
Transcription factor Sp1 expression is a significant predictor of survival in human gastric cancer. Clin Cancer Res 2003;9(17):6371-80.
28. Liétard J, Musso O, Théret N, L'Helgoualc'h A, Campion JP, Yamada Y, Clément B. Sp1-mediated transactivation of LamC1 promoter and coordinated expression of laminin-gamma1 and Sp1 in human hepatocellular carcinomas. The American journal of pathology 1997;151(6):1663-72.
29. Mertens-Talcott SU, Chintharlapalli S, Li X, Safe S. The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer research 2007;67(22):11001-11.
30. Lou Z, O'Reilly S, Liang H, Maher VM, Sleight SD, McCormick JJ. Down-regulation of overexpressed Sp1 protein in human fibrosarcoma cell lines inhibits tumor formation. Cancer research 2005;65(3):1007-17.
31. Abdelrahim M, Baker CH, Abbruzzese JL, Safe S. Tolfenamic acid and pancreatic cancer growth, angiogenesis, and Sp protein degradation. Journal of the National Cancer Institute 2006;98(12):855-68.
32. Benasciutti E, Pages G, Kenzior O, Folk W, Blasi F, Crippa MP. MAPK and JNK transduction pathways can phosphorylate Sp1 to activate the uPA minimal promoter element and endogenous gene transcription. Blood 2004;104(1):256-62.
33. Trisciuoglio D, Iervolino A, Candiloro A, Fibbi G, Fanciulli M, Zangemeister-Wittke U, Zupi G, Del Bufalo D. Bcl-2 induction of urokinase plasminogen activator receptor expression in human cancer cells through Sp1 activation: involvement of ERK1/ERK2 activity. The Journal of biological chemistry 2004;279(8):6737-45.
34. Owen GI, Richer JK, Tung L, Takimoto G, Horwitz KB. Progesterone regulates transcription of the p21(WAF1) cyclin-dependent kinase inhibitor gene through Sp1 and CBP/p300. The Journal of biological chemistry 1998;273(17):10696-701.
35. Wu J, Xue L, Weng M, Sun Y, Zhang Z, Wang W, Tong T.
Sp1 is essential for p16 expression in human diploid fibroblasts during
senescence. PLoS ONE 2007;2(1):e164.
36. Kanai M, Wei D, Li Q, Jia Z, Ajani J, Le X, Yao J, Xie K. Loss of Kruppel-like factor 4 expression contributes to Sp1 overexpression and human gastric cancer development and progression. Clin Cancer Res 2006;12(21):6395-402.
37. Zhao Y, Hamza MS, Leong HS, Lim C-B,Pan Y-F,Cheung E,Soo K-C, Iyer NG. Kruppel-like factor 5 modulates p53-independent apoptosis through Pim1 survival kinase in cancer cells. Oncogene 2008;27(1):1-8.
38. Innocente SA, Lee JM. p53 is a NF-Y- and p21-independent, Sp1-dependent repressor of cyclin B1 transcription. FEBS letters 2005;579(5):1001-7.
39. Marin M, Karis A, Visser P, Grosveld F, Philipsen S. Transcription factor Sp1 is essential for early embryonic development but dispensable for cell growth and differentiation. Cell 1997;89(4):619-28.
40. Zhao C, Meng A. Sp1-like transcription factors are regulators of embryonic development in vertebrates. Development, growth & differentiation 2005;47(4):201-11.
41. Bartek J, Lukas J. Mammalian G1- and S-phase checkpoints in response to DNA damage. Current opinion in cell biology 2001;13(6):738-47.
42. Taylor WR, Stark GR. Regulation of the G2/M transition by p53. Oncogene 2001;20(15):1803-15.
43. Kaczynski J, Cook T, Urrutia R. Sp1- and Kruppel-like transcription factors. Genome biology 2003;4(2):206.
44. Lomberk G, Urrutia R. The family feud: turning off Sp1 by Sp1-like KLF proteins. The Biochemical journal 2005;392(Pt 1):1-11.
45. Chen C, Zhou Z, Guo P, Dong JT. Proteasomal degradation of the KLF5 transcription factor through a ubiquitin-independent pathway. FEBS letters 2007;581(6):1124-30.
46. Evans PM, Zhang W, Chen X, Yang J, Bhakat KK, Liu C. Kruppel-like factor 4 is acetylated by p300 and regulates gene transcription via modulation of histone acetylation. The Journal of biological chemistry 2007;282(47):33994-4002.
47. Chupreta S, Brevig H, Bai L, Merchant JL, Iniguez-Lluhi JA. Sumoylation-dependent control of homotypic and heterotypic synergy by the Kruppel-type zinc finger protein ZBP-89. The Journal of biological chemistry 2007;282(50):36155-66.
48. Fukasawa K, Vande Woude GF. Synergy between the Mos/mitogen-activated protein kinase pathway and loss of p53 function in transformation and chromosome instability. Mol Cell Biol 1997;17(1):506-18.
49. Roth JA. Adenovirus p53 gene therapy. Expert opinion on biological therapy 2006;6(1):55-61.
50. Takimoto R, Niitsu Y. [Tumor suppressor gene p53 and molecular targeting therapy]. Gan to kagaku ryoho 2004;31(9):1309-13.
51. Fujiwara T, Kataoka M, Tanaka N. Adenovirus-mediated p53 gene therapy for human cancer. Molecular urology 2000;4(2):51-4.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2009-07-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2009-07-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw