進階搜尋


 
系統識別號 U0026-0812200914222528
論文名稱(中文) 震波醫療機之設計與開發
論文名稱(英文) Design and Development of Shock Wave Therapy Machine
校院名稱 成功大學
系所名稱(中) 航空太空工程學系碩博士班
系所名稱(英) Department of Aeronautics & Astronautics
學年度 96
學期 2
出版年 97
研究生(中文) 萬龍瑞
研究生(英文) Long-ray Wan
學號 p4892108
學位類別 博士
語文別 英文
論文頁數 141頁
口試委員 口試委員-溫志湧
口試委員-謝正雄
指導教授-梁勝明
口試委員-鐘光民
口試委員-陳天送
口試委員-蒲永仁
口試委員-馬亞尼
中文關鍵字 高壓放電  雷射輔助定位  震波醫療機  震波醫療術  震波 
英文關鍵字 Shock wave  shock wave therapy machine  shock wave therapy  laser-assisted positioning  high-voltage system 
學科別分類
中文摘要 震波醫療術已被廣泛地應用於震波碎石及骨疾方面之治療並已漸漸取代傳統之侵入式手術,本研究設計與開發了一套具電子式高壓放電系統之電水式體外震波醫療以提供在震波碎石術及骨疾醫療中所需之震波源。 此外,在本研究中所設計與開發之震波醫療機是由五個子系統所組成,而此五個子系統為(1)震波產生器,此設備為一橢圓反射體,負責將第一焦點所產生的震波聚焦於第二焦點,關於此橢圓的各項參數以列於文中,(2)雷射輔助定位系統,此系統利用光學以及幾何原理將光線投射於皮膚上以達到定位之目的,(3)自動供水系統,此系統負責提供震波傳遞所需的介質並利用電磁閥以及馬達達到自動供水之目的,(4)高壓放電系統,此系統負責提供於第一焦點所需之能量,其電壓供給範圍介於10~30KV,(5)自動控制系統,此系統包含供水系統以及高壓放電系統之控制。各子系統之設計原理以及開發過程將在各章節中詳述,然而於本研究中所研發的高壓放電系統不僅適用於供電水式體外震波產生器,其亦可裝配於電磁式之體外震波產生器做為其能量釋放之來源。完整之震波醫療機的所有控制流程將以流程圖闡述,而所有設計的電路圖及尺寸設計圖也將附於文中。此外,高壓放電系統的每個控制訊號以及其時序流程亦以由示波器所擷取之訊號於文中證明,其中值得一提的是由高壓放電系統所產生的電磁波干擾訊號已由文中所述之方法降低其值之99%,並且所設計與開發的震波產生器之特性亦在文中被介紹及討論。 最後,聚焦區之聚焦正壓值、負壓值、上昇時間以及下降時間和震波的能量強度亦已透過PVDF以及PCB壓力探針於水中量測完成。
英文摘要 Shock wave therapy has applied by medical doctors on lithotripsy and orthopedics in replacing traditional surgery. For generating shock waves, a high-voltage system of electrical mechanism is necessary to provide, and is designed with some features in this study. Moreover, electrohydraulic extracorporeal shock wave generators have been constructed and fabricated for the purpose of lithotripy or orthopedics. The designed shock wave generator consisted of several subsystems. They were a shockwave reflector, a spark gap, an electromagnetic valve-assisted water filling/draining system, and a laser-assisted positioning system. The details of materials and design methods used have been described. The high-voltage system can be applied to other types of shock wave generators such as an electromagnetic type. The control procedures for whole shock wave therapy machine have been explained as flow charts. The schematic diagrams of all designed circuits and dimensions have also been illustrated. Each single control procedure of the high-voltage system has been validated by a time sequence and profiles of signals captured from an oscilloscope. It is noted that electromagnetic interferences associated with the high-voltage system have been reduced by 99%. Moreover, the key mechanical and electrical properties of our designed shock wave generator have been measured and discussed. Finally, the acoustic field, peak positive pressure, peak negative pressure, and shock wave intensity have been measured by using a pressure sensor of PVDF and PCB hydrophone.
論文目次 Chapter 1 .................................................1
1.1 Background and Motivation.............................1
1.2 Literature Survey.....................................2
1.2.1 Shock Wave Focusing.................................2
1.2.2 Shock Waves Application in Urology..................4
1.2.3 Shock Waves Application in Musculoskeletal Disorders.................................................6
1.2.4 Electromagnetic, Piezoelectric and Electrohydraulic Shock Wave Generators.....................................8
1.2.5 EMI Filtering......................................10
1.3 Objectives...........................................11
Chapter 2 ................................................13
2.1 Shock Wave Reflector.................................13
2.2 Laser-Assisted Positioning System....................18
2.2.1 Design Concept.....................................18
2.2.2 Design Principle...................................19
2.2.3 Materials of Laser-Assisted Positioning System.....24
2.2.4 Basic Theory of Optics.............................24
2.2.5 Set Up of a Laser Source...........................25
2.2.6 Set-up of a Laser-Assisted Positioning System......27
2.3 Electromagnetic Valves-Assisted Water System.........30
2.3.1 Design of a Water-Filling System...................30
2.3.2 Design of a Water Flowing Path ....................31
2.3.3 Components of Electromagnetic Valves-Assisted Water Filling System...........................................33
2.4 High-Voltage System..................................43
2.4.1 High Voltage Circuit...............................43
2.4.1 High Voltage Power Supply..........................48
2.4.2 High-Voltage Wire..................................53
2.4.3 Trigger Module.....................................55
2.4.4 Spark Gap..........................................56
2.4.5 High-Voltage Capacitor.............................57
2.4.6 High-Voltage Vacuum Relay..........................58
2.4.7 Other High-Voltage Devices.........................60
2.4.8 Assembled High-Voltage Module......................63
2.5 Control System .......................................65
2.5.1 Electromagnetic Interference (EMI).................65
2.5.2 Design of a Control Circuit........................65
2.5.3 The Independent Power Source for Control Circuits..88
2.6 Pressure-Measure Platform............................92
Chapter 3 ................................................94
3.1 Result of Laser Assisted-Positioning System..........94
3.2 Results of EMI Eliminating...........................97
3.2.1 Effect of Using an Isolated Power Source...........99
3.2.2 Effect of Sheltering..............................105
3.2.3 Signals of Final Performance after EMI Eliminating.............................................109
3.3 Results of Shielding................................112
3.4 Results of Control Signals..........................115
3.4.1 Time Sequence of Control Signals..................116
3.4.2 Signals of HVPS (Enable, Inhibit and Voltage Program)................................................122
3.5 Result of output pressures..........................126
Chapter 4 ...............................................131
4.1 Conclusions.........................................131
4.2 Suggestions.........................................133
REFERENCES..............................................134
Appendix A..............................................140
參考文獻 1. Andriyanov, Y.V., “Electromechanical Modeling of an Electromagnetic Radiator of Shock-wave Pulses,” Journal of Communications Technology and Electronics, Vol. 40, No. 14, pp. 73-79, 1995.
2. Andriyanov, Yu.V.; Andriyanova, O.N.; Kozodoy, P.V.; Smirnov, V.P. ‘’The Electromagnetic Type Focusing Shock Wave Generators for Medical and Biology Application’’ Pulsed Power Conference, Digest of Technical Papers. 12th IEEE International Vol. 2, No. 27-30, pp. 1410 – 1413, June 1999.
3. Andriyanov, Y.V., Andriyanova, O.N., Kozodoy, P.V., and Smirnov, V.P., “Electromagnetic Type Focusing Shock Wave Generators for Medical and Biology Application,” Digest of Technical Papers-IEEE International Pulsed Power Conference, Vol. 2, pp. 1410-1413, 1999.
4. Broyer, P., Cathignol, D., Theillere, Y. and Mestas, J.L.,” High-Efficiency Shock-Wave Generator for Extracorporeal Lithotripsy,” Medical & Biological Engineering & Computing, Vol. 34, No. 5, pp. 321-328, Sep, 1996.
5. Chang, C.C., Liang, S.M., Pu, Y.R., Chen, C.H., Chen, I., Chen, T.S. Kuo, C.L., Yu, F.M., and Chu Z.F. “In Vitro Study of Ultrasound Based Real-Time Tracking for Renal Stones in Shock Wave Lithotripsy: PART 1” The Journal of Urology, Vol. 166, Issue 1, pp. 28-32, July, 2001.
6. Chang, C.C., Manousakas, I., Pu, Y.R., Liang, S.M., Chen, C.H., Chen, T.S., Yu, F.M., Yang, W.H., Tong Y.C. and Kuo C.L., “In Vitro Study of Ultrasound Based Real-Time Tracking for Renal Stones in Shock Wave Lithotripsy: Part II—A Simulated Animal Experiment” The Journal of Urology, Vol. 167, Issue 6, pp. 2594-2597, June, 2002.
7. Ching-Jen Wang, Jih-Yang Ko and Liang-Mei Chen, “Treatment of Lateral Epicondylitis of the Elbow With Shock Waves” Number 387, pp. 60-67, 2001.
8. Ching-Jen Wang, Han-Shiang Chen, Chin-En Chen and Kuender D. Yang, “Tteatment of Nonunions of Long Bone Fractures With Shock Waves” Number 387, pp. 95-101, 2001.
9. Cleveland, R.O., Bailey, M.R., Fineberg, N., Hartenbaum, B., Lokhandwalla, M., McAteer, J.A. and Sturtevant, B., “Design and characterization of a research electrohydraulic lithotripter patterned after the Dornier HM3,” Review of Scientific Instruments, Vol. 71, No, 6, pp. 2514-2525, June, 2000.
10. Coleman A.J., Saunders J.E. and Choi, M.J., “An Experimental Shock Wave Generator for Lithotripsy Studies,” Physics in Medicine and Biology, Vol.34, No.11, pp.1733, 1989.
11. Ebrahimi, F., and Wang, F., “Fracture Behavior of Urinary Stones Under Compression,” Journal of Biomedical Materials Research, Vol. 23, No. 5, pp. 507-521, May, 1989
12. Eisenmenger, W., ” The Mechanisms of Stone Fragmentation In ESWL” Ultrasound in Medicine and Biology, Vol. 27, No. 5, pp. 683-693, 2001.
13. Etienne, J., Filipczynski, L., Kujawska, T., and Zienkiewicz, B., “Electromagnetic Hydrophone for Pressure Determination of Shock Wave Pulses,” Ultrasound in Medicine and Biology, Vol. 23, No. 5, pp. 747-754, 1997.
14. Hohenfellner, R. “Shock Treatment for Kidney Stone,” Siemens Review, Vol. 53, No. 6, pp. 35-36, Nov-Dec, 1986.
15. Haeusler, E., “Shock Wave Shape Optimisation in ESWL and PSWL,” IEEE/Engineering in Medicine and Biology Society Annual Conference, Vol. 10, No. 2, pp. 611, Nov, 1988.
16. Howard, D. and Sturtevant B., “In Vitro Study of the Mechanical Effects of Shock-Wave Lithotripsy,” Ultrasound in Medicine & Biology, Vol.23, pp.1107-1122, 1997.
17. Husain, J., Lynn, N., Jones, D., Collins G. and O’Reilly, P., “Extracorporeal Shock Waves Therapy in the Management of Peyronie’s Disease:Initial Experience,” BJU international, v. 86, n. 44, pp. 466-468, 2000.
18. Jang, Y.S., Akasaka, T., Sato, M., Kanai, H., and Chubachi, N., “Measurement and Analysis of Vibrations on Surface of Phantom Induced by Piezoelectric Extracorporeal Shock Wave Lithotripter,” Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes & Review Papers, Vol. 35, No, 5B, pp. 3163-3166, May, 1996.
19. Johnson, G.W., Cadwallader, K., Scheffel, S.B., and Epperly, T.D., “Treatment of Lateral Epicondylitis,” Am Fam Physician., Vol. 76, No. 6, pp. 843-8. Sep. 2007.
20. Kambe, K., Kuwahara, M., Kurosu, S., Takayama, K., Onodera, O., and Itoh, K., ’’ Underwater Shock Wave Focousing - An Application to Extracorporeal Lithotripsy,’’ Stanford Univ Press, pp. 641-647, 1986.
21. Lewin, P.A., Chapelon, J.Y., Mestas, J.L., Birer, A., and Cathignol, D., “Novel Method to Control P+/P- Ratio of the Shock Wave Pulses Used in the Extracorporeal Piezoelectric Lithotripsy (EPL),” Ultrasound in Medicine and Biology, Vol. 16, No. 5, pp. 473-488, 1990.
22. Liang, S.M., Chow, K.H., Manousakas, I., Pu, Y.R., and Chang, C.C., “Design and Fabrication of a Shock Wave Generator for Musculoskeletal Disorders” Biomedical Engineering - Applications, Basis and Communications, Vol. 18, No. 1, pp. 24-29, Feb. 25, 2006.
23. Manousakas, I., Liang, Shen-Min; Wan, Long-Ray; Wang, Chia-Hui, ” Development of a System of Automatic Gap-Adjusted Electrodes for Shock Wave Generators” Review of Scientific Instruments, Vol. 75, No. 11, pp. 4811-4819, November, 2004.
24. Martini, L., Giavaresi, G., Fini, M., Borsari, V., Torricelli, P., and Giardino, R., “Early Effects of Extracorporeal Shock Wave Treatment on Osteoblast-like Cells: a Comparative Study Between Electromagnetic and Electrohydraulic Devices,” J of Trauma, Vol. 61, No. 5, pp. 1198-206, Nov 2006.
25. McDermott, J., “EMI Shielding and Protective Components,” EDN, Vol. 24, No. 16, pp. 165-176, Sep 5, 1979.
26. Mitani, T., Shinohara, N., Matsumoto, H., Aiga, M., Kuwahara, N., and Ishii, T., “Noise-reduction Effects of Over Magnetron with Cathode Shield on High-voltage Input Side,” IEEE Transactions on Electron Devices, Vol. 53, No. 8, pp. 1929-1936, August, 2006.
27. Murad U.M., Bozdogan, O., Guney, S., Bilgili, H., Kaya, U., Olcay, B., Korkusuz, and F., “Effect of extracorporeal shock wave treatment (ESWT) on bone defects,” Bulletin Hospital for Joint Diseases, Vol. 58, No. 2, pp. 114-118, 1999.
28. Reichenberger, H., and Naser, G., “Electromagnetic Acoustic Source for the Extracorporeal Generation of Shock Waves in Lithotriptsy,” Siemens Forschungs- und Entwicklungsberichte/Siemens Research and Development Reports, Vol. 15, No. 4, , pp. 187-194, 1986.
29. Ross, G., “Shielding Methodology: How to Meet EMC Requirements,” Compliance Engineering, Vol. 14, No. 5, pp. 83-88, Sep-Oct, 1997.
30. Schwendeman, D. W. and Whitham, G. B., ”On Converging Shock Waves,” Mathematical and Physical Sciences, Vol. 413, No. 1845, pp. 297-311, Oct. 8, 1987.
31. Sommerfeld, M., and Mueller, H. M., “Experimental and Numerical Studies of Shock Wave Foucsing in Water,” Experiments in Fluids, Vol. 6, No. 3, pp. 209-216, 1988.
32. Sass, W., Braeunlich, M., Dreyer, H.P., Matura, E., Folberth, W., Priesmeyer, H.G., and Seifert, J., ”Mechanisms of Stone Disintegration by Shock Waves,” Ultrasound in Medicine and Biology, Vol. 17, No. 3, pp. 239-243, 1991.
33. Sturtvant, B., “Shock Wave Physics of Lithotriptors” in Smith’s Textbook of Endourology, Quality Medical Publishing, Inc., pp. 529-552, 1996.
34. Shrivastava, S.K., and Kailash, “Shock Wave Treatment in Medicine,” J. Biosci., Vol. 30, No. 2, pp. 269-75. Mar 2005.
35. Takayama, K., Obara, T., and Onodera, O., ‘’Holographic Interferometric Observation of Shock Wave Focusing to Extracoporeal Shock Wave Lithotripsy’’ The International Society for Optical Engineering, Vol. 1358, No. pt 2, pp. 1180-1190, 1991.
36. Takayama, K., and Saito, T., “Shock Wave/Geophysical and Medical Applications” Annual Review of Fluid Mechanics, Vol. 36, pp. 347-379, 2004.
37. Theodore, G.H., Buch, M., Amendola, A., Bachmann, C., Fleming, L.L., and Zingas, C., “Extracorporeal Shock Wave Therapy for the Treatment of Plantar Fasciitis. Foot Ankle Int., Vol. 25, No. 5, pp. 290-7, May 2004.
38. Wiggins, C.M., Thomas, D.E., Nickel, F.S., Reid, W.E., Ko, C.D., and Dugan, R.C., “Development and Validation of a Model to Predict EMI Effects of Switching Transients on Protective Circuits in High Voltage Subdstations,” IEEE International Symposium on Electromagnetic Compatibility, pp. 209-220, 1987.
39. Wang, C.J., Chen, H.S., Chen, W.S., and Chen, L.M., “Treatment of Painful Heels Using Extracorporeal Shock Wave,” J Formos Med Assoc., Vol. 99, No. 7, pp. 580-3, Jul. 2000.
40. Wang, C. J., Chen, Y. C., and Huang, H. Y., “Pathomechanism of Shock Wave Induced Injuries on Femoral Artery, Vein and Nerve,” 3rd Congress of the Int. Society for Musculoskeletal Shockwave Therapy, Naples, pp. 95, June 1-3, 2000.
41. Wang, C., Zhang, Q.H., “EMI and Its Elimination in an Integrated High Voltage Pulse Generator” IECON Proceedings of Industrial Electronics Conference, Vol. 2, pp. 1044-1049, 2000.
42. Wang, C.J., Chen, H.S., Chen, C.E., and Yang, K.D., “Treatment of Nonunions of Long Bone Fractures with Shock Waves,” Clin Orthop Relat Res., Vol. 387, pp. 95-101, Jun. 2001.
43. Wang, C.J., Ko, J.Y. and Chen, H.S., “Treatment of Calcifying Tendinitis of the Shoulder with Shock Wave Therapy,” Clinical Orthopadics and Related Research, No. 387, pp. 83-89, 2001
44. Wang, C. J., Huang, H. Y., and Pain, C. H., “Shock Wave Enhanced Necvascularization at the Tendon-bone Junction- An Experiment in Dog Model,” J. of Foot and Ankle, Vol. 41, No, 1, pp. 16-22, 2002.
45. Wang, C.J. “An Overview of Shock Wave Therapy in Musculoskeletal Disorders,” Chang Gung Med J., Vol. 26, No. 4, pp. 220-32, Apr, 2003.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2009-07-29起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2010-07-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw