進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0812200914203760
論文名稱(中文) 以非監督式分群法分析客戶特性之差異-以紡織業為例
論文名稱(英文) Client Difference Analysis Using Unsupervised Clustering Method – A Case Study of Textile Industry
校院名稱 成功大學
系所名稱(中) 工業與資訊管理學系專班
系所名稱(英) Department of Industrial and Information Management (on the job class)
學年度 96
學期 2
出版年 97
研究生(中文) 曾琬婷
研究生(英文) Wan-Ting Tseng
學號 r3795101
學位類別 碩士
語文別 中文
論文頁數 62頁
口試委員 指導教授-利德江
口試委員-王清正
口試委員-李賢得
中文關鍵字 集群分析  客戶關係管理  客戶終身價值  RFM模型  資料探勘 
英文關鍵字 data mining  CRM  RFM model  clustering  CLV 
學科別分類
中文摘要 在製造業中,生產往往比銷售來的重要,公司主要致力於生產高品質的產品,生產高品質的產品固然重要,但是好的產品若是沒有好的銷售,也無法發揮良好的營運績效,因此,要是能在行銷上運用歷史銷售資料,針對客戶購買行為進行深入的分析探討,應該可以充分的掌握客戶與貼近市場需求。
本研究以紡織業為例進行個案分析,利用LRFM的資料模式預測客戶終身價值,依LRFM模式的4個指標進行客戶分群,分出五個客戶群組,再根據客戶價值矩陣(FM)與客戶忠誠矩陣(LR)分析分群後的客戶群組,進行客戶群組的命名。再分別以特別命名的三特質,生產廠別「台灣廠、大陸廠」、銷售別「內銷、外銷、大陸」、新舊客戶別「新客戶、舊客戶」進行客戶特質分析,依照分群結果分析個別特質內不同的屬性分怖情況是否有差異,可以探知客戶特質表現,進而更加的了解市場及客戶購買行為,再針對不同特質所區隔的客戶訂定差異性的行銷策略以提高公司利潤。
經由個案分析及資料結果可以看出個案公司客戶的分布情形,新客戶比流失客戶所佔比例高,代表公司持續成長,但長期客戶金額偏低;進一步的分群後特質分析可以看出,台灣廠長期客戶高於大陸廠,外銷銷售與大陸銷售在主要分群上有對稱性;並分析不同特質的流失情況作比較,在管理上提出警訊,個別特質在客戶流失情況較大的屬性上,客戶的保留上要多作加強。
英文摘要 In the manufacturing industry, producing is often more important than selling. Company always devotes to produce the high quality products. Although producing the high quality products is more important, the operation performance can not be achieved without good sales. Hence it's better to use the history sales data in marketing to have further analysis in the light of the customer purchase behavior. It would understand customer adequately and be close to the market.
This research is a case study analysis base on textile industry, explores the customer lifetime value using LRFM model. According to 4 indexes of LRFM to cluster customers into five groups, and names the each group by the Customer Value Matrix and the Customer Loyal Matrix. Then processes customers' special characteristic analysis respectively by the three special named characteristics, they are Manufacture Plant “Taiwan plant, Mainland China plant”, Sales Type “Internal Sales, Export Sales, Mainland China Sales” and New/Old customer “New Customer, Old Customer”. Check if there are any differences in distribution of the clustering result of the analysis on respective characteristics. This research can explore the manifestation of customer characteristic to understand more market and the customer purchase behavior. Improve company profit by making differential strategies aim at the customers be separated into different characteristic.
Through the result of case study analysis is able to find out the customers' distribution situation of the case company. The proportion of New Customer is higher than the Churn Customer standing for continuing growth of the company, and the amount of Longtime Customer is lower. After further clustering and special characteristic analyzing, there are several points possible to be seen. First, the quantity of Longtime Customer in Taiwan plant is higher than the Mainland China plant. Second, the symmetry in the main groups of Export sales and Mainland China sales is signification. Final, to compare by analyzing churn situation of different characteristic could provide the warning messages on management. Need to enhance the retention of customers when the attribute is serious in churn proportion which comparing the Churn Customer in respective characteristic.
論文目次 表目錄 VII
圖目錄 IX
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 2
第三節 研究範圍及限制 3
第四節 研究流程 4
第二章 文獻探討 5
第一節 客戶關係管理(CRM) 5
第二節 資料庫行銷 7
第三節 客戶價值分析 10
第四節 資料庫知識發掘(KDD)與資料探勘 13
第五節 統計方法 17
第三章 研究方法 21
第一節 研究架構 21
第二節 建立LRFM模型 22
第三節 進行群體樣式分析 24
第四節 進行客戶分群 28
第五節 進行客戶特質分析 30
第四章 個案分析 34
第一節 個案公司說明 34
第二節 資料前置處理 35
第三節 資料分群 37
第四節 客戶特質分析 47
第五章 結論 58
參考文獻 59
參考文獻 一.中文部分
陳文華(1999)。應用資料倉儲系統建立CRM。資訊與電腦,122-127。
楊明璧、吳佳儒(2004)。顧客關係連結方式、消費者屬性以及顧客終身價值關聯性之探討-以網路書店為例。Electronic Commerce Studies 2 (2):181-207。
趙景明、楊清潭(2003)。應用資料探勘於顧客價值預測-以醫療器材業為例。 2003「商情資料庫分析與建置之研究」成果發表會。
李章偉(2000)。資料庫行銷之顧客價值分析:以3C流通業為例。國立臺灣大學國際企業學研究所碩士論文。
林幸怡(1997)。擴充先前知識以輔助資料挖掘。國立政治大學資訊管理研究所碩士論文。
林柏甫(2003)。客戶關係管理應用於顧客保留及顧客成長以電子業為例。國立成功大學高階管理碩士在職專班碩士論文。
張心馨、蔡獻富(2004)。以Data Mining技術結合SOM和K-Mean的消費者分群方法於顧客關係管理和績效獲利性評估之個案研究。資訊管理學報 11 (4):161-203。
張倩茜(譯)(2001)。資料庫行銷實用策略。台北:麥格羅希爾。(Hughes, A. M., 2000)。
盧坤利(2000)。台灣地區企業採用顧客關係管理系統之影響因素研究。國立臺灣大學商學研究所碩士論文。
洪新原、孫敏育、洪萬富(2002)。統計分析技術在國內資訊管理研究的使用調查-主要期刊論文之內容分析。資訊管理學報 8 (2):1-22。
林邦傑(1981)。集群分析及其應用。教育與心理研究 4:31-57。
郭逢耀(1997)。影響我國醫療保健支出的家庭因素之研究。輔仁大學應用統計研究所碩士論文。

二.英文部分
Alavi, M., and P. Carlson. 1992. A Review of MIS Research and Discipline Development. Journal of Management Information System 8 (4):45-62.
Athanassopoulos, A. D. 2000. Customer satisfaction cues to support market segmentation and explain switching behavior. Journal of Business Research 47 (3):191-207.
Berger, P. D., and N. I. Nasr. 1998. Customer lifetime value: marketing models and applications. Journal of InteractiveMarketing 12 (1):17-30.
Brachman, R. J., and T. Anand. 1996. The process of knowledge discovery in databases. Advances in knowledge discovery and data mining:37-57.
Brown, S. A. 2000. Customer Relationship Management: A Strategic Imperative in the World of E-Business. Canada: John Wiley & Sons.
Crowder, M., D. J. Hand, and W. Krzanowski. 2007. On optimal intervention for customer lifetime value. European Journal of Operational Research 183 (3):1550-1559.
Fayyad, U., G. Piatetsky-Shapiro, and P. Smyth. 1996a. Advances in knowledge discovery and data mining: American Association for Artificial Intelligence Menlo Park, CA, USA
Fayyad, U., G. Piatetsky-Shapiro, and P. Smyth. 1996b. Data mining and knowledge discovery in databases. AI MAGAZINE, 37-54.
Fayyad, U., G. Piatetsky-Shapiro, and P. Smyth. 1996c. The KDD process for extracting useful knowledge from volumes of data. Communications of the ACM 39 (11):27-34.
Fu, Y. 1997. Data Mining Task:Technique and Applications. IEEE Potentials Press.
Green, P. E., R. E. Frank, and P. J. Robinson. 1967. Cluster Analysis in Test Market Selection. Management Science 13 (8):387-400.
Gupta, S., and D. R. Lehmann. 2003. Customers as assets. Journal of Interactive Marketing 17 (1):9-24.
Hair Jr, J. F., R. E. Anderson, R. L. Tatham, and W. C. Black. 1995. Multivariate data analysis: with readings: Prentice-Hall, Inc. Upper Saddle River, NJ, USA.
Hughes, A. M. 1994. Strategic Database Marketing. Chicago: Probus Publishing.
Jones, M. A., D. L. Mothersbaugh, and S. E. Beatty. 2000. Switching barriers and repurchase intentions in services. Journal of Retailing 76 (2):259-374.
Kalakota, R., and M. Robinson. 1999. E-Business: Roadmap for Success Addison-Wesley.
Kaymak, U. 2001. Fuzzy target selection using RFM variables. In IFSA World Congress and 20th NAFIPS International Conference, 2001. Joint 9th, 1038 -1043.
Kim, J., E. Suh, and H. Hwang. 2003. A model for evaluating the effectiveness of CRM using the balanced scorecard. Journal of Interactive Marketing 17 (2):5-19.
Kim, S. Y., T. S. Jung, E. H. Suh, and H. S. Hwang. 2006. Customer segmentation and strategy development based on customer lifetime value: A case study. Expert Systems with Applications 31 (1):101-107.
Kotler, P. 2000. Marketing Management: Prentice Hall.
MacQueen, J. B. 1967. Some Methods for classification and Analysis of Multivariate Observations. Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability Berkeley, University of California Press (1):281-297.
Mani, D. R., J. Drew, A. Betz, and P. Datta. 1999. Statistics and data mining techniques for lifetime value modeling. Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining:94-103.
Marcus, C. 1998. A practical yet meaningful approach to customer segmentation. Journal of Consumer Marketing 15 (5):494-504.
Miglautsch, J. 2000. Thoughts on RFM scoring. Journal of Database Marketing 8 (1):67-72.
Milligan, G. W. 1985. An algorithm for generating artificial test clusters. Psychometrika 50 (1):123-127.
Reinartz, W. J., and V. Kumar. 2000. On the Profitability of Long-Life Customers in a Noncontractual Setting: An Empirical Investigation and Implications for Marketing. Journal of Marketing 64 (4):17-35.
Richard, K. 1998. The 80/20 Principle:The Secret of Achieving More with Less New York. US.: Doubleday.
Sharma, S. 1996. Applied multivariate techniques.: NY:John Wiley& Sons, Inc.
Sung, H. H., and C. P. Sang. 1998. Application of data mining tools to hotel data mart on the Intranet for database marketing Expert Systems with Applications 15 (1):1-31.
Thomas, J. S. 2001. A methodology for linking customer acquisition to customer retention. Journal of Marketing Research 38 (2):262-268.
Tiwana, A. 2001. The Essential Guide to Knowledge Management: E-Business and CRM Application: Prentice Hall
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-07-25起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2033-07-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw