進階搜尋


 
系統識別號 U0026-0812200914182453
論文名稱(中文) 整合微流體元件進行光纖對位與細胞樣品操控之系統並應用於雙光鉗之抓取與拉伸
論文名稱(英文) A Fiber Coupling and Cell Manipulating System Utilizing Microfluidic Devices for On-chip Dual-beam Optical Trap-and-Stretch
校院名稱 成功大學
系所名稱(中) 工程科學系碩博士班
系所名稱(英) Department of Engineering Science
學年度 96
學期 2
出版年 97
研究生(中文) 賴嘉偉
研究生(英文) Chia-wei Lai
電子信箱 n9695432@mail.ncku.edu.tw
學號 N9695432
學位類別 碩士
語文別 中文
論文頁數 89頁
口試委員 指導教授-李國賓
口試委員-曾繁根
口試委員-楊瑞珍
召集委員-黃吉川
口試委員-謝達斌
中文關鍵字 微流體  光纖調整器  光纖對位  雙光鉗  微幫浦  微閥門  介電泳力  微機電系統 
英文關鍵字 fiber manipulator  microfluidics  fiber alignment  micropump  dual-beam optical trap  microvalve  dielectrophoresis  MEMS 
學科別分類
中文摘要 光纖式雙光鉗技術(Fiber-dual-beam optical trap)已被廣泛地運用於微粒抓取、操控與細胞力學等研究上,然而光纖對位及樣本的輸送與操控定位仍是挑戰度極高的技術問題。本研究成功研發一主動式雙軸光纖調整器(Two-axis fiber manipulator)來建立光纖對位系統,並將此系統整合於微流道系統中而構成雙光鉗晶片。本晶片以微機電系統技術(Micro-electro-mechanical-systems, MEMS)製造而成,晶片中包含了微流道、光纖管道、氣室、可控制式移動側壁及薄膜等微結構。在光纖對位系統中,可控制式側壁及薄膜將隨著氣壓改變而產生不同程度的形變,藉由調整光纖管道兩側與下方的氣室壓力,光纖會產生位移現象。當一對光纖調整至光的耦合效率(Coupling efficiency)最大時,便可使兩光纖達成準確的對位。實驗顯示當光纖調整器通入40 psi 的氣體壓力下,光纖能產生13 μm的最大位移,這足以讓兩光纖精準的對位。在埋入單模光纖(Single-mode fiber, SMF)及光纖對光纖(Fiber-to-Fiber, F-to-F)的距離為200 μm的情況下,耦合效率可達到4.1%。
此外,為了利用雙光鉗抓取並操控細胞,本研究整合了上述的光纖對位系統,開發出一細胞樣品操控與光纖對位之整合式雙光鉗微流體晶片。細胞樣品可成功被三組微幫浦所組成的細胞傳輸系統輸送至聚焦區,聚焦後的細胞樣品再依序傳送到光鉗抓取區中,抵達光鉗抓取區中的細胞將被一對微閥門所擋住,並被20 Vp-p 及900 KHz條件下所產生的負介電泳力(Dielectrophoretic, DEP)抬升至雙光鉗操作區,最後再利用主動光纖調整器及雙光鉗進行細胞的操控與拉伸。本研究已成功利用此微流體晶片抓取單一紅血球細胞,並進行細胞的拉伸與操控的實驗。
整體而言,本研究所開發出的整合式微流體晶片,可應用於單一細胞或微粒體之抓取、操控抑或細胞力學之研究。除此之外,本研究所發展的光纖對位系統,不但可應用於光纖的光學特性分析上,也可輕易的整合進其他的微流體系統,如毛細管電泳或細胞計數器進行細胞、蛋白質、去氧核醣核酸(Deoxyribonucleic acid, DNA)及核醣核酸(Ribonucleic acid, RNA)等領域之研究。
英文摘要 Fiber-dual-beam optical trap has been widely used for many applications such as the trapping or manipulation of micro-particles and cell biomechanics study. However, for these applications, precise alignment of a pair of optical fibers still remains a challenge. To tackle this issue, this study proposes a two-axis active optical-fiber manipulator for on-chip fiber alignment and optical dual beam trap applications. The chip comprising of a flow channel, air chambers, fiber channels, controllable moving walls and membrane microstructures were fabricated by using micro-electro-mechanical-systems (MEMS) technology. By adjusting air pressures to control the deflection of the pneumatic chambers placed orthogonal to and underneath the fiber channels, accurate alignment of a pair of co-axial optical-fibers, which was indicated by maximizing fiber-to-fiber coupling efficiency measured in real-time, has been achieved. A maximum displacement of a buried fiber as large as 13 μm at an applied pressure of 40 psi for one air chamber has been demonstrated. The maximum coupling efficiency for two single-mode optical-fibers facing each other at a distance of 200 μm was measured to be 4.1%. The multiple cells trapping manipulation by using the proposed chip also has been demonstrated. In addition, this study also developed a new microfluidic chip integrating the proposed fiber alignment device, cell transportation and pre-positioning systems utilizing MEMS techniques. The developed microfluidic chip is capable of delivering and pre-positioning cells in a predefined trapping zone, followed by manipulation of buried optical fibers and dual beam lasers for optical trapping, manipulation and stretcher. Experimental results showed that by integrating three micropumps connected in series, the cell samples were automatically delivered into the flow focusing area and then transported to the trapping zone. A single cell can be confined by micro-valves and then elevated towards the optical axis by a negative-DEP force operated at 20 Vp-p and 900 KHz. Finally, a red blood cell was successfully trapped, manipulated and stretched by active fiber manipulators and dual beam optical trap using the proposed microfluidic system. The developed microfluidic chip is promising for further applications that require trapping, manipulation and biomechanical analysis of a single cell or particle. Furthermore, the developed fibers alignment system is not only promising for applications requiring co-axial fibers for in-line optical analysis, but can also be easily integrated with other microfluidic systems such as capillary electrophoresis or micro flow cytometers for cell, protein, and DNA analysis.
論文目次 中文摘要 I
Abstract III
誌謝 V
目錄 VII
圖目錄 X
縮寫及符號說明 XIII

第一章 緒論
1.1 微機電系統簡介 1
1.2 生醫微流體晶片 2
1.3 文獻回顧 3
1.4 研究動機與目的 8
1.5 論文架構 10
第二章 理論與設計
2.1 光纖式雙光鉗抓取及拉伸細胞原理 12
2.2 雙光鉗晶片 14
2.2.1 主動式光纖對位系統原理與設計 15
2.2.2 雙光鉗操控細胞之原理 18
2.2.3 晶片設計 19
2.3 細胞樣品操控與光纖對位之整合式雙光鉗晶片 21
2.3.1 細胞傳輸系統原理與設計 22
2.3.2 細胞定位系統原理與設計 25
2.3.3 主動式光纖對位系統原理與設計 29
2.3.4 晶片設計 31
第三章 製程與實驗方法
3.1 材料選擇與光罩製作 35
3.2 雙光鉗晶片製程與實驗架設 37
3.2.1 SU-8母模製程 37
3.2.2 PDMS鑄模製程 39
3.2.3 晶片封裝 42
3.2.4 實驗架設 43
3.3 細胞樣品操控與光纖對位之整合式雙光鉗晶片製程與實驗架設 45
3.3.1 雙層SU-8母模製程 45
3.3.2 PDMS鑄模製程 47
3.3.2 ITO電極製程 49
3.3.3 晶片封裝 52
3.3.4 實驗架設 54
第四章 結果與討論
5.1 雙光鉗晶片 56
4.1.1 光纖對位系統與光纖之對位 56
4.1.2 雙光鉗抓取與操控紅血球 64
4.2 細胞樣品操控與光纖對位之整合式雙光鉗晶片 66
4.2.1 光纖對位系統對準光纖 66
4.2.2 細胞傳輸系統傳送與聚焦細胞 68
4.2.3 細胞定位系統預定位細胞 69
4.2.4 雙光鉗抓取、操控及拉伸單一紅血球 71
第五章 結論與未來展望
5.1 結論 75
5.1 未來展望 76
參考文獻 78
自述 86
著作 88
參考文獻 [1] R. P. Feynman, “There is plenty of room at the bottom,” Journal of Microelectromechanical systems, Vol. 1(1), pp. 60-66, 1992.
[2] N. Maluf, “An introduction to microelectromechanical systems Engineering,” Artech House, Boston, pp. 1, 2000.
[3] K. Seiler, D. J. Harrison and A. Manz, “Planar chips technology for miniaturization and integration of separation techniques into monitoring systems – capillary electrophoresis on a chip,” Journal of Chromatography, Vo1. 593, pp. 253-258, 1992.
[4] A. T. Woolley, K. Q. Lao, A. N. Glazer, and R. A. Mathies, “Capillary electrophoresis chips with integrated electrochemical detection,” Analytical Chemistry, Vol. 70(4), pp. 684-688, 1998.
[5] Y. H. Chang, G. B. Lee, F. C. Huang, Y. Y. Chen, and J. L. Lin, “Integrated polymerase chain reaction chips utilizing digital microfluidics,” Biomedical Microdevices, Vol. 8(3), pp. 215-225, 2006.
[6] A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Physical Review Letters, Vol. 24(4), pp. 156-159, 1970.
[7] A. Ashkin, J. M. Dziedzic, J. E. Bjokholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Optics Letters, Vol. 11(5), pp. 288-290, 1986.
[8] E. R. Lyons and G. J. Sonek, “Confinement and bistability in a tapered hemispherically lensed optical fiber trap,” Applied Physics Letters, Vol. 66(13), pp. 1584-1586, 1995.
[9] W. Singer, M. Frick, S. Bernet, and M. Ritsch-Marte, “Self-organized array of regularly spaced microbeads in a fiber-optical trap,” Journal of The Optical Society of America B-optical Physics, Vol. 20(7), pp. 1568-1574, 2003.
[10] S. D. Collins, R. J. Baskin and D. G. Howitt, “Microinstrument gradient-force optical-trap,” Applied Optics, Vol. 38(28), pp. 6068-6074, 1999.
[11] M. Zahn and S. Seeger, “Optical tweezers in pharmacology,” Cellular and Molecular Biology, Vol. 44(5), pp. 747-761, 1998.
[12] K. Schutze, H. Posl, and G. Lahr, “Laser micromanipulation systems as universal tools in cellular and molecular biology and in medicine,” Cellular and Molecular Biology, Vol. 44(5), pp. 735-746, 1998.
[13] A. Clement-Sengewald, K. Schutze, A. Ashkin, G. A. Palma, G. Kerlen, and G. Brem, “Fertilization of bovine oocytes induced solely with combined laser microbeam and optical tweezers,” Journal of Assisted Reproduction and Genetics, Vol. 13(3), pp. 259-265, 1996.
[14] R. A. Flynn, A. L. Birbeck, M. Gross, M. Ozkan, B. Shao, M. M. Wang, and S. C. Esener, “Parallel transport of biological cells using individually addressable vcsel arrays as optical tweezers,” Sensors and Actuators B,Vol. 87(2), pp. 239-243, 2002.
[15] B. Shao, S. Zlatanovic, M. Ozkan, A. L. Birkbeck, and S. C. Esener, “Manipulation of microspheres and biological cells with multiple agile VCSEL traps,” Sensors and Actuators B, Vol. 113(2), pp. 866-874, 2006.
[16] A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, “Demonstration of a fiber optic light-force trap,” Optics Letters, Vol. 18(21), pp. 1867-1869, 1993.
[17] S. Monajembashi and K. O. Greulich, “Trapping of dielectric particles and cells by a fiber-coupled laser trap,” Proceedings of SPIE, Vol. 2926, pp. 240-250, 1996.
[18] F. U. Gast, P. S. Dittrich, and P. Schwille et al., “The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology,” Microfluid Nanofluid, Vol. 2(1), pp. 21-36, 2006.
[19] E. A. Evans, “New membrane concept applied to analysis of fluid shear- and micropipette-deformed red blood cells,” Biophysical Journal, Vol. 13, pp. 941-954, 1973.
[20] J. Sleep, D. Wilson, R. Simmons, and W. Gratzer, “Elasticity of the red cell membrane and its relation to hemolytic disorders: An optical tweezers study,” Biophysical Journal, Vol. 77(6), pp. 3085-3095, 1999.
[21] J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Kas, “Optical deformability of soft biological dielectrics,” Physical Review Letters, Vol. 84(23), pp. 5451-5454, 2000.
[22] P. B. Bareil, Y. Sheng, and A. Chiou, “Local stress distribution on the surface of a spherical cell in an optical stretcher,” Optics Express, Vol. 14(25), pp. 12503-12509, 2006.
[23] S. B. Shohet, N. Mohandas, and G. Tchernia, “Homozygous hereditary elliptocytosis: implications for the function of membrane protein band 4.1,” Progress in clinical and biological research, Vol. 97, pp. 45-52, 1982.
[24] B. M. Cooke, N. Mohandas, and R. L. Coppel, “The malaria-infected red blood cell: Structural and functional changes,” Advances in Parasitology, Vol. 50, pp. 1-86, 2001.
[25] J. Guck, S. Schinkinger, and B. Lincoln et al., “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophysical Journal, Vol. 88(5), pp. 3689-3698, 2005.
[26] B. Li, H. H. Wirz, and A. Sharon, “Optimizing fiber coupling with a quasi-passive microoptical bench,” Journal of Microelectromechanical Systems, Vol. 14(6), pp. 1339-1346, 2005.
[27] R. Hauffe, U. Siebel, K. Petermann, R. Moosburger, J. R. Kropp, and F. Arndt, “Methods for passive fiber chip coupling of integrated optical devices,” IEEE Transactions on Advanced Packaging, Vol. 24(4), pp. 450-455, 2001.
[28] Y. C. Tung, M. Zhang, and C. T. Lin, et al., “PDMS-based opto-fluidic micro flow cytometer with two-color, multi-angle fluorescence detection capability using PIN photodiodes,” Sensors and Actuators B, Vol. 98(2-3), pp. 356-367, 2004.
[29] L. Chen, W. Rong, L. Sun, and H. Xie, “Micromanipulation Robot for Automatic Fiber Alignment,” The IEEE International Conference on Mechatronics & Automation, pp. 1756-1759, 2005.
[30] J. Sin, D. Popa, and H. Stephanou, “Model based automatic fiber alignment,” Proc. Fiber Optic Automation Conference, pp. 415-420, 2002.
[31] R. Jebens, W. Trimmer, and J. Walker, “Microactuators for aligning optical fibers,” Sensors and Actuators, Vol. 20(1-2), pp. 65-74, 1989.
[32] R. R. Syms, H. Zou, J. Yao, D. Uttamchandani, and J. Stagg, “Scalable electrothermal MEMS actuator for optical fiber alignment,” Journal of Micromechanics and Microengineering, Vol. 14(12), pp. 1633-1639, 2004.
[33] D. J. Laser and J. G. Santiago, “A review of micropumps,” Journal of Micromechanics and Microengineering, Vol. 14(6), pp. 35-64, 2004.
[34] J. G. Smits, “Piezoelectric micropump with three valves working peristaltically,” Sensors and Actuators A, Vol. 21-23, pp. 203-206, 1990.
[35] W. C. Tang, T. C. H. Nguyen, and R. T. Howe, “Laterally driven polysilicon resonant microstructures,” Sensors and Actuators, Vol. 20(1-2), pp. 25-32, 1989.
[36] F. C. M. Van De Pol, H. T. G. Van Lintel, M. Elwenspoek, and J. H. J. Fluitman, “A thermopneumatic micropump based on micro-engineering techniques,” Sensors and Actuators, Vol. 21(1-3), pp. 198-202, 1990.
[37] Q. Gong, Z. Zhou, Y. Yang, and X. Wang, “Design, optimization and simulation on microelectromagnetic pump,” Sensors and Actuators A, Vol. 83(1-3), pp. 200-207, 2000.
[38] C. W. Huang, S. B Huang, and G. B. Lee, “Pneumatic micropumps with serially connected actuation chambers,” Journal of Micromechanics and Microengineering, Vol. 16(11), pp. 2265-2272, 2006.
[39] C. H. Wang and G. B. Lee, “Automatic bio-sampling chips integrated with micro-pumps and micro-valves for disease detection,” Biosensors & Bioelectronics, Vol. 21(3), pp. 419-425, 2005.
[40] J. Auerswald and H. F. Knapp, “Quantitative assessment of dielectrophoresis as a micro fluidic retention and separation technique for beads and human blood erythrocytes,” Microelectronic Engineering, Vol. 67-68, pp. 879-886, 2003.
[41] H. Li, Y. Zheng, D. Akin, and R. Bashir, “Characterization and modeling of a microfluidic dielectrophoresis filter for biological species,” Journal of Microelectromechanical Systems, Vol. 14(1), pp. 103-111, 2005.
[42] T. Schnelle, T. Müller, G. Gradl, S.G. Shirley, and G. Fuhr, “Dielectrophoretic manipulation of suspended submicron particles,” Electrophoresis, Vol. 21(1), pp. 66-73, 2000.
[43] S. K. Hsiung, C. T. Chen, and G. B. Lee, “Micro-droplet formation utilizing microfluidic flow focusing and controllable moving-wall chopping techniques,” Journal of Micromechanics and Microengineering, Vol. 16(11), pp. 2403-2410, 2006.
[44] M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science, Vol. 288(5463), pp. 113-116, 2000.
[45] C. H. Wang and G. B. Lee, “Pneumatically-driven peristaltic micropumps utilizing serpentine-shape channels,” Journal of Micromechanics and Microengineering, Vol. 16(2), pp. 341-348, 2006.
[46] P. J. Crosland-Taylor, “A device for counting small particles suspended in a fluid through a tube,” Nature, Vol. 171(4340), pp. 37-38, 1953.
[47] R. J. Yang, C. C. Chang, S. B. Huang, and G. B. Lee, “A new focusing model and switching approach for electrokinetic flow inside microchannels,” Journal of Micromechanics and Microengineering, Vol. 15(11), pp. 2141-2148, 2005.
[48] X. B. Wang, Y. Huang, F. F. Becker, and P. R. C. Gascoyne, “A unified theory of dielectrophoresis and travelling wave dielectrophoresis,” Journal of Physics D: Applied Physics, Vol. 27, pp. 1571-1574, 1994.
[49] K. J. Garcia, “Calculating component coupling coefficients,” Laser Focus World, pp. 50-+, 2000.
[50] P. B. Bareil, Y. Sheng, Y. Q. Chen, and A. Chiou, “Calculation of spherical red blood cell deformation in a dual-beam optical stretcher,” Optics Express, Vol. 15, pp. 16029-16034, 2007.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2009-07-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2009-07-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw