進階搜尋


 
系統識別號 U0026-0812200914175715
論文名稱(中文) 藉由主動式磁浮軸承對銑切主軸之非線性控制
論文名稱(英文) Nonlinear Spindle Control for Milling Process by Using Active Magnetic Bearings
校院名稱 成功大學
系所名稱(中) 機械工程學系碩博士班
系所名稱(英) Department of Mechanical Engineering
學年度 96
學期 2
出版年 97
研究生(中文) 施力文
研究生(英文) Li-Wen Shih
電子信箱 n1695473@mail.ncku.edu.tw
學號 n1695473
學位類別 碩士
語文別 中文
論文頁數 110頁
口試委員 口試委員-陳明新
口試委員-成維華
指導教授-蔡南全
中文關鍵字 磁浮軸承  銑切  模糊理論 
英文關鍵字 Active Magnetic Bearing  Fuzzy Logic Algorithm  Cutting Process 
學科別分類
中文摘要 本文旨在建立主軸銑切系統於不同切削條件下之部分動態參數,並整合磁浮軸承技術、模糊理論及非線性控制器,節制主軸因切削工件時切削力作用所產生的偏擺。 本研究將主動式磁浮軸承運用於銑切系統上,建立磁力數學模型為一電流及氣隙的非整數階雙變數之非線性函數,利用反運算反推磁浮系統所需提供的電流大小,以得到與切削力相同大小的抗衡磁吸力作為主軸偏移的補償。 由於機台在不同的切削條件下擁有不同的系統動態,本文透過實驗法建立銑切系統於不同切削條件下之部分動態,配合模糊理論給予不同之權重分配,找出與銑切當下最接近之動態參數以估測切削力大小,並利用自調式增益演算法,改變估測切削力大小。 由電腦模擬之結果,可見其具有良好的抑制效能,工件之加工精度亦能大幅提升。
英文摘要 The main goal of this research is to regulate the spindle deviation under different milling conditions by using Active Magnetic Bearing(AMB) technology, fuzzy logic algorithm and nonlinear adaptive control loop. Since the dynamics of milling system is highly dominated by system parameters, such as speed of spindle and feedrate, therefore the system dynamic model is more appropriate to be established by experiments instead of using theoretical analysis. The experimental data are utilized to estimate system parameters under various milling conditions before the fuzzy logic algorithm and the estimated cutting force are developed. Once the cutting force can be estimated, a compensation force is to be provided by the AMB to regulate spindle deviation. Since the magnetic force is highly nonlinear, the characteristic of AMB is investigated by experiments and a nonlinear mathematical model, in terms of air gap between spindle and magnetic pole and coil current, is established. Based on the model of magnetic attraction force, the controller is expected to evaluate the quantity of magnetic force to counter balance the cutting force precisely. The simulation results exhibit the efficacy of spindle deviation regulation as that the surface quality of workpieces after milling process can be improved.
論文目次 中文摘要………………………………………………………………….I
英文摘要………………………………………………………………... II
致謝……………………………………………………………………..III
目錄……………………………………………………………………..IV
表目錄………………………………………………………………….VII
圖目錄…………………………………………………………………. IX
第一章 緒論...........................................1
1.1 研究動機............................................1
1.2 主動式磁浮軸承與高速銑切簡介........................2
1.3 文獻回顧............................................4
1.4 論文貢獻............................................7
1.5 論文架構............................................8
第二章 主動式磁浮軸承系統特性分析.......................9
2.1 AMB架構與實驗配置..................................10
2.2 磁力特性曲線建立...................................16
2.2.1 磁力量測結果與特性曲線建立...................17
2.2.2 磁極特性分析.....................................22
2.3 磁力非線性近似法...................................26
2.3.1 電磁力與電流關係.............................27
2.3.2 電磁力與氣隙關係.............................30
2.3.3 磁力雙變數表示法.............................31
第三章 銑切主軸動態分析................................35
3.1 主軸動態特性分析...................................36
3.1.1 實驗配置與規劃...............................37
3.1.2 銑切主軸建模.................................41
3.2 銑切動態特性分析...................................49
3.2.1 實驗配置與規劃...............................51
3.2.2 銑切動態建模.................................56
第四章 切削力補償之非線性控制..........................74
4.1 切削力補償機制.....................................74
4.2 模糊模型(Fuzzy Model).............................75
4.2.1 模糊理論.....................................76
4.2.2 模糊主軸系統之設計...........................81
4.2.3 模糊銑切主軸系統之設計.......................82
4.3 閉迴路系統模擬與分析...............................86
4.3.1 自調式適應增益演算法.........................91
4.4 結論...............................................97
第五章 結論與未來展望..................................98
5.1 結論...............................................98
5.2 未來發展與建議.....................................99
參考文獻..............................................101
附錄A.................................................104
附錄B.................................................105
自述..................................................110
參考文獻 [1] M. Spirig, Schmied, P. Jenckel, U. Kanne, “Three Practical Examples of Magnetic Bearing Control Design using a Modern Tool”, Journal of Engineering for Gas Turbines and Power, Vol. 124, No. 4, pp. 1025-1031, 2002.
[2] J. H. Kyung, C. W. Lee, “Controller Design for a Magnetically Suspended Milling Spindle Based on Chatter Stability Analysis”, JSME International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing, Vol. 46, No. 2, pp. 416-422, 2003.
[3] P. E. Allaire, R. R. Humphris, R. D. Kelm, “Dynamics of a Digitally Controlled Magnetic Bearing”, Nippon Kikai Gakkai Ronbunshu, Vol. 51, No. 465, pp. 1095-1100, 1985.
[4] N. C. Tsai, C. H. Kuo, R. M. Lee, “Regulation on Radial Position Deviation for Vertical AMB Systems”, Mechanical System and Signal Processing, Vol. 21, pp. 2777-2793, 2007.
[5] A. C. Lee, F. Z. Hsiao, D. Ko, “Analysis and Testing of MagneticBearing wish Permanent Magnets for Bias”, JSME International Journal, Vol. 37, No. 4, pp. 774-782, 1994.
[6] Y. H. Fan, A. C. Lee, “Design of a Permanent/Electromagnetic Magnetic Bearing-Controlled Rotor System”, Journal of the Franklin Institute, Vol. 334B, No. 3, pp. 337-359, 1997.
[7] S. L. Chen, C. T. Hsu, “Optimal Design of a Three-Pole Active Magnetic Bearing”, IEEE Transactions on Magnetics, Vol. 38, No. 5, pp. 3458-3466, 2002.
[8] C. T. Hsu, S. L. Chen, “Exact Linearization of a Voltage-Controlled 3-Pole Active Magnetic Bearing System”,IEEE Transactions on Control Systems Technology, Vol. 10, No. 5, pp. 618-625, 2002.
[9] N. C. Tsai, S. L. Hsu,“On Sandwiched Magnetic Bearing Design”, Electromegnetics, Vol. 27, No. 6, pp. 371-385, 2007.
[10] H. J. Ahn, S. W. Lee, S. H. Lee, D. C. Han, “Frequency Domain Control-Relevant Identification of MIMO AMB Rigid Rotor”, Automatica, Vol. 39, pp. 299-307, 2003.
[11] P. C. Tung, S. C. Chang, “Nonlinear Identification of a Magnetic Bearing Systems with Closed Loop Control”, JSME International Journal, Vol. 42, No. 4, 1999.
[12] L. K. Lauderbaugh, A. G. Ulsoy, “Dynamic Modeling for Control of Milling Process”, Journal of Engineering for Industry Transactions ASME, Vol. 110, No. 4, pp. 367-375, 1988.
[13] M. Y. Yang, T. M. Lee, “Hybrid Adaptive Control Based on the Characteristics of CNC End Milling”, Machine Tools & Manufacture, Vol. 42, pp. 489-499, 2002.
[14] H. Nolzen, R. Isermann, “Fast Adaptive Cutting Force Control for Milling Operation”, IEEE Conference on Control Applications, pp. 760-765, 1995.
[15] S. Jee, Y. Koren, “Adaptive Fuzzy Logic Controller for Feed Drives of a CNC Machine Tool”, Mechatroniccs, Vol. 14, No. 3, pp. 299-326, 2004.
[16] Y. H. Peng, “On the Performance Enhancement of Self-tuning Adaptive Control for Time-Varying Machining Processes”, International Journal Advanced Manufacturing Technology, Vol. 24, No.5, pp. 395-403, 2004.
[17] 陳建廷,“基於小波訊號處理之磁浮軸承系統鑑別”,碩士論文,國立成功大學,民國94年。
[18] N. C. Tsai, C. H. Kuo, R. M. Lee, “Regulation on Radial Position Deviation for Vertical AMB Systems”, Mechanical Systems and Signal Processing, Vol. 21, No. 7, pp. 2777-2793, 2003.
[19] B. C. Kuo, “Automatic Control Systems”, Seventh Edition, Prentice Hall, 1997.
[20] G. F. Franklin, J. D. Powell, E. N. Abbas, “Feedback Control of Dynamics Systems”, Third Edition, Addison Wesley, 1994.
[21] S. C. Jonathon Lin, “Computer Numerical Control”, 高立出版社, 1999.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2011-07-20起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2012-07-20起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw