進階搜尋


 
系統識別號 U0026-0812200914132785
論文名稱(中文) 整合型海岸變遷模式於台中港淤砂整治之應用
論文名稱(英文) An Application of Integrated Coastal Models on Protection of Sediment Siltation at Taichung Harbor
校院名稱 成功大學
系所名稱(中) 水利及海洋工程學系碩博士班
系所名稱(英) Department of Hydraulics & Ocean Engineering
學年度 96
學期 2
出版年 97
研究生(中文) 祝郁絜
研究生(英文) Yu-Jie Jhu
電子信箱 n8695416@mail.ncku.edu.tw
學號 n8695416
學位類別 碩士
語文別 中文
論文頁數 85頁
口試委員 口試委員-翁文凱
口試委員-陳文俊
指導教授-許泰文
中文關鍵字 台中港  SMC模式  GENESIS模式  海岸線變遷 
英文關鍵字 GENESIS  SMC  shoreline change  Taichung Harbor 
學科別分類
中文摘要 本研究利用西班牙整合型海岸變遷模式SMC(Costal Modeling System)及長期海岸線變遷模式GENESIS (GENEralized model for SImulating Shoreline change)進行台中港近岸水動力及海岸線變遷之數值研究。為了驗證SMC模式在波流場模擬之正確性,本文以波浪斜向入射離岸堤及突堤之案例探討SMC模式之適用性,在與前人數值結果與試驗資料比較下,模式展現十分合理之模擬結果。在GENESIS模式之相關參數率定方面,本研究以台中港歷年侵淤量及沿岸漂砂公式求得之漂砂量來校正GENESIS模式中之傳輸參數K1、K2。根據SMC模式模擬探討北淤砂區波流場及漂砂之結果,發現台中港自建港後,北淤砂區持續發生的漂砂淤積問題可能影響整個台中港正常之營運,故本文遂針對北淤砂區之淤砂問題擬定浚深方案,其疏浚方案依砂量不同分別為200萬方(2×106 m3)、300萬方及400萬方,並探討不同浚深方案下,北淤砂區之近岸波流場及漂砂侵淤變化。此外,針對浚深土方之收容問題,本研究於南防波堤以南至南填方區之間的南海堤外側,以上述疏濬土方進行近岸養灘及輸砂側渡(sand bypassing)兩種不同之人工養灘方案模擬,利用GENESIS模式模擬養灘後之岸線變遷,根據各方案之模擬結果,發現以近岸養灘配合輸砂側渡的綜合方案為穩定養灘岸線的最佳方案。
英文摘要 The main objective of this paper is to study the protection of sediment siltation and the variation of coastal line in Taichung Harbor using two numerical models, namely, SMC (Coastal Modeling System) and GENESIS (GENEralized model for SImulating Shoreline change System).
In order to validate the accuracy and applicability of SMC, we present numerical simulations of oblique wave propagating toward offshore breakwater and groin to validate the model capability. The effects of wave and current are both considered. Fairly good agreements are found by comparing with the available laboratory data and numerical models. In addition, the transport parameters (K1, K2) in GENESIS are reasonably calibrated against the field data of sediment erosion-accretion over the past years and the sediment transport based on the formula of longshore sediment transportation in Taichung Harbor, respectively.
We then apply SMC to numerically observe and investigate the siltation properties correlated with the water-wave, current, accretion and erosion variations on the north area with siltation of Taichung Harbor. However, it is found that a considerable deposition problem emerge. Consequently we present sets of numerical experiments under the dredge conditions of 2×106 m3, 3×106 m3 and 4×106 m3 to simulate the nearshore hydrodynamics and the sediment transportation on the north area with siltation of Taichung Harbor, respectively. In particular, based on the model results of GENESIS, a beach nourishment test to imitate the sludge of dredge on shoreline change behaviors on the part of south erodent coast is proposed. Both the mechanics of nearshore nourishment and sand passing are utilized. Overall, our results suggest that the best policy for stabilizing the coastal line is the nearshore nourishment algorithm accompanied the sand passing mechanics.
論文目次 中文摘要 Ⅰ
英文摘要 Ⅱ
誌謝 Ⅲ
目錄 Ⅳ
表目錄 Ⅵ
圖目錄 Ⅶ
符號說明 XⅡ
第一章 緒論 1
1-1研究動機及目的 1
1-2前人研究 3
1-2-1 波浪場之計算 3
1-2-2 近岸流之計算 4
1-2-3 海岸變遷之計算 5
1-3 本文組織 7
第二章 模式介紹 8
2-1 SMC整合型海岸變遷模式 8
2-2 GENESIS海岸線變遷模式 14
第三章 模式驗證暨台中港北淤砂區現況探討 20
3-1 SMC模式驗證 20
3-1-1 波浪斜向入射離岸堤 20
3-1-2 波浪斜向入射突堤 24
3-2 GENESIS模式之參數校正 27
3-3 台中港北淤砂區現況淤砂問題 31
3-1-1 近岸波場 31
3-1-2 近岸流場與漂砂潛勢 32
3-1-3 海岸侵淤變化 33
第四章 模式應用 43
4-1 台中港北淤砂區浚深方案 43
4-1-1 方案一:浚深土方200萬方 44
4-1-2 方案二:浚深土方300萬方 50
4-1-3 方案三:浚深土方400萬方 55
4-2 台中港南北填方區之間養灘及輸砂側渡方案 61
4-2-1 南海堤南段之近岸養灘方案 62
4-2-2 南海堤南段之輸砂側渡方案 68
4-2-3 方案比較與綜合方案 73
第五章 結論與建議 78
5-1 結論 78
5-2 建議 79
參考文獻 81
參考文獻 1. Bailard, J.A., “An Energetics Total Load Sediment Transport Model for a Plane Sloping Beach,” Journal of Geophysical Research, Vol. 86, No. C11, pp. 10938-10954 (1981).
2. Battjes, J.A. and J.P.F.M. Janssen, “Energy Loss and Set-up due to Breaking of Random Waves,” Proceedings of 16th International Conference on Coastal Engineering, pp. 569-578 (1978).
3. Berkhoff, J.C.W., “Computation of Combined Refraction-Diffraction,” Proceedings of 13th International Conference on Coastal Engineering, pp. 471-490 (1972).
4. Bijker, E.W., “Longshore Transport Computations,” Journal of Waterways, Harbours and Coastal Engineering Division, Vol. 91, pp. 687-701 (1971).
5. Bruun, P., “Coast Erosion and the Development of Beach Profiles,” U.S Army Corps of Engineers, Beach Erosion Board, Technical Memorandum No. 68 (1954).
6. Broker, H., I.R. Deigaard and J. Fredsoe, “Onshore/Offshore Sediment Transport and Morphological Modeling of Coastal Profiles,” Proceedings Conference Coastal Sediment’91, ASCE, New York, pp. 643-657 (1991).
7. Caldwell, J.M., “Wave Action and Sand Movement near Anaheim Bay, California,” U.S Army Corps of Engineers, Beach Erosion Board, Technical Memorandum No. 68 (1956).
8. Dean, R.G., “Equilibrium Beach Profiles: US Atlantic and Gulf Coast, ” Ocean Engineering Report No. 12, Department of Civil Engineering, University of Delaware, Newark, DE, USA (1977).
9. GIOC, “Spectral Wave Propagation Model,” State Coastal Office-Spanish Environmental Ministry and University of Cantabria, pp. 170 (2002h).
10. GIOC, “Wave Induce Currents Model in the Surf Zone,” State Coastal Office- Spanish Environmental Ministry and University of Cantabria, pp. 66 (2002i).
11. GIOC, “2DH-Morphodynamic Evolution Model for near Shore Areas,” State Coastal Office-Spanish Environmental Ministry and University of Cantabria, pp. 262 (2002j).
12. Grant, W.D. and O.S. Madsen, “Combined Wave and Current Interaction with a Rough Bottom,” Journal of Geophysical Research, Vol. 84, pp. 1797-1808 (1979).
13. Gravens, M.B., N.C. Kraus, and H. Hanson, “GENESIS: Generalized Model for Simulating Shoreline Change,” Report 2 workbook and system user’s manual. Technical Report CERC-89-19, Army Engineers waterways Experiment Station, Vicksburg, Miss (1991).
14. Hallermeier, R.J., “Sand Transport Limits in Coastal Structure Design,” Proceedings Coastal Structures '83, ASCE, New York, pp. 703-716 (1983).
15. Hanson, H. and N.C. Kraus, “GENESIS: Generalized Model for Simulating Shoreline Change,” Department of the Army, US Army Corps of Engineers (1989).
16. Hanson, H and N.C. Kraus, “Numerical Simulation of Shoreline Change at Lorain, Ohio, ” ASCE, Journal of Waterways, Ports, Coastal and Ocean Engineering, ASCE, Vol. 117, pp. 1-18 (1991)
17. Hsu, T.W. and C.C. Wen, “A Parabolic Equation Extended to Account for Rapidly Varying Topography,” Ocean Engineering, Vol. 28, pp. 1479-1498 (2001a).
18. Hsu, T.W., Y.J. Lan, Y.H. Wang and C.Y. Tsai, “Using Finite-Element Method to Simulate Wave Transformations in Surf Zone,” Journal of Engineering Mechanics, ASCE, Vol. 131, No. 11, pp. 1214-1217 (2005).
19. Kirby, J.T. and R.A. Dalrymple, “A Parabolic Equation for the Combined Refraction-Diffraction of Stokes Waves by Mildly Varying Topography.” Journal of Fluid Mechanics, Vol. 136, pp. 453-466 (1983a).
20. Kirby, J.T. and R.A. Dalrymple “Verification of a Parabolic Equation for Propagation of Weakly Non-linear Waves.” Coastal Engineering, pp. 219-232 (1984).
21. Kirby, J.T. and R.A. Dalrymple, “Modification to a Propagation Model for the Combined Refraction-Diffraction of Stokes Waves; Shallow Water, Large Angle and Breaking Wave Effects.” Report UFL/COEL-85/001, Coastal and Oceanographical Engineering Department, University of Florida, Gainesville (1985).
22. Kirby, J.T. and R.A. Dalrymple, “An Approximate Model for Nonlinear Dispersion in Monochromatic Wave Propagation Models.” Coastal Engineering, Vol. 9, pp. 545-561 (1986b).
23. Kirby, J.T., “A Note on Linear Surface Wave-current Interaction.” Journal of Geophysical Research, Vol. 89, pp. 745-747 (1984).
24. Kirby, J.T., “Higher-order Approximations in the Parabolic Equation Method for Water Waves.” Journal of Geophysical Research, Vol. 91, No. C1, pp. 933-952 (1986a).
25. Komar, P.D. and D.L. Inman, “Longshore Sand Transport on Beaches.” Journal of Geophysical Research, Vol. 73, No. 30, pp. 5914-5927 (1970).
26. Kraus, N.C., K.J. Gingerich, and J.D. Rosati, “Toward an Improved Empirical Formula for Longshore Sand Transport.” Proceedings of 21stInternational conference on Coastal Engineering, American Society of Civil Engineers, New York, Vol. 2, pp. 1182-1196 (1988).
27. Longuet-Higgins, M.S. and R.W. Stewart, “Radiation Stress in Water Waves -A Physical Discussion with Applications,” Deep-Sea Research, Vol. 11, pp. 529-562 (1964).
28. Longuet-Higgins, M.S. “Longshore Currents Generated by Obliquely Incident Sea Waves, 1,” Journal of Geophysical Research, Vol. 75, No. 33, pp. 6778-6789 (1970).
29. Maa, J.P.Y., T.W. Hsu, C.H. Tsai and W.J. Juang, “Comparison of Wave Refraction and Diffraction Models,” Journal Coastal Research, Vol. 16, No. 4, pp. 1073-1082 (2000).
30. Mei, C.C. and E.O. Tuck, “Forward Scattering by Long Thin Bodies,” SIAM Journal on Applied Mathematics, Vol. 39, pp. 178-191 (1980)
31. Ohnaka, S. and A. Watanabe, “Modeling of Wave-current Interaction and Beach Change,” Proceeding of 22th International Conference on Coastal Engineering, ASCE, New York, pp. 2443-2456 (1990).
32. Ou, S.H., S.Y. Tzang and T.W. Hsu, “Wave Field Behind the Permeable Detached Breakwater,” Proceeding of 21th Conference on Coastal Engineering, Malaga, ASCE, pp. 659-714 (1988).
33. Ozasa, H., and A.H. Brampton, “Mathematical Modeling of Beaches Backed by Seawalls, ” Coastal Engineering, Vol. 4, No. 1, pp. 47-64 (1980)
34. Pelnard-Considere, R., “Essai de Theorie del ‘Evolution Des Fomrs de Vivadg en Plages de Sable et de Galets,” Journees de l’Hydraulque, Les Energies de la Mer, Question Ⅱ, Report No.1, pp. 289-298 (1956).
35. Roelvink, J.A., and M.J.F. Stive, “Bar-generating Cross-shore Flow Mechanisms on a Beach,” Journal of Geophysical Research, Vol. 94, No. C4, pp. 4785-4800 (1989).
36. Savage, R.P., “Laboratory Determination of Littoral Transport Rates,” Journal of Waterways and Harbors Division, ASCE, No. ww2, pp. 69-92 (1962).
37. Shore Protection Manual, U.S. Army Coastal Engineering Research Center, Fort Belvoir, Vol. I-III (1984).
38. Szmytkiewicz, M., “2D Velocity Distributions in Nearshore Currents,” Proceedings Conference Coastal Dynamics’95, ASCE, New York, pp. 366-376 (1995).
39. Watanabe, A. and K. Maruyama, “Numerical Modeling of Nearshore Wave Field under Combined Refraction, Diffraction and Breaking,” Coastal Engineering in Japan, Vol. 29, pp. 19-39 (1986).
40. Watanabe, A. and M. Dibajnia, “A Numerical Model of Wave Deformation in Surf Zone,” Proceedings of 21th International Conference on Coastal Engineering, Malaga, Spain, ASCE, Vol. 1, pp. 578-587 (1988).
41. 王永和,「利用有限元素法模擬波浪變形」,國立成功大學水利及海洋工程研究所碩士論文 (2001)。
42. 台加工程顧問股份有限公司,「台中港北側淤沙區漂飛沙整治暨生態保育研究」,交通部台中港務局 (2003)。
43. 宇泰工程顧問有限公司,「彰工火力電廠燃料供應可行性研究」,台灣電力公司 (2004)。
44. 宇泰工程顧問有限公司,「台中港北側淤沙區漂飛沙整治第三期工程可行性研究」,交通部台中港務局 (2007)。
45. 林哲緯,「SMC模式於台灣海域之應用」,國立成功大學水利及海洋工程研究所碩士論文 (2004)。
46. 吳政忠,「離岸堤背後灘線長期變遷之數值模擬」,國立中山大學海洋物理研究所碩士論文 (2001)。
47. 陳文忠,「後勁溪河口結構物興建前後海岸線變遷之研究」,國立成功大學水利及海洋工程研究所碩士論文 (2003)。
48. 陳陽益,「前進波之折射;通式與等緩坡度底床情況」,海洋工程學刊,第1卷,第1期,第35-54頁(2001)。
49. 陳陽益,「波浪向岸前進之折射:Π. 極座標下之通式與同心圓底床及淺灘情況和波向線相交情形的解決」,第二十四屆海洋工程研討會論文集,第1-15頁(2002)。
50. 許泰文,歐善惠,張憲國,「花蓮海岸侵蝕防護對策之研究」,第十六屆海洋工程研討會論文集,高雄,第D-186-206頁(1994)。
51. 郭金棟,「海岸保護-海岸環境創造序論」,科技圖書,台北市(2004)。
52. 黃雅玲,「以GENESIS模擬結構物引起之海岸線變遷」,國立中山大學海洋環境及工程研究所碩士論文 (2005)。
53. 楊天瑋,「以GENESIS模擬長期海岸變遷之應用」,國立中山大學海洋環境及工程研究所碩士論文 (2001)。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2009-07-07起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2009-07-07起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw