進階搜尋


 
系統識別號 U0026-0812200914124211
論文名稱(中文) 含苯並奎寧之銥(III)環金屬錯合物之光物理、電化學性質以及理論計算之研究
論文名稱(英文) Photophysical, Electrochemical Properties and Theoretical Study of New Cyclometalated Complexes of Iridium (III) Containing Benzo[h]quinoline
校院名稱 成功大學
系所名稱(中) 化學系碩博士班
系所名稱(英) Department of Chemistry
學年度 96
學期 2
出版年 97
研究生(中文) 褚偉廷
研究生(英文) Wei-Ting Chu
學號 l3695102
學位類別 碩士
語文別 英文
論文頁數 149頁
口試委員 口試委員-黃守仁
口試委員-徐新光
指導教授-王小萍
中文關鍵字 光物理  密度泛函理論  電化學 
英文關鍵字 DFT calculation  electrochemistry  photo-physical properties 
學科別分類
中文摘要 本研究主要是利用不同的氮、氮配位基「2,2’-dipyridylamine (HDPA)、deprotonated form of 2, 2’-dipyridylamine (DPA)、2,2’-dipyridylketone (dpk)、2,2'-bipyrimidine(dpp)、2,3-dipyridin-2-ylpyrazine (bpym)和2-pyridin-2-yl-1H- benzimidazole (pbi)」與銥三價金屬和氮、碳配位基「benzo[h]quinoline (bzq)」形成六種混配位基型環金屬錯合物,利用不同配位子有不同的推拉電子性質、立體結構阻礙與共振結構,進行光物理、電化學與密度泛函理論之研究。首先從光物理方面發現,錯合物[Ir(bzq)2(HDPA)][PF6]與[Ir(bzq)2(pbi)]主要是triplet ligand centered (3LC) [-*(bzq)]磷光放光,最大放光波長分別在室溫和77 K分別是514 nm、532 nm和513 nm、514 nm。接著,錯合物[Ir(bzq)2(DPA)]主要是以triplet ligand-to-ligand charge transfer (3LLCT) [(DPA)-*(bzq)]磷光放光,其最大放光波長在室溫和77 K分別是559 nm、534 nm。接著,錯合物[Ir(bzq)2(dpp)][PF6]和[Ir(bzq)2(bpym)][PF6]主要是以triplet metal-to-ligand charge transfer (3MLCT) [d(Ir)-*(dpp and bpym)]磷光放光,其最大放光波長在室溫和77 K分別是620 nm、623 nm和595 nm、588 nm。最後,錯合物[Ir(bzq)2(dpk)][PF6] 主要是以triplet metal-to-ligand charge transfer (3MLCT) [d(Ir)-*(dpk)]磷光放光,其最大放光波長在77 K是613 nm,然而在室溫卻不放光。然而從電化學方面發現,除了[Ir(bzq)2(pbi)]以外,五個錯合物在氧化電位皆為擬可逆,分別為「[Ir(bzq)2(HDPA)][PF6]在+0.80 V、[Ir(bzq)2(DPA)][PF6]在+0.14 V、[Ir(bzq)2(dpk)][PF6]在+0.97 V、[Ir(bzq)2(dpp)][PF6]在+0.89 V、[Ir(bzq)2(bpym)][PF6]在+0.85 V vs. Fc/Fc+」。然而,錯和物[Ir(bzq)2(pbi)]則未觀察到氧化峰。另一方面,一樣的除了[Ir(bzq)2(HDPA)][PF6]、[Ir(bzq)2(DPA)]、[Ir(bzq)2(pbi)]以外,四個錯合物在還原電位皆為可逆,分別為「[Ir(bzq)2(dpk)][PF6]在-1.25 V、[Ir(bzq)2(dpp)][PF6]在-1.45 V、[Ir(bzq)2(bpym)][PF6]在-1.42 V vs. Fc/Fc+」,然而[Ir(bzq)2(HDPA)][PF6]的還原峰以不可逆的形式還原在-1.71 V vs. Fc/Fc+,以上還原都在氮氮配位基上。最後,錯和物[Ir(bzq)2(DPA)]、[Ir(bzq)2(pbi)] 則未觀察到還原峰。
英文摘要 In this work involves photo-physical and electrochemical properties of six new cyclometalated iridium (III) complexes. The six new cyclometalated iridium (III) complexes of the formula [Ir(bzq)2(N^N)], bzq = benzo[h]quinoline and N^N = 2,2’-dipyridylamine (HDPA), de-protonated form of 2,2’-dipyridylamine (DPA), 2,2’-dipyridylketone (dpk), 2,2'-bipyrimidine(dpp), 2,3-dipyridin-2-ylpyrazine (bpym), and 2-pyridin-2-yl-1H-benzimidazole (pbi), have been synthesized and subjected to photo-physical, electrochemical and density function theory calculations studies. Complexes [Ir(bzq)2(HDPA)][PF6] and [Ir(bzq)2(pbi)] show triplet ligand centered (3LC) [-*(bzq)] phosphorescence at room temperature (514 and 532 nm) and at 77 K (513 and 514 nm), respectively. The complex [Ir(bzq)2(DPA)] displays triplet ligand-to- ligand charge transfer (3LLCT) [(DPA)-*(bzq)] phosphorescence at room temperature (559 nm) and at 77 K (534 nm). However, the complexes [Ir(bzq)2 (dpp)][PF6] and [Ir(bzq)2(bpym)][PF6] exhibit triplet metal-to-ligand charge-transfer (3MLCT) [d(Ir)-*(dpp and bpym)] at room temperature (620 and 623 nm) and at 77 K (595 and 588 nm), respectively. Finally, the complex [Ir(bzq)2(dpk)][PF6] exhibit triplet metal-to-ligand charge transfer (3MLCT) [d(Ir)-*(dpk)] at 77 K (613 nm). All the iridium (III) complexes have similar quasi-reversible oxidation potentials that are assigned metal-perturbed bzq ligand (+0.80 V for [Ir(bzq)2(HDPA)] [PF6],+0.97 V for [Ir(bzq)2(dpk)][PF6], +0.89 V for [Ir(bzq)2(dpp)][PF6] and +0.85 V for [Ir(bzq)2 (bpym)][PF6]) expect the complex [Ir(bzq)2(DPA)] at +0.14 V which is ascribed to oxidation at DPA ligand. However, these iridium (III) complexes exhibit different characteristics in reduction processes: the irreverent for [Ir(bzq)2(HDPA)] [PF6] at -1.82 V and reverent for [Ir(bzq)2(dpk)][PF6], [Ir(bzq)2(dpp)][PF6] and [Ir(bzq)2 (bpym)][PF6] at -1.25 V, -1.45 V and -1.42 V, respectively, that are attributed to reduction at N^N ligand (HDPA, dpk, dpp and bpym). Density function theory calculations have also been performed to get rationalization of the optical orbitals and redox orbitals concerning photo-physical and electrochemical date.
論文目次 Acknowledgment............................................................................................................I
摘要...............................................................................................................................II
Abstract........................................................................................................................III
List of Content.............................................................................................................IV
List of Tables................................................................................................................VI
List of Figures...........................................................................................................VIII

1-1 Introduction..............................................................................................................1
2-1 Experiment Section..................................................................................................9
2-1 Instrumentation........................................................................................................9
2-2 Measurement Technique........................................................................................12
2-3 Materials................................................................................................................14
2-4 Synthesis................................................................................................................15
3-1 Result.....................................................................................................................20
3-1 Synthesis................................................................................................................20
3-2 Mass Spectrometry.................................................................................................22
3-3 Infrared Spectrometry............................................................................................30
3-4 Nuclear Magnetic Resonance Spectrometry..........................................................36
3-5 X-Ray Diffraction Spectrometry............................................................................37
3-6 Ultraviolet Visible Molecular Absorption Spectrometry........................................46
3-7 Molecular Luminescence Spectrometry.................................................................59
3-8 Electroanalytical Chemistry...................................................................................73
3-9 Theoretical Approach.............................................................................................83
4-1 Discussions..........................................................................................................104
5-1 Conclusions..........................................................................................................110
6-1 References............................................................................................................112
Supplementary Information........................................................................................116
參考文獻 1. V. Balzani; F. Scandola, Supramolecular Photochemistry; Ellis Horwood: Chichester, U.K., 1991.
2. V. Balzani; A. Credi; F. Scandola, Transition Metals in Supramolecular Chemistry; L. Fabbrizzi, A. Poggi, Eds.; K. Dordrecht, The Netherlands, 1994, p1.
3. J. M. Lehn, Supramolecular ChemistrysConcepts and Properties; VCH Weinheim, Germany, 1995.
4. C. A. Bignozzi; J. R. Schoonover, F. Scandola, Inorg. Chem. 1997, 44, 1.
5. K. Kalyanasundaran, Coord. Chem. Rev., 1982, 46, 159.
6. K. F. Chin, K. K. Cheung, H. K. Yip, T. C. W. Mak, C. M. Che, J. Chem. Soc., Dalton Trans. 1995, 4, 657.
7. N. Sonoyama, O. Karasawa, Y. J. Kaizu, Chem. Soc., Faraday Trans. 1995, 91, 437.
8. T. S. Hee, L. Mesmaeker, J. Chem. Soc., Dalton Trans. 1994, 24, 3651.
9. K. Kalyanasundaram, M. Gratzel, Coord. Chem. Rev., 1998, 177, 347.
10. S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H. E Lee, C. Adxchi, P. E. Burrows, S. R. Forrest, M. E. Thompson, J. Am Chem. Soc., 2001, 123, 4304.
11. M. A. Baldo, D. F. O’Brien; Y. You; A. Shoustikov; S. Sibley, M. E. Thompson, S. R. Forrest, Nature 1998, 395, 151.
12. M. A. Baldo; S. Lamansky, P. E. Burrows, M. E. Thompson; S. R. Forrest, Appl. Phys. Lett. 1999, 75, 4.
13. M. E. Thompson, P. E. Burrows, S. R. Forrest, Cur. Opinion Solid State Mater. Sci. 1999, 4, 369.
14. P. A. Anderson, R. F. Anderson, M. Furue, P. C. Junk, F. R. Keene, B. T. Patterson, B. D. Yeomans, Inorg. Chem. 2000, 39, 2721.
15. C. Li, M. Z. Hoffman, Inorg. Chem. 1998, 37, 830.
16. C. B. Brennan, P. Subramanian, M. Absi, C. Stern, J. T. Hupp, Inorg. Chem. 1996, 35, 3719.
17. Y. Kawanishi, N. Kitamura, S. Tazuke, Inorg. Chem. 1989, 28, 2968.
18. V. Balzani, A. Juris, M. Venturi, S. Campagna, S. Serroni, Chem. Rev. 1996, 96, 759.
19. J. R. Shaw, G. S. Sadler, W. F. Wacholtz, C. K. Ryu, R. H. Schmehl, New J. Chem. 1996, 20, 749.
20. K. Kalyanasundaran, Coord. Chem. Rev., 1982, 46, 159.
21. K. F. Chin, K. K. Cheung, H. K. Yip, T. C. W. Mak, C. M. Che, J. Chem. Soc., Dalton Trans. 1995, 4, 657.
21. N. Sonoyama, O. Karasawa, Y. Kaizu, J. Chem. Soc., Faraday Trans. 1995, 91, 437.
22. L. T. S. Hee, A. K. D. Mesmaeker, J. Chem. Soc., Dalton Trans. 1994, 24, 3651.
23. K. Kalyanasundaram, M. Gratzel, Coord. Chem. Rev. 1998, 177, 347.
24. K. Dedeian, P. I. Djurovich, F. O. Garces, G. Carlson, R. J. Watts, Inorg. Chem. 1991, 30, 1685.
25. P. H. Constable, J. H. Medley, A. R. Garber, N. S. Bhacca, J. Sebin, Inorg. Chem., 1985, 24, 1096.
26. E. C. Constable, J. M. Holmes, J. Organomet. Chem., 1986, 301, 203
27. D. Sandrini, M. Maestri, M. Ciano, U. Maeder, A. von Zelewsky, Helv. Chim. Acta., 1990, 73, 1306.
28. M. Maestri, D. Sandrini, V. Balzani, U. Maeder, A. von Zelewsky, Inorg. Chem., 1987, 26, 1323.
29. F. Barigelletti, D. Sandrini, M. Maestri, V. Balzani, A. von Zelewsky, L. Chassot, P. Jolliet, U. Maeder, Inorg. Chem., 1988, 27, 3644.
30. M. G. Colombo, A. Zilian, H. U. Güdel, J. Am. Chem. Soc., 1990, 112, 4581.
31. A. Zilian, H. U. Güdel, Inorg. Chem., 1992, 31, 830.
32. C. Giesbergen, M. Glasbeek, J. Phys. Chem., 1993, 97, 9942.
33. J. H. van Dimen, R. Hage, J. G. Haasnoot, H. E. B. Lempers, J. Reedijk, J. G. Vos, L. D. Cola, F. Barigelletti, V. Balzani, Inorg. Chem., 1992, 31, 3518.
34. E. C. Constable, T. A. Leese, D. A. Tocher, polyhedron, 1990, 9, 1613.
35. S. Campagna, S. Serroni, A. Juris, M. Venturi, V. Balzani, New J. Chem., 1996, 20, 773.
36. M. Maestri, D. Sandrini, V. Balzani, L. Chassot, P. Jolliet, A. von Zelewsky, Chem. Phys. Lett., 1985, 122, 375.
37. P. Reveco, R. H. Schmehl, W. R. Cherry, F. R. Fronczek, J. Selbin, Inorg. Chem., 1985, 24, 4078.
38. Y. Ohsawa, S. Sprouse, K. A. King, M. K. DeArmond, K. W. Hanck, R. J. Watts, J. Phys. Chem., 1987, 91, 1047.
39. A. P. Wilde, K. A. King, R. J. Watts, J. Phys. Chem., 1991, 95, 629.
40. S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, R. Kwang, I. Tsyba, M. Bortz, B. Mui, R. Bau, M. E. Thompson, Inorg. Chem., 2001, 40, 1704
41. K. Kam-Wing Lo, Chi-Keung Chung, T. Kwok-Ming Lee, Lok-Hei Lui, K. Hing-Kit Tsang, Nianyong Zhu, Inorg. Chem., 2003, 42, 6886.
42. M. S. Lowry, W. R. Hudson, R. A. Pascal, Jr., S. Bernhard, J. Am. Chem. Soc., 2004, 126, 14129.
43. Y. C. Yu, masteral dissertation of Department of Chemistry, National Cheng Kung University, 2007.
44. A. B. Tamayo, S. Garon, T. Sajoto, P. I. Djurovich, I. M. Tsyba, R. Bau, M. E. Thompson, Inorg. Chem., 2005, 44, 8723.
45. T. J. Durnick, A. H. Kalantar, J. Chem. Phys., 1977, 66, 1914.
46. S. Sprouse, K. A. King, P. J. Spellane, R. J. Watts, J. Am. Chem. Soc., 1984, 106, 6647.
47. D. M. Jewell,G. K. Hartung, J. Chem. Eng. Data, 1964, 9, 2, 297.
48. F. Neve, M. La Deda, A. Crispini, A. Bellusci, F. Puntorieo, S. Campagna, Organometallics, 2004, 23, 5856.
49. W. L. Huang, D. P. Segers, M. K. DeAemond, J. Phys. Chem., 1981, 85, 14, 2080.
50. G. Favaro, A. Romani, G. Poggi, Z. Phys. Chem., 1990, 168, 1, 55.
51. N. Neto, G. Sbrana, M. Muniz-Miranda, Spec. Acta Part A, 1990, 45, 5, 705.
52. Khail, M. H. Mostafa, A. A. Saadia, M. R. Ramadon, Spec. Acta Part A, 2001, 47, 5, 1017.
53. D. W. Abbott, T. Vo-Dinh, Anal. Chem., 1985, 57, 1, 41.
54. D. Sandrini, M.aestri, V. Balzani, U. Maeder, A. V. Zelewsky, Inorg. Chem., 1988, 27, 2640.
55. K. K.-W. Lo, C.-K. Chung, N. Zhu, Chem. Eur. J., 2003, 9, 475.
56. K. K.-W. Lo, C.-K. Li, K.-W. Lau, N. Zhu, Dalton Trans., 2003, 4682.
57. Q. Zhao, S. Liu, C. Wang, M.Yu, L. Li, F. Li, T. Yi, C. Huang, Inorg. Chem., 2006, 45, 6152.
58. M. Busby, P. Matousek, M. Towrie, L. P. Clark, M. Motevalli, F. Hartl, A. Vlček, Jr., Inorg. Chem., 2004, 43, 4523.
59. Y. Kawamura , K. Goushi , J. Brooks, J. J. Brown, H. Sasabe, C. Adachi, Appl. Phys. Lett., 2004.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-07-03起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-07-03起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw