進階搜尋


 
系統識別號 U0026-0812200914121562
論文名稱(中文) 鈾釷同位素在矽藻殼體中富集機制之探討
論文名稱(英文) Studies on the Mechanisms Controlling the Distribution of U and Th isotopes in Diatom Frustules
校院名稱 成功大學
系所名稱(中) 地球科學系專班
系所名稱(英) Department of Earth Sciences (on the job class)
學年度 96
學期 2
出版年 97
研究生(中文) 徐意淳
研究生(英文) Yi-Chen Shiu
學號 l4795106
學位類別 碩士
語文別 中文
論文頁數 51頁
口試委員 指導教授-羅尚德
口試委員-陳燕華
口試委員-黃耀輝
召集委員-李朝輝
中文關鍵字 矽藻殼體  清洗方法  238U  232Th  234U  230Th 
英文關鍵字 diatom frustules  cleaning methods  238U  234U  232Th  230Th 
學科別分類
中文摘要 鈾系和釷系是具有一連串長短不同衰變週期的放射性元素,而鈾同位素(238U,234U)相較於其子核種釷同位素(234Th,230Th)具有較高的溶解度,因此在岩石風化的過程中,因地下水的淋溶作用,較易使的鈾同位素被搬運至天然水體中,如河水、湖水和海洋;同時由於α-recoil效應,使水中鈾同位素的比值(234U/238U)均大於1。當生物體如矽藻、珊瑚、有孔蟲等生活在此水體中時,會吸收水中的鈾同位素,結合至它們的殼體內;而子核種釷同位素在水體中含量極微,因此導致生物體中的鈾系不平衡。而這些不平衡不僅可以用於測量生物化石的年齡,也同時可以用於研究地表的地質營力作用情況(如風化等)並爲環境變遷提供了有用的工具。本研究以探討鈾釷同位素在矽藻殼體中的生物地球化學行為及影響它們在矽藻殼體中的富集因子,並討論矽藻殼體中鈾系不平衡在絕對地質年代和地球環境變化研究中的潛在用途。
在本研究中,經過重液分離和六偏磷酸鈉懸浮後的矽藻殼體,個體本身較完整,並無破碎的情況,但是經實驗結果證實,仍需再經過化學清洗的處理步驟。以HF溶解矽藻殼體,則會造成未清洗乾淨的陸源碎屑物大量被溶解,影響實驗結果,造成誤差。能有效洗出大量陸源碎屑物而不易溶解矽藻殼體是HNO3和NH2OH‧HCl in HCl,不同濃度結果顯示差別不大。而H2O2雖在文獻中常用於去除有機物,但清洗矽藻殼體的結果顯示不論是否在酸性體系下皆不易去除陸源碎屑物且有溶解矽藻殼體的情況,飽和KMnO4則因本身背景值過高,NaF和NH2OH‧HCl in HAc則在洗釷的效果上不佳,因此並不適合作為清洗的藥劑。
實驗中先加入示蹤劑易造成示蹤劑中有U/Th分離的現象,鈾大多存在於上清液相,而釷則吸附到殘渣相,因此在計算上須作校正,而後加入示蹤劑則無此情況。
以此次研究結果可知U主要存在矽藻殼體中,含量約在24ppb~61ppb之間,我們可藉由矽藻殼體中234U/238U及230Th/232Th比值推知樣品的來源及實驗的結果。矽藻殼體中鈾同位素含量的變化可為地質年代學、古海洋學、古環境變遷提供一個有效的工具。
英文摘要 Uranium- and thorium-series have a series of radioactive elements with different half lives. Because the parent nuclides (238U, 234U) have higher solubility than the daughter radionuclides (234Th, 230Th), when ground water flows through the rocks, the uranium isotopes are preferentially transported in natural waters, such as in rivers, lakes, seas. Meanwhile α-recoil effect would cause 234U/238U activity ratio in waters to be greater than 1. Organisms who inhabit natural waters, such as diatoms, corals, and foraminifera, may uptake the uranium isotopes into their tests. These organisms incorporate relatively few daughter nuclides (234Th, 230Th) due to their low solubility in natural waters, thus causing the parent-daughter radioactive disequilibrium. The disequilibrium is used not only to determine the age of biological fossils, but also provide a tool for studying the geological processes (e.g., weathering) and environmental changes. In this thesis, I studied the distribution of uranium and thorium isotopes and their biogeochemical behavior in diatom frustules. The potential use of U and Th isotopes in diatom frustules as a tool for geochronological dating and for paleo- environmental studies will be discussed.
This study shows that while pure and integral diatom frustules can be separated from sediments by heavy-liquid and sodium hexametaphosphate separation method, a chemical cleaning is needed in order to remove the contaminants from the diatom frustules. Various cleaning and dissolution methods are tested in this study. I found that diatom frustules can be dissolved with HF or NaOH solution, however the HF dissolution is not favorable as it can also easily dissolve the detrital materials that may have been coated on the diatom frustules. The use of NaOH dissolution can selectively dissolve diatom frustules rather than the ditrital minerals. The contaminants on diatom frustules can be cleaned effectively by using HNO3 and/or HCl + NH2OH‧HCl solutions, but not by H2O2, NaF, and/or NH2OH in HAc solutions. Saturated KMnO4 solution, combined with 6 N HCl, can also be effective in cleaning, although the cleaning solution may contain higher uranium background.
This study shows that the U and Th isotope compositions in diatom frustules are completely different from those in detrital contaminants. In pure diatom frustules contain uranium in the range of 24 ppb to 61 ppb. In contrast to those in lithogenic detritus, pure diatom frustules also contain higher ratios of 238U/232Th and 230Th/232Th and their 234U/238ratios are usually greater than 1 (e.g., close to their seawater ratio for marine diatoms). These features suggests that diatom frustules incorporate U isotopes , rather than Th isotopes, from the natural waters, providing a new tool for geochronological, paleoceanographical, and paleoenvironmental studies.
論文目次 目錄
摘要……………………………………………………………………… Ⅰ
Abstract………………………………………………………………… Ⅱ
誌謝……………………………………………………………………… Ⅳ
目錄……………………………………………………………………… Ⅴ
圖目錄…………………………………………………………………… Ⅸ
表目錄……………………………………………………………………Ⅹ

第一章:緒論
1.1. 鈾的地球化學行為…………………………………………… 1
1.2. 釷的地球化學行為…………………………………………… 3
1.3. 矽藻的基本特徵……………………………………………… 4
1.4. 有孔蟲中鈾釷同位素可行性與可能存在的問題…………… 5
1.5. 研究動機與目的……………………………………………… 5

第二章:研究背景
2.1 分離方法…………………………………………………… 7
2.2 化學清洗方法……………………………………………… 9
2.3 樣品溶解……………………………………………………… 10
2.4 鈾系定年……………………………………………………… 12
第三章:實驗方法與步驟
3.1 分離矽藻殼體………………………………………………… 14
3.2 化學清洗……………………………………………………… 15
3.2.1. 陸源物清洗……………………………………………… 15
3.2.2. 有機物清洗………………………………………… 16
3.3 矽藻殼體溶解………………………………………………… 17
3.3.1. 酸式溶解……………………………………………… 17
3.3.2. 鹼式溶解………………………………………………… 17
3.3.3. 酸式-鹼式溶解比較…………………………………… 19
3.4 清洗液的化學處理…………………………………………… 20
3.5 U/Th離子交換樹脂分離……………………………………… 20
3.6 鈾釷同位素ICP-MS分析……………………………………… 21
3.7 標準試劑與儀器校正………………………………………… 21
3.8 實驗背景值…………………………………………………… 22
3.9 數據處理……………………………………………………… 24

第四章:結果與討論
4.1. 重液分離法與六偏磷酸鈉懸浮法分離矽藻殼體…………… 29
4.2. 矽藻殼體樣品鹼式溶解與酸式溶解的比較………………… 29
4.3. 不同化學藥劑清洗釷的效果比較…………………………… 33
4.4. 不同清洗劑對測定矽藻殼體中鈾含量的影響……………… 34
4.5. 用230Th/232Th比值評估清洗效果及鈾釷在矽藻殼體樣品中的
富集型態與程度…………………………………………… 35
4.6. 矽藻殼體樣品中234U與238U的活度比…………………… 36
4.7. H2O2與HNO3清洗效果的比較……………………………… 37
4.8. 矽藻殼體樣品中鈾釷在NaOH溶解時的行為………………… 39
4.9. 現代海洋矽藻殼體中鈾釷同位素比值的測定…………… 41
4.10. NaOH相溶解時U-236和Th-229示蹤劑的行為………… 44

第五章:結論……………………………………………………… 45
參考文獻…………………………………………………………… 47
參考文獻 參考文獻
Alcaraz-Pelegrina J.M., A. Martinez-Aguirre(2007), U/Th dating of carbonate deposits from Constantina (Sevilla), Spain, Applied Radiation and Isotopes 65 p798–804
Anderson R. F. (1997), Comment on “Uranium-series disequilibrium, sedimentation, diatom frustules, and paleoclimate change in Lake Baikal”, Earth and Planetary Science Letters 148 p395-397
Bechtel A., M. Woszczyk , D. Reischenbacher , R.F. Sachsenhofer ,R. Gratzer, W. Puttmann, W. Spychalski(2007), Biomarkers and geochemical indicators of Holocene environmental changes in coastal Lake Sarbsko (Poland), Organic Geochemistry 38 1112–1131
Burnett W.C.,H.H.Veeh, Uranium-series disquilibrium : Applications to Earth, Marin, and Environmental Sciences, chapter 14: Uranium-series studies of marine phosphates and carbonates
Calsteren P. V. , Louise T.(2006), Uranium-series dating applications in natural environmental science, Earth-Science Reviews 75 155–175
Chiu Tzu-Chien, R. G. Fairbanks, R. A. Mortlock, Li Cao,Todd W. Fairbanks, A. L. Bloom(2006), Redundant 230Th/234U/238U, 231Pa/235U and 14C dating of fossil corals for accurate radiocarbon age calibration, Quaternary Science Reviews 25 p2431–2440
Chung Y., W.C. Chang(1996), Uranium and thorium isotopes in marine sediments off northeastern Taiwan, Marine Geology 133 p89-102
Demaster D.J. (1981) The supply and accumulation of silica in the marine environment. Geochimica et Cosmochimica Acta 45(10), p1715-p1732.
Delaney M.L., E.A. Boyle (1983) Uranium and thorium isotope concentrations in foraminiferal calcite. Earth and Planetary Science Letters 62(2), p258-p262.
Dosseto A. , B. Bourdon, S. P. Turner, Uranium-series isotopes in river materials: insights into the timescales of erosion and sediment transport, Earth and Planetary Science LettersVolume 265, Issue 1-2, p1-17
Edgington D. N., J. A. Robbins, S. M. Colman, K. A. Orlandini, M. –P. Gustin (1996), Uranium-series disequilibrium, sedimentation, diatom frustules, and paleoclimate change in Lake Baikal,Earth and Planetary Science Letters 142 p29-42
Edgington D.N. , J.A. Robbins , S.M. Colman , K.A. Orlandini, M.-P. Gustin,J.V. Klump , L.Z. Granina(1997), Reply to the Comment by R. Anderson on “Uranium-series disequilibrium, sedimentation, diatom frustules, and paleoclimate change in Lake Baikal”, Earth and Planetary Science Letters 148 p399-404
Yu E. F., C. H. Liang, M. T. Chen, Authigenic uranium in marine sediments of the Bengula Current upwelling region during the last glacial period, TAO10(1), p201-214
Ellwood M. J., K. A. Hunter(1999), Determination of the Zn/Si ratio in diatom opal: a method for the separation, cleaning and dissolution of diatoms, Marine Chemistry 66. p149–160
Esat T. M., Y. Yokoyama (2006), Variability in the uranium isotopic composition of the oceans over glacial–interglacial timescales, Geochimica et Cosmochimica Acta 70 p4140–4150
Garnetta E. R., M. A. Gilmourb, P. J. Rowea, J. E. Andrewsa, R.C. Preece (2004), 230Th/234U datingof Holocene tufas: possibilities and problems, Quaternary Science Reviews 23 p947–958
Goldberg E.L., M.A. Gracheva, V.A. Bobrovb, A.V. Bessergenevd, B.V. Zolotaryov, Ye.V. Likhoshway(1998), Do diatom algae frustules accumulate uranium? Nuclear Instruments and Methods in Physics Research A 405 p584-589
Heyworth Z. , S. Turner , B. Schaefer , B. Wood , R. George , K. Berlo , H. Cunningham, R. Price, C. Cook ,J. Gamble(2007), 238U – 230Th – 226Ra – 210Pb constraints on the genesis of high-Mg andesites at White Island, New Zealand, Chemical Geology 243 p105–121
Hu F. S., A. Shemesh(2003), A biogenic-silica 18O record of climatic change during the last glacial–interglacial transition in southwestern Alaska, Quaternary Research 59 p379–385
Janér, J. H., and H. Jungner.(1982). A simple method for separation of quartz in TL dating. Pact. J. 6:214-215
Johnson M., R. Sanders , V. Avgoustidi , M. Lucas ,L. Brown , D. Hansell , M. Moore, S. Gibb, P. Liss, T. Jickells(2007), Ammonium accumulation during a silicate-limited diatom bloom indicates the potential for ammonia emission events, Marine Chemistry 106 p63–75
Kamatani A., O. Oku(2000),Measuring biogenic silica in marine sediments, Marine Chemistry 68 p219–229
Kharkar D. P., J. Thomson; K. K. Turekian; W. O. Forster (Mar., 1976), Uranium and Thorium Decay Series Nuclides in Plankton from the Caribbean, Limnology and Oceanography, Vol. 21, No. 2., p 294-299.
Ku T.-L. (1965) An evaluation of the 234U/238U method as tool for dating pelagic sediments. Journal of Geophysical Research 70(14), p3457- p3474.
Lin T., J. H.-Y. Chen, C.-F. Dai, J. J.-S. Shen(1992), U-disequilibrium dating of Corals in Southern Taiwan by Mass Spectrometry, Journal of Geological Society of China, NSC80- 0202- M001- 11
Lin H.-L., C.-J. Chen(2002), A late Pliocene diatom Ge/Si record from the Southeast Atlantic, Marine Geology 180 p151~161
Luo S., Ku T. L.(1991). U-series isochron dating: A generalized method employing total sample dissolution. Geochim Cosmochim. Acta 55, p555-564.
Michie U. McL(1979). Evidence for a higher natural uranium content in world rivers ,Nature 282, 112 - 112 (01 Nov)
Mortlock R. A.,P. N. Froelich(1989), A simple method for the rapid determination of biogenic opal in pelagic marine sediments, Deep-Sea Research Part A. Oceanographic Research Papers 36(9), p1415-p1426
Moschen R., A. Lucke, J. Parplies, U. Radtke, G. H. Schleser(2006), Transfer and early diagenesis of biogenic silica oxygen isotope signals during settling and sedimentation of diatoms in a temperate freshwater lake (Lake Holzmaar, Germany), Geochimica et Cosmochimica Acta 70 p4367–4379
Nelson D. M., P.Treguer, M. A.Brzezinski,A. Leynaert,B. Queguiner(1995), production and dissolution of biogenic silica in the ocean:revised global estimates, comparison with regional data and relationship to biogenic sedimentation, Global Biogeochemical Cycles 9(3), p359-372
Polissar P.J., M. B.Abbott, A. Shemesh, A. P. Wolfe, R. S.Bradley (2006), Holocene hydrologic balance of tropical South America from oxygen isotopes of lake sediment opal, Venezuelan Andes, Earth and Planetary Science Letters 242 p375–389
Rings A., A. Lücke, and G. H. Schleser(2004), A new method for the quantitative separation of diatom frustules from lake sediments, Limnology And Oceanography: Methods 2, p25–34
Robinson L. F., G. M. Henderson, L. Hall, I. Matthews(2004), Climatic Control of Riverine and Seawater Uranium-Isotope Ratios, Science 305, 851
Rosenheim B. E., P. K. Swart, A. Eisenhauer(2007), Constraining initial 230Th activity in incrementally deposited, biogenic aragonite from the Bahamas, Geochimica et Cosmochimica Acta 71 p4025–4035
Rosqvista G., C. Jonssona, R. Yamb, W. Karlena, A. Shemesh(2004), Diatom oxygen isotopes in pro-glacial lake sediments from northernSweden: a 5000 year record of atmospheric circulation, Quaternary Science Reviews 23 p851–859
Shemesh A., R. A. Mortlock, R. J. Smith and P. N. Froelich(1988), Determination of Ge/Si in marine siliceous microfossils: Separation, cleaning and dissolution of diatoms and radiolarian,marine chemistry 25(4) p305-323
Shemesh A, R. A. Mortlock (1989), Late Cenozoic Ge/Si Record of Marine Biogenic Opal:Implications for Variations of riverine fluxes to the ocean,Paleoceanography 4(3), p221-234
Shemesh A(1995), Late Pleistoncene Oxygen Istopes Records of biogenic silica from the Atlantic sector of the southern ocean,Paleoceanography 10(2), p179-196
陳巧如,上新世晚期南大西洋東部矽藻的鍺矽比值紀錄,國立中山大學海洋地質及化學研究所碩士論文,民國八十九年(2000)
蔡侑蓉,利用矽藻中鈾同位素比值探討台灣的風化歷史,國立成功大學地球科學研究所碩士論文,民國九十六年(2007)
陳榮盛,鍾玉嘉,西菲律賓海之沉積速率,國立中山大學

參考書籍
Cochran J. K.,Uranium-series disquilibrium : Applications to Earth,Marin,and Environmental Sciences,chapter 10: The oceanic chemistry of the uranium-and thorium-series nuclides
Eugene F. Stoermer and John P. Smol, The diatoms : applications for the environmental and earth sciences , Cambridge
Henderson G.M., R. F.Anderson, Uranium-series geochemistry,chapter 12: The U-series toolbox for Paleoceanography
陳鎮東,海洋化學,國立編譯館主編,茂昌圖書有限公司發行,民89年二版
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2010-07-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2010-07-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw