進階搜尋


 
系統識別號 U0026-0812200914081964
論文名稱(中文) 泰國及澳洲地區藍寶石之包裹體礦物組合在其成因之應用
論文名稱(英文) Formation mechanism of sapphires from Thailand and Australia: inferred from mineral inclusions
校院名稱 成功大學
系所名稱(中) 地球科學系專班
系所名稱(英) Department of Earth Sciences (on the job class)
學年度 96
學期 1
出版年 97
研究生(中文) 蔡瑾莉
研究生(英文) Chin-Li Tsai
學號 l4793117
學位類別 碩士
語文別 中文
論文頁數 74頁
口試委員 指導教授-楊懷仁
口試委員-蕭炎宏
口試委員-李建興
中文關鍵字 鹼性玄武岩  澳洲  泰國  藍寶石  包裹體 
英文關鍵字 alkali basalt  Australia  Thailand  sapphire  inclusion 
學科別分類
中文摘要 藍寶石多產於火成岩與變質岩中,其中以與張裂環境鹼性玄武岩相關的沖積型礦床最具商業開採價值。由於風化、侵蝕作用影響使研究藍寶石之成因更加困難。實驗岩石學結果顯示,一般玄武岩質岩漿無法結晶出剛玉。因此藍寶石應為鹼性玄武岩之捕獲晶,但其成因仍有許多爭論。由藍寶石之微量元素、同位素、礦物包裹體及年代學研究結果,鹼性玄武岩藍寶石成因有三種主要模式:(一)由富鋁沉積岩經變質作用而產生,(二)晶出於地函小比例熔融產生之鹼性岩漿演化晚期,(三)地函碳酸岩漿與地殼矽酸岩漿混合後造成鋁過飽和而結晶。本研究利用X光能量分散式光譜儀(EDS)分析全球藍寶石主要產地泰國Chanthaburi-Trat與Kanchanaburi及澳洲New South Wales三地區之藍寶石原生包裹體礦物相組成,探討產自大陸鹼性玄武岩的藍寶石之來源成因。藍寶石包裹體顆粒微小(≦5 μm),大致有兩種產狀;一為存在於一群同方向延伸排列之高氯細長脈狀物中,其為次生包裹體,形成於藍寶石結晶後,礦物相有方解石、石英、白雲石和氧化鐵等皆存在於泰國Kanchanaburi地區與澳洲New South Wales藍寶石內;另有鈉長石與磷灰石出現在泰國Kanchanaburi地區中。而泰國Chanthaburi-Trat地區之樣品則無次生包裹體發現。另一類為獨立散佈於藍寶石內,無特定形狀或排列規則的原生包裹體,可反映藍寶石形成之環境條件。泰國Chanthaburi-Trat地區樣品中有斜長石、鹼性長石、石英、方解石、鈮-鈦鐵礦與高鈉輝石(霓石);泰國Kanchanaburi地區樣品中有褐簾石?與方解石;澳洲New South Wales地區樣品中則有鹼性長石與鈦氧化物(金紅石?)。這些原生包裹體礦物中的方解石、鈮-鈦鐵礦及高鈉輝石(霓石)與碳酸岩質岩漿相關聯,而斜長石,石英,鹼性長石,鈦氧化物(金紅石?)和褐簾石?則為矽酸質岩漿(花崗岩)之產物,兩者無法源自同一母岩漿,推測此藍寶石是由矽酸質岩漿(花崗岩)與碳酸岩漿混合後造成鋁過飽和而結晶形成。但Yui et al.(2006)認為泰國Chanthaburi-Trat藍寶石氧同位素比值變化有限(5.1-6.2 ‰),不可能為會造成氧同位素多變之混合岩漿作用所形成。依此進一步推測碳酸質岩漿於混合岩漿中所佔比例極小,故無法造成氧同位素比值明顯變化。
英文摘要 Sapphire commonly occurs in igneous and metamorphic rocks. Commercial sapphire is mainly mined from alluvial deposits associated with alkali basalts. Tracing the origin of alluvial sapphire is difficult for the complexity induced during weathering, erosion, and transportation. Isothermal experiments show that corundum cannot crystallize from basaltic magmas. Therefore, sapphire is considered to be xenocryst in basalts, but its genesis is still debated. Based on trace element geo-chemistry, mineral inclusions, isotopes, and geochronology, three ge-netic processes are proposed for sapphire from alkali basalts. They are: (1) metamorphic recrystallization of aluminous rocks, (2) crystallization from evolved alkali magmas produced by low degrees of partial melting from mantle, and (3) crystallization from over-saturation caused by mixing carbonatitic and silicic magmas. In this study we used energy dispersive spectrometry (EDS) to identify mineral inclusions within sapphires from Thailand (Chanthaburi-Trat and Kanchanaburi) and Australia (New South Wales). Most inclusions are less than 5 μm, and two types of inclusions can be distinguished. The first type occurs in slender veins, which are cracks formed after the crystallization of host sapphire. They are referred to as the “secondary” inclusions. The secondary inclusions include calcite, quartz, dolomite, Fe-oxide (Kanchanaburi and New South Wales) as well as albite and apatite (Kanchanaburi). Secondary inclusions are not observed in Chanthaburi-Trat sapphires. Other inclusions distribute randomly in sapphire. They are referred to as “primary” inclusions and can provide constraints on the genesis of host sapphire. The observed primary in-clusions include plagioclase, alkali feldspar, quartz, calcite, Nb-ilmenite and aegirine in Chanthaburi-Trat sapphires, calcite and allanite? in Kanchanaburi sapphires, and alkali feldspar and Ti-oxide (rutile?) in New South Wales sapphires. Calcite, Nb-ilmenite and aegirine usually occur within carbonatitic magmas, whereas plagioclase, alkali feldspar, quartz and Ti-oxide (rutile?) are constituent minerals in silicic magmas (granite). Carbonatitic and silicic magmas are unlikely to originate from the same parent magma: therefore, it is inferred that hybrid process resulted in Al-oversaturation followed by sapphire crystallization. Hybrid process might lead to variable O-isotope composition, inconsistent with the limited variation shown by the sapphire from Chanthaburi-Trat (5.1-6.2 ‰). We propose that the proportion of carbonatitic melts in hybrid magmas was minute; thus, the variation in O-isotope composi-tion was not significant as expected.
論文目次 摘要 I
Abstract III
致謝 V
目錄 VI
表目錄 VIII
圖目錄 IX


第一章 緒論 1
1-1 前言 1
1-2 藍寶石簡介 2
1-3 藍寶石與玄武岩關係 6
1-4 藍寶石成因模式與來源 8
1-5 包裹體意義與種類 12
1-6 研究動機及目的 16
第二章 地質背景 17
2-1 泰國藍寶石樣品產地 17
2-2 澳洲藍寶石樣品產地 19
第三章 樣品與實驗方式 21
3-1 樣品介紹 21
3-2實驗步驟 22
3-2-1 分析前處理 22
3-2-2 電子顯微鏡分析方法 23
第四章 分析結果 26
4-1 包裹體之產狀 26
4-2 氧化物包裹體 28
4-2-1 鈮-鈦鐵礦 28
4-2-2 鈦氧化物(金紅石?) 31
4-3 矽酸鹽包裹體 32
4-3-1 長石 32
4-3-2高鈉輝石-霓石 35
4-3-3 石英 37
4-3-4 褐簾石? 38
4-4 碳酸岩類包裹體 38
4-4-1方解石 38
4-5 脈狀物包裹體 40
第五章 討論 42
5-1 原生與次生包裹體之分辨 42
5-2 藍寶石形成機制推測 44
5-2-1 矽酸質岩漿模式 44
5-2-2 碳酸質岩漿模式 45
5-2-3 混合岩漿成因與來源 49
5-3次生包裹體的意義 52
第六章 結論 53
參考文獻 55
附錄 包裹體礦物相ESD能譜圖與電子影像 60
參考文獻 英文參考文獻
Barnes, C. G., Prestvik, T. & Hiller, J. (2006) Aegirine as a late-stage
phase in an alkaline pluton associated with carbonate assimilation
(abstract). American Geophysical Union, Fall Meeting
Chakhmouradian, A. R. & Mitchell, R. H. (1999) Niobian ilmenite, hydroxylapatite
and sulfatian monazite: alternative hosts for incompatible
elements in calcite kimberlite from Internatsional ’Naya, Yakutia.
Canadian Mineralogist, 37: 1177–1189
Coenraads, R. R., Sutherland, F. L. & Kinny P. D. (1990) The origin of
sapphires: U-Pb dating of zircon Inclusions sheds new light mineralogical
magazine, 54: 113–122
Coenraads, R. R., Vichit P. & Sutherland, F. L. (1995) An unusual
sapphire-zircon-magnetite xenoliths from the Chanthaburi Gem
Province, Thailand. Mineralogical Magazine, 59 (3): 465–479
Dawson, J. B., & Reid, A. M. (1970) A pyroxene-ilmenite intergrowth
from the Monastery Mine, South Africa. Contributions to Mineralogy
and Petrology, 26(4): 296–301
Deer, W. A., Howie R. A. & Zussman J. (1992) An introduction to the
rock-forming minerals (2nd Edition). New York, Longman
Federman, D. (1990) Consumer guide to colored gemstones. United
States, Vace
Gaspar, J. C. & Wyllie, P. J. (1983) Ilmenite (high Mg,Mn,Nb) in the
carbonatites from the Jacupiranga Complex, Brazil. American Mineralogist,
68: 960–971
Green, T. H., Wass S. Y. & Ferguson J. (1978) Experimental study off
corundum stability in basalts (abstract). Abstract Programme 3rd
Australian Geological Convention, Townsville, pp.34
Gubelin, E. J. & Koivula, J. I. (1986) Photoatlas of Inclusions in Gemstones.
Zurich, ABC Edition
56
Guo, J., Griffin W. L. & O’Reilly S. Y. (1994) A cobalt-rich spinel inclusion
in a sapphire from Bo Ploi, Thailand. Mineralogical Magazine,
58(2): 247–258
Guo, J., Suzanne, Y. O. & William, L. G. (1996) Corundum from basaltic
terrains: a mineral inclusion approach to the enigma. Contributions
to Mineralogy and Petrology, 122: 368–386
Hughes, R. W. (1997) Ruby and Sapphire. Colorado. R.W.H. Publishing
Hutchison, T. M., Nixon P. H. & Harley S. L. (2004) Corundum inclusions
in diamonds-discriminatory criteria and a corundum compositional
dataset. Lithos, 77: 273–286
Koivula, J. I. (1986) Carbon dioxide fluid inclusions as proof of natural-
colored corundum. Gem and Gemology, 20(3): 152–155
Koivula, J. I., Tannous, M. & Schmetze, R. K. (2000) Synthetic gem
materials and stimulants in the 1990s, Gem and Gemology, 36(4):
360–379
Levinson, A. A. & Cook, F. A. (1994) Gem corundum in alkali basalt:
origin and occurrence. Gem and Gemology, 30(4): 253–262
Limtrakun, P., Zaw, K., Ryan, C. G. & Mernagh, T. P. (2001) Formation
of the Denchai gem sapphires, northern Thailand: evidence from
mineral chemistry and fluid/melt inclusion characteristics. Mineralogical
Magazine, 65 (6): 725–735
Liu, T. C. & Presnall, D. C. (1990) Liquidus phase relationships on the
join anorthiteforsterite-quartz at 20 kbar with applications to basalt
petrogenesis and igneous sapphirine. Contributions to Mineralogy
and Petrology, 104(6): 735–742
Meyer, H. O. A. & Boyd, F. R. (1972) Composition and origin of crystalline
inclusions in natural diamonds. Geochimica et Cosmochimica
Acta, 36: 1255–1273
57
Nakashima, K. & Imaoka T. ( 1998) Niobian and zincian ilmenites in
syenites from Cape Ashizuri, Southwest Japan Mineralogy and Petrology,
63: 1–17
Peucat ,J. J., Ruffault, P., Fritsch, E., Coz, M. B., Simonet, C. & Lasnier,
B. (2007) Ga/Mg ratio as a new geochemical tool to differentiate
magmatic from metamorphic blue sapphires. Lithos, 98: 261–274
Roedder, E. (1962) Ancient Fluids in Crystals. Scientific American,
207(4): 38–47
Schulze, D. J., Helmstaedt, H. & Cassie, R. M. (1978) Pyroxene-
ilmenite intergrowths in garnet pyroxenite xenoliths from a New
York kimberlite and Arizona latites. Amerrican Mineralogist, 63:
258–265
Schumann, W. (1977) Gemstones of the world. New York, Sterling
Publishing Co., Inc.
Simonet, C., Paquette J. L., Pin C., Lasnier B. & Fritsch E. (2004) The
Dusi (Garba Tula) sapphire deposit, central Kenya—A unique
Pan-African corundum-bearing monzonite. Journal of African Earth
Sciences, 38(4): 401–410
Sutherland, F. L. & Coenraads, R. R. (1996) An unusual
ruby-sapphire-sapphirine-spinel assemblage from the Tertiary Barrington
volcanic province, New South Wales, Australia. Mineralogical
Magazine, 60(4): 623–638
Sutherland, F. L., Hoskin, P. W. O., Fanning, C. M. & Coenraads, R. R.
(1998) Models of corundum origin from alkali basaltic terrains: a
reappraisal. Contributions to Mineralogy and Petrology, 133:
356–372
Sutherland, F. L. & Fanning C. M. (2001) Gem-bearing basaltic volcanism,
Barrington, New South Wales: Cenozoic evolution, based
on basalt K-Ar ages and zircon fission track and U-Pb isotope dating.
Australian Journal of Earth Sciences, 48: 221–237
Sutherland, F. L., Graham, I. T., Pogson, R. E., Schwarz, D., Webb, G.
58
B., Coenraads, R. R., C. M. Fanning., Hollis, J. D. & Allen, T. C.
(2002) The Tumbarumba Basaltic gem field, New South Wales: In
relation to sapphire-ruby deposits of eastern Australia. Records of
the Australian museum, 54: 215–248
Wenk, H. & Bulakh, A. (2004) Minerals, their constitution and origin.
Cambridge, The press syndicate of the University of Cambridge
Yui, T.-F., Zaw K. & Limtrakun P. (2003) Oxygen isotope compositions
of the Denchai sapphire, Thailand: a clue to its enigmatic origin. Lithos,
67: 153–161
Yui, T.-F., Wu, C. M., Limtrakun, P., Sricharn, W. & Boonsoong, A.,
(2006) Oxygen isotope studies on placer sapphire and ruby in the
Chanthaburi-Trat alkali basaltic gemfield, Thailand. Lithos, 86:
197–211
Zaw, K., Sutherland, F. L., Dellapasqua, F., Ryan, C. G., Yui, T.-F.,
Mernagh, T. P., & Duncan D. (2006) Contrasts in gem corundum
characteristics, eastern Australian basaltic fields: trace elements,
fluid/melt inclusions and oxygen isotopes. Mineralogical Magazine,
70(6): 669–687
59
中文參考文獻
黃怡禎 譯 (2000) 礦物學, 台北, 地球科學文教基金會
其他參考文獻
周長青、韓安平 (1999) 地質與礦物學辭典, 台北, 麥格羅希爾
陳汝勤、莊文星 (2001) 岩石學, 台北, 聯經出版社
陳培源 (1980) 礦物種名與岩石名詞, 台北, 茂昌圖書
張瑜生 譯 (1995) 寶石內含物大圖解, 台北, 大知出版社
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2009-02-18起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2009-02-18起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw