進階搜尋


 
系統識別號 U0026-0812200914062271
論文名稱(中文) 前十字韌帶重建術之追蹤研究:不同手術於髕骨結構、局部肌力與單腳跳躍控制策略之比較
論文名稱(英文) The Comparison of Patellar Alignment, Knee Strength, and One Leg Hopping Strategies between Bone-Patellar Tendon-Bone and Hamstring Tendon Grafts for Anterior Cruciate Ligament Reconstruction
校院名稱 成功大學
系所名稱(中) 物理治療研究所
系所名稱(英) Department of Physical Therapy
學年度 96
學期 1
出版年 97
研究生(中文) 李俊賢
研究生(英文) Chun-Hsien Li
電子信箱 t6694101@mail.ncku.edu.tw
學號 t6694101
學位類別 碩士
語文別 中文
論文頁數 153頁
口試委員 指導教授-陳文玲
口試委員-林呈鳳
指導教授-楊俊佑
中文關鍵字 前十字韌帶重建術  術後追蹤  單腳跳躍策略  髕骨結構 
英文關鍵字 Patellar alignment  Follow up  Anterior cruciate ligament reconstruction  One leg hopping strategies 
學科別分類
中文摘要 研究背景:前十字韌帶(ACL)損傷發生率之高,幾達膝關節損傷之85%。目前臨床上以髕骨肌腱或膕旁肌腱自體移植進行前十字韌帶重建術最為常見。過去許多文獻針對術後膝功能、膝關節鬆弛度、局部膝肌力,甚至於日常動作分析進行兩種自體移植術之比較,企圖尋求最佳手術建議。此外,單腳跳躍測試堪稱目前臨床上最普遍的膝功能檢定測試,然而至今相關研究多著重於跳躍距離之量化或僅針對著地期進行矢狀面之動作分析。雖然已有研究證實膝內旋結構是ACL損傷的主要原因之一,而且跳躍距離理應取決於起跳期之控制。然而有關單腳跳躍之起跳期動作分析或膝旋轉方向之探討至今仍乏無人研究。目的:針對此兩種常見前十字韌帶重建術(ACLR)比較相關患者術後2年以上在髕骨結構、膝部肌力與活動度以及單腳跳躍控制策略方面是否呈現顯著差異,除了一般常用的跳躍距離外並將著重在膝旋轉之控制策略與起跳期之動作分析進行探討。研究方法:本研究共延攬21位ACLR患者,包括髕骨肌腱移植組11位(以下簡稱髕骨肌組)、膕旁肌腱移植組10位(膕旁肌組)與健康對照組12位,進行基本資料、膝功能問卷評估、下肢物理性檢查、KT2000之ACL鬆弛度檢測、大腿周徑測量、膝外旋關節活動度與膝肌力測量、單腳跳躍動作與肌電訊號分析、以及各式影像檢查(髕股骨關節與施壓式脛股骨關節之X光影像學檢查、膝部核磁共振)。之後分別以單因子變異數分析或克─瓦二氏單因子變異數分析檢定進行不同手術或健康對照組之組間差異;另外,以配對樣本t考驗或威氏符號等級檢定比較健患側兩腳間之差異。結果:本研究結果顯示,在KT2000量測之ACL鬆緊度方面,僅膕旁肌組比起健康對照組呈現顯著鬆弛現象(p<0.05)。在膝關節功能問卷方面,重建兩組之患側均顯著低於其健側以及健康對照組(p<0.05),尤其髕骨肌組較明顯偏低。在膝外旋關節活動度方面,膕旁肌組之患側腳顯著大於另兩組(p<0.05)。在施壓式脛股關節之X光影像方面,重建兩組之測量值均顯著大於其健側腳(p<0.05),然以健患兩腳差值而言卻並未呈現顯著的組間差異。至於單腳跳躍動作方面,就跳躍距離而言,重建兩組之患側腳均顯著小於健康對照組,然僅髕骨肌組患側腳相較於其健側腳呈現顯著之兩腳間差異(p<0.05);就跳躍動作分析而言,於著地期僅髕骨肌組呈現患側最大膝屈曲活動度顯著小於其健側腳的現象(p<0.05)且其最大垂直力亦顯著小於健康對照組(p<0.05)、於起跳期則發現重建兩組患側腳之膝伸直速度均顯著低於其健側腳或健康對照組(p<0.05),此差異於髕骨肌組尤其明顯。在跳躍動作之肌電分析方面,髕骨肌組無論在起跳期或著地期患側腳之肌肉活動量普遍均呈現小於其健側腳或其他兩組的現象。於起跳期膕旁肌組呈現患側腳膕內外側肌比值顯著大於其健側腳(p<0.05),然而股內外側肌比值與腓外內側肌比值卻都顯著小於其健側腳(p<0.05);於著地期之腓外內側肌比值雖僅膕旁肌組患側腳顯著小於健側腳(p<0.05),然髕骨肌組之外側腓腸肌亦呈現顯著低於其健側的現象。討論與結論:本研究發現ACLR患者,於術後2~3年雖然已於肌力表現或ACL鬆弛度等臨床上常見的客觀性檢查方面已恢復至幾近正常,然重建兩組於跳躍距離仍呈現顯著小於健康對照組的現象。此結果或與其起跳期膝伸直速度顯著低於健康對照組有關,而從髕骨肌組於起跳期各肌肉活動量普遍低的發現亦可得到佐證。另外,膕旁肌組於起跳期雖有股內外側肌與腓外內側肌比值偏低的現象,然其膕內外肌比值則有偏高的趨勢與之抗衡,乃至於在起跳期未呈現膝外旋活動度偏高的異常現象。本研究於著地期亦提出髕骨肌組之患側最大膝屈曲活動度顯著偏低之結果,明確支持過去文獻於矢狀面之相關發現。至於著地期橫斷面的分析結果,本研究更發現膕旁肌組與髕骨肌組於患側腳均呈腓外內側肌比值低於其健側的現象,非但清楚的描繪出著地期之患側膝外旋傾向,亦為動作分析結果中著地瞬間膝外旋活動度偏高的趨勢,提供最佳註解。總之本研究於單腳跳躍控制策略上,尤其是起跳期與膝旋轉方向的獨特發現將有助於降低前十字韌帶再損傷的機率。
英文摘要 Background: Anterior cruciate ligament (ACL) injury is the commonest knee injury and it’s prevalence is up to 85% of knee internal tissue injuries. Recently, bone-patellar tendon-bone autograft (BPTBA) and hamstrings tendon autograft (HTA) have been generally recommended for conducting ACL reconstruction (ACLR) surgery. Numerous studies have compared knee function, knee joint laxity, knee strength, and gait analysis between these two different grafts of ACLR for seeking a better way of surgery. On the other hand, one leg hopping test has been widely used to examine knee function and stability following ACL injury or reconstruction, however previous studies mainly focused on the measurements of hop distance or sagittal plane analysis in landing phase. While hopping distance might be highly dependent on the control strategies of take-off phase, little has been done to investigate the control strategy in the take-off phase of one leg hopping test or to focus on transverse plane analysis during hopping. Purpose: To compare the differences in patellar alignment, knee function or strength, and one leg hopping strategies especially in the rotatory control of the knee between BPTBA and HTA reconstruction surgeries. Methods: 21 ACLR subjects (11 subjects with BPTBA and 10 subjects with HSA) and 12 healthy control subjects were recruited for the evaluation of IKDC score, ACL laxity, the circumference of thigh, the range of motion (ROM) in knee external rotation, the strength of knee muscles, and the biomechanical analysis of one leg hopping test (OLHT). Radiographic examinations including plane X-ray for patellar alignment as well as stressradiography, and magnetic resonance imaging (MRI) for knee joints were also arranged. Several oneway ANOVA or Kruskal-Wallis tests were conducted to examine the differences among BPTBA, HTA and the healthy groups. Several paired t tests or Wilcoxon signed ranked tests were used to perform bilateral comparison between the reconstructed legs and the uninvolved legs. Results: Although significantly more anterior tibial displacement was found in the affected legs than the uninvolved legs in both reconstructed groups by stressradiography (p < 0.05), significantly more ACL laxity was only found in HSA group compared with healthy control group measured by KT2000 (p< 0.05). HSA group also exhibited significantly more range of knee external rotation and significantly higher hamstrings electromyographic ratio of medial to lateral rotator activities, however significantly lower gastrocnemius electromyographic ratio of medial to lateral rotator activities during take-off phase of one-leg hopping in their reconstructed legs (p < 0.05). On the other hand, significantly lower IKDC score was found in both reconstructed groups, especially for the BPTBA group (p < 0.05). In addition, although significantly shorter hop distance and significantly lower knee extension velocity during take-off phase was found in both reconstructed groups (p < 0.05), only BPTBA group exhibited significantly less maximal knee flexion angle and significantly lower peak vertical force during landing phase as well as significantly lower activities of almost all knee muscles investigated in both landing and take-off phases in their reconstructed legs in comparison of their unaffected legs. Moreover, significantly more deficits of hop distance derived from bilateral comparison was found in BPTBA group but not in HTA group.(p < 0.05). Discussion and conclusion: The results showed that both reconstructed groups had returned to normal in terms of related muscle strength and the range of motion at two to three years after ALCR. However, deficits in hop distance still remained in both reconstructed groups especially for BPTBA group. The significantly slower knee extension velocity found in both reconstructed groups and the significantly less muscle activities found in BPTBA group during take-off phase might provide a reasonable explanation for the deficits found in hop distance. In addition, the significantly less maximal knee flexion angle found during landing phase in our BPTBA group is consistent with what reported in Webster’s study, further supports the protective role that knee strategies during landing phase might play. Apart from the control strategies commonly proposed in the literature, the electromyographic ratio of medial to lateral rotator activities during take-off phase was found significantly higher for the hamstrings yet significantly lower for the grastrocneiums in the reconstructed legs of HTA group compared with their unaffected legs. The findings might provide a circumferential evidence to demonstrate the importance of rotatory control in hopping performance, since the BPTBA legs in our study tended to hop with more tibial external rotation than their unaffected legs, but the HTA legs did not. The study has proposed several factors that might contribute to the ability of hopping farther. In addition, an attempt to explore the importance of tibial rotatory control was also provided for the purpose of decreasing the incidence of anterior cruciate ligament re-injury.
論文目次 考試合格證明……………………………………………………… 1
中文摘要…………………………………………………………… 3
英文摘要…………………………………………………………… 6
致謝………………………………………………………………… 10
目錄………………………………………………………………… 11
表目錄……………………………………………………………… 20
圖目錄……………………………………………………………… 21
第一章 簡介與文獻回顧………………………………………… 23
第一節 前十字韌帶損傷或斷裂……………………………23
一、流行率…………………………………………………23
二、後遺症……………………………………………………… 23
三、常見的治療………………………………………………… 24
第二節 常見的前十字韌帶重建術…………………………24
一、髕骨肌腱自體移植重建術……………………………24
二、髕骨肌腱自體移植重建術的術後復原狀況…………25
三、膕旁肌肌腱自體移植重建術…………………………26
四、膕旁肌肌腱自體移植重建術後復原狀況……………27
第三節、不同自體移植術的比較……………………………28
一、膝關節功能……………………………………………28
二、前十字韌帶鬆弛度……………………………………29
三、跪走能力………………………………………………29
四、前側膝痛………………………………………………30
五、膝關節敏感性…………………………………………31
六、功能性活動……………………………………………31
七、膝關節活動度…………………………………………31
八、膝關節肌力…………………………………………………32
九、動作分析方面…………………………………………… 32
第四節、不同自體移植術對脛旋轉的影響…………………33
一、脛旋轉關節活動度……………………………………34
二、脛旋轉肌力……………………………………………34
三、脛旋轉之動作分析……………………………………………36
第五節、相關膝關節問題之脛旋轉控制……………………36
一、前十字韌帶損傷………………………………………36
二、退化性膝關節炎……………………………………………37
三、髕股骨關節問題………………………………………………38
第六節、單腳跳躍測試………………………………………40
一、單腳跳躍之著地期……………………………………41
二、單腳跳躍動作之起跳期………………………………………44
第七節、研究動機……………………………………………45
第八節、研究目的……………………………………………46
第九節、研究問題……………………………………………47
第十節、研究假設……………………………………………48
第二章、研究方法………………………………………………… 49
第一節、研究對象……………………………………………49
第二節、研究儀器與設備……………………………………52
一、十字韌帶鬆弛度檢測儀………………………………52
二、壓痛閾測量儀…………………………………………53
三、拉力測量系統………………………………………………53
四、三維動作分析系統…………………………………………54
五、力板系統……………………………………………………56
六、肌電圖儀……………………………………………………57
七、足底開關………………………………………………… 58
八、量角器…………………………………………………… 59
九、傾角器……………………………………………………59
第三節、研究流程……………………………………………60
第四節、測試方法……………………………………………61
一、Tegner活動層級評估…………………………………61
二、物理性檢查……………………………………………61
(1) 艾利氏檢定……………………………………61
(2) 直腿向上抬高測試……………………………… 62
三、膝關節功能問卷評估…………………………………62
四、膝關節局部痛點壓痛閾值測量………………………64
五、大腿周徑測量…………………………………………65
六、股四頭肌角度測量……………………………………66
七、前十字韌帶鬆弛度測量………………………………66
八、反光球與肌電圖電極貼片之定位……………………67
九、膝外旋關節活動度測量………………………………69
十、單腳跳躍之動作分析與肌電訊號分析………………70
十一、膝關節最大等長肌力測量…………………………71
十二、放射學檢查…………………………………………72
(一)施壓式脛股關節之X光檢查……………………… 72
(二)髕股骨關節之X光檢查………………………… 73
(三)膝關節核磁共振檢查………………………………74
第五節、資料處理與分析……………………………………75
一、膝外旋關節活動度分析………………………………76
二、單腳跳躍之動作分析與肌電訊號分析………………76
(一)單腳跳躍距離計算………………………………… 76
(二)運動學分析………………………………………… 77
(三)最大垂直力………………………………………77
(四)肌電訊號分析……………………………………… 78
三、膝部肌肉之等長肌力分析…………………………… 80
四、放射學檢查……………………………………………81
(一)施壓式脛股關節X光影像學檢查…………………… 81
(二)髕骨關節X光影像學檢查……………………… 82
(三)核磁共振影像學檢查………………………………83
第六節、資料統計與分析……………………………………84
第三章、結果……………………………………………………… 86
第一節、受試者基本資料……………………………………86
第二節、膝關節功能問卷評估………………………………87
第三節、兩腳大腿周徑差值…………………………………87
第四節、局部柔軟度…………………………………………88
第五節、膝關節局部壓痛閾值………………………………88
第六節、下肢結構……………………………………………89
一、股四頭肌角度………………………………………………89
二、膝旋轉角度…………………………………………………89
第七節、膝外旋關節活動度…………………………………90
第八節、膝部肌肉之最大等長肌力…………………………91
一、膝部肌肉之最大等長肌力……………………………91
二、膝外內旋肌力比值…………………………………………91
三、膝部肌肉最大等長肌力缺損比例……………………92
第九節、X光影像…………………………………………… 93
一、施壓式脛股關節之X光影像………………………… 93
二、髕股關節之X光影像………………………………… 93
第十節、單腳跳躍動作與肌電訊號分析……………………94
一、單腳跳躍距離…………………………………………94
二、運動學…………………………………………………95
(一)瞬間膝屈曲與膝旋轉之活動度分析………………95
(二)各期間膝屈曲-伸直的速度……………………96
(1)起跳期膝伸直速度………………………………… 96
(2)著地期膝屈曲速度………………………………97
三、最大垂直力……………………………………………98
四、肌電訊號………………………………………………99
(一)起跳期之肌電訊號……………………………… 99
(二)著地期之肌電訊號……………………………101
第四章、討論……………………………………………………… 104
第一節、基本資料……………………………………………104
第二節、膝關節功能問卷評估之比較………………………104
第三節、前十字韌帶鬆弛度比較……………………………105
第四節、大腿周徑之比較……………………………………107
第五節、柔軟度之比較………………………………………108
第六節、膝關節局部壓痛閾值比較…………………………108
第七節、下肢結構比較………………………………………109
一、股四頭肌角度…………………………………………109
二、膝旋轉角度……………………………………………110
第八節、膝外旋關節活動度之比較…………………………111
第九節、膝部肌肉最大等長肌力……………………………112
第十節、髕骨結構的差異……………………………………113
第十一節、單腳跳躍之動作控制……………………………114
一、單腳跳躍距離比較……………………………………114
二、跳躍瞬間膝關節活動角度……………………………115
三、單腳跳躍之速度………………………………………117
(1)起跳期膝伸直速度………………………………117
(2)著地期膝屈曲速度………………………………… 118
四、最大垂直力的比較……………………………………119
五、膝部肌肉電訊號之比較………………………………119
(1)單腳跳躍之起跳期………………………………119
(2)單腳跳躍之著地期………………………………121
第十二節、研究限制…………………………………………122
第十三節、臨床貢獻…………………………………………123
第五章、結論……………………………………………………… 124
第六章、參考文獻………………………………………………… 127
附錄一 人體試驗委員會同意書………………………………… 145
附錄二 Tegner 活動層級量表………………………………… 147
附錄三 國際膝關節文獻委員會之主觀性膝關節評估問卷……148
自述………………………………………………………………… 153
參考文獻 1. Roos H, Ornell M, Gardsell P. Soccer after anterior cruciate ligament injury: an incompatible combination?: a national survey of incidence and risk factors and a 7-year follow-up of 310 players. Acta Orthop Scand. 1995;66(2):107-112.
2. Majewski M, Susanne H, Klaus S. Epidemiology of athletic knee injuries: A 10-year study. The Knee. 2006;13(3):184-188.
3. Johnson RJ, Beynnon BD, Nichols CE, Renstrom PA. The treatment of injuries of the anterior cruciate ligament. Journal of Bone and Joint Surgery. 1992;74(1):140-151.
4. Frank CB, Jackson DW. Current Concepts Review - The Science of Reconstruction of the Anterior Cruciate Ligament. J Bone Joint Surg Am. 1997;79(10):1556-1576.
5. Lynch MA, Henning CA. Osteoarthritis and the ACL-deficient knee. In: Feagin JA, ed. The Crucial Ligaments: Diagnosis and Treatment of Ligamentous Injuries About the Knee. New York, NY: Churchill Livingstone; 1988.
6. Lohmander LS, Ostenberg A, Englund M, Roos H. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis & Rheumatism. 2004;50(10):3145-3152.
7. Daniel DM, Stone ML, Dobson BE, et al. Fate of the ACL-injured patient. A prospective outcome study. American Journal of Sports Medicine. 1994;22(5):632-644.
8. Corry IS. Arthroscopic reconstruction of the anterior cruciate ligament: a comparsion of patellar tendon autograft and four-strand hamstring tendon autograft American Journal of Sports Medicine. 1999;27:444-454.
9. Aglietti P, Buzzi R, Zaccherotti G, De Biase P. Patellar tendon versus doubled semitendinosus and gracilis tendons for anterior cruciate ligament reconstruction. American Journal of Sports Medicine. 1994;22(2):211-217.
10. Noyes FR, Butler DL, Grood ES, Zernicke RF, Hefzy MS. Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J Bone Joint Surg Am. 1984;66(3):344-352.
11. Donald Shelbourne K, Gray T. Results of anterior cruciate ligament reconstruction based on meniscus and articular cartilage status at the time of surgery: five- to fifteen-year evaluations. Am J Sports Med. 2000;28(4):446-452.
12. Anderson AF, Snyder RB, Lipscomb AB, Jr. Anterior cruciate ligament reconstruction: a prospective randomized study of three surgical methods. American Journal of Sports Medicine. 2001;29(3):272-279.
13. Campbell JD. The evolution and current treatment trends with anterior cruciate, posterior cruciate, and medial collateral ligament injuries. American Journal of Knee Surgery. 1998;11(2):128-135.
14. Yunes M, Richmond JC, Engels EA, Pinczewski LA. Patellar versus hamstring tendons in anterior cruciate ligament reconstruction. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2001;17(3):248-257.
15. Keays SL, Bullock-Saxton J, Keays AC, Keays SL, Bullock-Saxton J, Keays AC. Strength and function before and after anterior cruciate ligament reconstruction. Clinical Orthopaedics & Related Research. 2000(373):174-183.
16. Gauffin H, Pettersson G, Tegner Y, et al. Function testing in patients with old rupture of the anterior cruciate ligament. International Journal of Sports Medicine. 1990;11(1):73-77.
17. Noyes FR, Barber SD, Mangine RE. Abnormal lower limb symmetry determined by function hop tests after anterior cruciate ligament rupture. American Journal of Sports Medicine. 1991;19(5):513-518.
18. Kartus J, Magnusson L, Stener S, Brandsson S, Eriksson BI, Karlsson J. Complications following arthroscopic anterior cruciate ligament reconstruction A 2-5-year follow-up of 604 patients with special emphasis on anterior knee pain. Knee Surgery, Sports Traumatology, Arthroscopy. 1999;7(1):2-8.
19. Kartus J, Stener S, Lindahl S, et al. Factors affecting donor-site morbidity after anterior cruciate ligament reconstruction using bone-patellar tendon-bone autografts. Knee Surg Sports Traumatol Arthrosc. 1997;5(4):222-228.
20. Jarvela T, Kannus P, Jarvinen M. Anterior knee pain 7 years after an anterior cruciate ligament reconstruction with a bone-patellar tendon-bone autograft. Scandinavian Journal of Medicine & Science in Sports. 2000;10(4):221-227.
21. Breitfuss H, Frohlich R, Povacz P, Resch H, Wicker A. The tendon defect after anterior cruciate ligament reconstruction using the midthird patellar tendon? a problem for the patellofemoral joint? Knee Surgery, Sports Traumatology, Arthroscopy. 1996;3(4):194-198.
22. Sachs RA, Daniel DM, Stone ML, Garfein RF. Patellofemoral problems after anterior cruciate ligament reconstruction. American Journal of Sports Medicine. 1989;17(6):760-765.
23. Kuo M-H, Leong C-P, Wang C-J. Simultaneous patellar fracture and patellar tendon avulsion following arthroscopic anterior cruciate ligament reconstruction: a case report and literature review. Chang Gung Medical Journal. 2003;26(8):592-597.
24. Bonatus TJ, Alexander AH. Patellar fracture and avulsion of the patellar ligament complicating arthroscopic anterior cruciate ligament reconstruction. Orthopaedic Review. 1991;20(9):770-774.
25. Spindler KP, Kuhn JE, Freedman KB, et al. Anterior cruciate ligament reconstruction autograft choice: bone-tendon-bone versus hamstring: does it really matter? A systematic review. American Journal of Sports Medicine. 2004;32(8):1986-1995.
26. Ejerhed L, Kartus J, Sernert N, et al. Patellar tendon or semitendinosus tendon autografts for anterior cruciate ligament reconstruction? A prospective randomized study with a two-year follow-up. American Journal of Sports Medicine. 2003;31(1):19-25.
27. Sernert N, Kartus J, Kohler K, et al. Analysis of subjective, objective and functional examination tests after anterior cruciate ligament reconstruction. A follow-up of 527 patients. Knee Surg Sports Traumatol Arthrosc. 1999;7(3):160-165.
28. Laxdal G, Kartus J, Hansson L, Heidvall M, Ejerhed L, Karlsson J. A prospective randomized comparison of bone-patellar tendon-bone and hamstring grafts for anterior cruciate ligament reconstruction. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2005;21(1):34-42.
29. Maeda A, Shino K, Horibe S, Nakata K, Buccafusca G. Anterior cruciate ligament reconstruction with multistranded autogenous semitendinosus tendon. Am J Sports Med. 1996;24(4):504-509.
30. Elmlinger BS, Nyland JA, Tillett ED, Elmlinger BS, Nyland JA, Tillett ED. Knee flexor function 2 years after anterior cruciate ligament reconstruction with semitendinosus-gracilis autografts. Arthroscopy. 2006;22(6):650-655.
31. Beynnon BD, Johnson RJ, Fleming BC, et al. Anterior cruciate ligament replacement: comparison of bone-patellar tendon-bone grafts with two-strand hamstring grafts : A prospective, randomized study. Journal of Bone & Joint Surgery [Am]. 2002;84(9):1503-1513.
32. Keays SL, Bullock Saxton J, Keays AC, et al. Muscle strength and function before and after anterior cruciate ligament reconstruction using semitendonosus and gracilis. Knee. 2001;8(3):229-234.
33. Nakamura N, Horibe S, Sasaki S, et al. Evaluation of active knee flexion and hamstring strength after anterior cruciate ligament reconstruction using hamstring tendons. Arthroscopy. 2002;18(6):598-602.
34. Svensson M, Sernert N, Ejerhed L, et al. A prospective comparison of bone-patellar tendon-bone and hamstring grafts for anterior cruciate ligament reconstruction in female patients. Knee Surgery, Sports Traumatology, Arthroscopy. 2006;14(3):278-286.
35. Feller JA, Webster KE. A randomized comparison of patellar tendon and hamstring tendon anterior cruciate ligament reconstruction. American Journal of Sports Medicine. 2003;31(4):564-573.
36. Nordt WE, III, Lotfi P, Plotkin E, Williamson B. The in vivo assessment of tibial motion in the transverse plane in anterior cruciate ligament-reconstructed knees. American Journal of Sports Medicine. 1999;27(5):611-616.
37. Aglietti P, Giron F, Buzzi R, et al. Anterior cruciate ligament reconstruction: bone-patellar tendon-bone compared with double semitendinosus and gracilis tendon grafts. A prospective, randomized clinical trial. Journal of Bone & Joint Surgery [Am]. 2004;86-A(10):2143-2155.
38. Tow BP, Chang PC, Mitra AK, et al. Comparing 2-year outcomes of anterior cruciate ligament reconstruction using either patella-tendon or semitendinosus-tendon autografts: a non-randomised prospective study. Journal of Orthopaedic Surgery. 2005;13(2):139-146.
39. Gobbi A, Domzalski M, Pascual J, Gobbi A, Domzalski M, Pascual J. Comparison of anterior cruciate ligament reconstruction in male and female athletes using the patellar tendon and hamstring autografts. Knee Surgery, Sports Traumatology, Arthroscopy. 2004;12(6):534-539.
40. Liden M, Ejerhed L, Sernert N, Laxdal G, Kartus J. Patellar tendon or semitendinosus tendon autografts for anterior cruciate ligament reconstruction: A prospective, randomized study with a 7-Year follow-up. Am J Sports Med. 2007;35(5):740-748.
41. Freedman KB, D'Amato MJ, Nedeff DD, Kaz A, Bach BR, Jr. Arthroscopic anterior cruciate ligament reconstruction: A metaanalysis comparing patellar tendon and hamstring tendon autografts. Am J Sports Med. 2003;31(1):2-11.
42. Bizzini M, Gorelick M, Munzinger U, et al. Joint laxity and isokinetic thigh muscle strength characteristics after anterior cruciate ligament reconstruction: bone patellar tendon bone versus quadrupled hamstring autografts. Clinical Journal of Sport Medicine. 2006;16(1):4-9.
43. Shaieb MD, Kan DM, Chang SK, Marumoto JM, Richardson AB. A Prospective randomized comparison of patellar tendon versus semitendinosus and gracilis tendon autografts for anterior cruciate ligament reconstruction. American Journal of Sports Medicine. 2002;30(2):214-220.
44. Keays SL, Bullock Saxton JE, Keays AC, et al. A 6-year follow-up of the effect of graft site on strength, stability, range of motion, function, and joint degeneration after anterior cruciate ligament reconstruction: patellar tendon versus semitendinosus and Gracilis tendon graft. American Journal of Sports Medicine. 2007;35(5):729-739.
45. Sajovic M, Vengust V, Komadina R, et al. A prospective, randomized comparison of semitendinosus and gracilis tendon versus patellar tendon autografts for anterior cruciate ligament reconstruction: five-year follow-up. American Journal of Sports Medicine. 2006;34(12):1933-1940.
46. Liden M, Ejerhed L, Sernert N, et al. The course of the patellar tendon after reharvesting its central third for ACL revision surgery: a long-term clinical and radiographic study. Knee Surgery, Sports Traumatology, Arthroscopy. 2006;14(11):1130-1138.
47. Laxdal G, Sernert N, Ejerhed L, et al. A prospective comparison of bone-patellar tendon-bone and hamstring tendon grafts for anterior cruciate ligament reconstruction in male patients.[see comment]. Knee Surgery, Sports Traumatology, Arthroscopy. 2007;15(2):115-125.
48. Rudroff T. Functional capability is enhanced with semitendinosus than patellar tendon ACL repair. Medicine & Science in Sports & Exercise. 2003;35(9):1486-1492.
49. Webster KE, Gonzalez-Adrio R, Feller JA. Dynamic joint loading following hamstring and patellar tendon anterior cruciate ligament reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy. 2004;12(1):15-21.
50. Webster KE, Wittwer JE, O'Brien J, Feller JA. Gait Patterns After Anterior Cruciate Ligament Reconstruction Are Related to Graft Type. Am J Sports Med. 2005;33(2):247-254.
51. Magee DJ. Orthopedic Physical Assessment. . 4 ed. Philadelphia: Saunders; 2002.
52. Markolf KL, Burchfield DM, Shapiro MM, et al. Combined knee loading states that generate high anterior cruciate ligament forces. Journal of Orthopaedic Research. 1995;13(6):930-935.
53. Armour T, Forwell L, Litchfield R, et al. Isokinetic evaluation of internal/external tibial rotation strength after the use of hamstring tendons for anterior cruciate ligament reconstruction. American Journal of Sports Medicine. 2004;32(7):1639-1643.
54. Torry MR, Decker MJ, Jockel JR, et al. Comparison of tibial rotation strength in patients' status after anterior cruciate ligament reconstruction with hamstring versus patellar tendon autografts. Clinical Journal of Sport Medicine. 2004;14(6):325-331.
55. Maletis GB, Cameron SL, Tengan JJ, Burchette RJ. A prospective randomized study of anterior cruciate ligament reconstruction: A comparison of patellar tendon and quadruple-strand semitendinosus/gracilis tendons fixed with bioabsorbable interference screws. Am J Sports Med. 2007;35(3):384-394.
56. Zhang L-Q, Nuber GW, Bowen MK, Koh JL, Butler JP. Multiaxis muscle strength in ACL deficient and reconstructed knees: compensatory mechanism. Medicine & Science in Sports & Exercise. 2002;34(1):2-8.
57. Tashman S, Collon D, Anderson K, Kolowich P, Anderst W. Abnormal rotational knee motion during running after anterior cruciate ligament reconstruction. American Journal of Sports Medicine. 2004;32(4):975-983.
58. Osternig LR, Bates BT, James SL. Patterns of tibial rotary torque in knees of healthy subjects. Medicine & Science in Sports & Exercise. 1980;12(3):195-199.
59. Kirkendall DT, Garrett WE, Jr. The anterior cruciate ligament enigma: injury mechanisms and prevention. Clinical Orthopaedics & Related Research. 2000;372:64-68.
60. Boden BP, Dean GS, Feagin JA, Jr., et al. Mechanisms of anterior cruciate ligament injury. Orthopedics. 2000;23(6):573-578.
61. Zhang LQ, Shiavi RG, Limbird TJ, Minorik JM. Six degrees-of-freedom kinematics of ACL deficient knees during locomotion-compensatory mechanism. Gait & Posture. Feb 2003;17(1):34-42.
62. Eckhoff DG, Johnston RJ, Stamm ER, Kilcoyne RF, Wiedel JD. Version of the osteoarthritic knee. The Journal of Arthroplasty. 1994;9(1):73-79.
63. Andriacchi TP, Briant PL, Bevill SL, Koo S. Rotational changes at the knee after ACL injury cause cartilage thinning. Clinical Orthopaedics & Related Research. 2006;442:39-44.
64. Stergiou N, Ristanis S, Moraiti C, Georgoulis AD. Tibial rotation in anterior cruciate ligament (ACL)-deficient and ACL-reconstructed knees: A theoretical proposition for the development of osteoarthritis. Sports Medicine. 2007;37(7):601-614.
65. Cameron JCMD, Saha SB. External tibial torsion: An underrecognized cause of recurrent patellar dislocation. Clin Orthop Relat Res. 1996;328:177-184.
66. Fulkerson JP, Hungerford DS. Disorders of the Patellofemoral Joint. 2 ed. Baltimore, Md: Williams & Wilkins; 1990.
67. Thomas M, Kaltenbrunner W, Nikolic A, Mittlboeck M, Schabus R, Vecsei V. Anterior cruciate ligament reconstruction alters the patellar alignment. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 1999;15(2):165-168.
68. Insall J. Current concepts review: patellar pain. Journal of Bone and Joint Surgery. 1982;64(1):147-152.
69. Steiner ME, Koskinen SK, Winalski CS, Martin SD, Haymen M. Dynamic lateral patellar tilt in the anterior cruciate ligament-deficient knee. A magnetic resonance imaging analysis. American Journal of Sports Medicine. 2001;29(5):593-599.
70. Yoo JD, Papannagari R, Park SE, et al. The effect of anterior cruciate ligament reconstruction on knee joint kinematics under simulated muscle loads. American Journal of Sports Medicine. 2005;33(2):240-246.
71. Li G, DeFrate LE, Zayontz S, Park SE, Gill TJ. The effect of tibiofemoral joint kinematics on patellofemoral contact pressures under simulated muscle loads. Journal of Orthopaedic Research. 2004;22(4):801-806.
72. Tibone JE, Antich TJ, Fanton GS, Moynes DR, Perry J. Functional analysis of anterior cruciate ligament instability. American Journal of Sports Medicine. 1986;14(4):276-284.
73. Jonsson H, Karrholm J, Elmqvist LG. Kinematics of active knee extension after tear of the anterior cruciate ligament. American Journal of Sports Medicine. 1989;17(6):796-802.
74. Tiberio D. The effect of excessive subtalar joint pronation on patellofemoral mechanics: a theoretical model. Journal of Orthopaedic & Sports Physical Therapy. 1987;20:160-165.
75. Powers CM. The influence of altered lower-extremity kinematics on patellofemoral joint dysfunction: a theoretical perspective. Journal of Orthopaedic & Sports Physical Therapy. 2003;33(11):639-646.
76. Wilk KE, Romaniello WT, Soscia SM, et al. The relationship between subjective knee scores, isokinetic testing, and functional testing in the ACL-reconstructed knee. Journal of Orthopaedic & Sports Physical Therapy. 1994;20(2):60-73.
77. Fitzgerald GK, Lephart SM, Hwang JH, et al. Hop tests as predictors of dynamic knee stability. Journal of Orthopaedic & Sports Physical Therapy. 2001;31(10):588-597.
78. Irrgang JJ, Ho H, Harner CD, Fu FH. Use of the international knee documentation committee guidelines to assess outcome following anterior cruciate ligament reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy. 1998;6(2):107-114.
79. Keays SL, Bullock-Saxton JE, Newcombe P, et al. The relationship between knee strength and functional stability before and after anterior cruciate ligament reconstruction. Journal of Orthopaedic Research. 2003;21(2):231-237.
80. Sekiya I, Muneta T, Ogiuchi T, Yagishita K, Yamamoto H. Significance of the single-legged hop test to the anterior cruciate ligament-reconstructed knee in relation to muscle strength and anterior laxity. Am J Sports Med. 1998;26(3):384-388.
81. Rudolph KS, Axe MJ, Snyder-Mackler L. Dynamic stability after ACL injury: who can hop? Knee Surgery, Sports Traumatology, Arthroscopy. 2000;8(5):262-269.
82. Lephart SM, Ferris CM, Riemann BL, Myers JB, Fu FH. Gender differences in strength and lower extremity kinematics during landing. Clinical Orthopaedics & Related Research. 2002;401:162-169.
83. Arendt E, Dick R. Knee injury patterns among men and women in collegiate basketball and soccer: NCAA data and review of literature. Am J Sports Med. 1995;23(6):694-701.
84. Bush-Joseph CA, Hurwitz DE, Patel RR, et al. Dynamic function after anterior cruciate ligament reconstruction with autologous patellar tendon. Physical therapy. 2001;29(1):36-41.
85. Ernst GP, Saliba E, Diduch DR, Hurwitz SR, Ball DW. Lower extremity compensations following anterior cruciate ligament reconstruction. Physical therapy. 2000;80(3):251-260.
86. Decker MJ, Torry MR, Noonan TJ, Riviere AMY, Sterett WI. Landing adaptations after ACL reconstruction. Medicine & Science in Sports & Exercise. 2002;34(9):1408-1413.
87. Augustsson J, Thomee R, Karlsson J, Augustsson J, Thomee R, Karlsson J. Ability of a new hop test to determine functional deficits after anterior cruciate ligament reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy. 2004;12(5):350-356.
88. Hsieh Y-F, Draganich LF, Ho SH, Reider B. The effects of removal and reconstruction of the anterior cruciate ligament on patellofemoral kinematics. American Journal of Sports Medicine 1998;26(2):201-209.
89. Tegner Y, Lysholm J. Rating systems in the evaluation of knee ligament injuries. Clinical Orthopaedics & Related Research. 1985;198:42-49.
90. http://www.esska.org/pdf/IKDCeng.pdf.
91. Higgins LD, Taylor MK, Park D, et al. Reliability and validity of the International Knee Documentation Committee (IKDC) Subjective Knee Form. Joint Bone Spine. 2007;74(6):594-599.
92. Irrgang JJ, Anderson AF, Boland AL, et al. Development and validation of the international knee documentation committee subjective knee form. Am J Sports Med. 2001;29(5):600-613.
93. Fischer A. Documentation of myofascial trigger points. Arch Phys Med Rehabil 1988;69(4):286-291.
94. Cheng C. Functional outcome and gait analysis after anterolateral thigh flap reconstruction surgery: follow-up and cross-sectional design. 2007.
95. Cram J, Kasman G, Holtz J. Introduction to surface electromyography. Aspen Publishers, Maryland, 1998.
96. Eckhoff DG, Brown AW, Kilcoyne RF, Stamm ER. Knee Version Associated With Anterior Knee Pain. Clin Orthop Relat Res. 1997;339:152-155.
97. Staubli HU, Noesberger B, Jakob RP. Stressradiography of the knee. Cruciate ligament function studied in 138 patients. Acta Orthopaedica Scandinavica. Supplementum. 1992;249:1-27.
98. Davies AP, Bayer J, Owen-Johnson S, et al. The Optimum knee flexion angle for skyline radiography is thirty degrees. Clinical Orthopaedics & Related Research. 2004;423:166-171.
99. Gobbi A, Tuy B, Mahajan S, et al. Quadrupled bone-semitendinosus anterior cruciate ligament reconstruction: a clinical investigation in a group of athletes. Arthroscopy. 2003;19(7):691-699.
100. Almekinders LC, de Castro D. Fixed tibial subluxation after successful anterior cruciate ligament reconstruction. Am J Sports Med. 2001;29(3):280-283.
101. Whiteside A, Hansen S, Chaudhuri A. Exercise lowers pain threshold in chronic fatigue syndrome. Pain. Jun 2004;109(3):497-499.
102. Kosek E, Ekholm J, Hansson P. Pressure pain thresholds in different tissues in one body region. The influence of skin sensitivity in pressure algometry. Scandinavian Journal of Rehabilitation Medicine. 1999;31(2):89-93.
103. Loudon JK, Jenkins W, Loudon KL. The relationship between static posture and ACL injury in female athletes. Journal of Orthopaedic & Sports Physical Therapy. 1996;24(2):91-97.
104. Nagamine R, Whiteside LA, White SE, McCarthy DS. Patellar tracking after total knee arthroplasty. The effect of tibial tray malrotation and articular surface configuration. Clinical Orthopaedics & Related Research. Jul 1994(304):262-271.
105. Youssef F. Knee version and patello-femoral pain. 2nd SICOT/SIROT Annual Internal Conference, Cairo. 2003.
106. Malinzak RA, Colby SM, Kirkendall DT, Yu B, Garrett WE. A comparison of knee joint motion patterns between men and women in selected athletic tasks. Clinical Biomechanics. 2001;16(5):438-445.
107. Nagano Y, Ida H, Akai M, Fukubayashi T. Gender differences in knee kinematics and muscle activity during single limb drop landing. The Knee. 2007;14(3):218-223.
108. Alkjaer T, Simonsen EB, Peter Magnusson SP, Aagaard H, Dyhre-Poulsen P. Differences in the movement pattern of a forward lunge in two types of anterior cruciate ligament deficient patients: copers and non-copers. Clinical Biomechanics. 2002;17(8):586-593.
109. Berchuck M, Andriacchi TP, Bach BR, Reider B. Gait adaptations by patients who have a deficient anterior cruciate ligament. J Bone Joint Surg Am. 1990;72(6):871-877.
110. Bonnard M, Sirin AV, Oddsson L, Thorstensson A. Different strategies to compensate for the effects of fatigue revealed by neuromuscular adaptation processes in humans. Neuroscience Letters. Jan 17 1994;166(1):101-105.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2009-01-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2010-01-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw