進階搜尋


 
系統識別號 U0026-0812200914053696
論文名稱(中文) 自由基為主順流式微波電漿處理自組裝單分子層反應機制的研究
論文名稱(英文) Reaction Mechanism of Monomolecular Self-Assembled Films Modified by Free Radical Dominant Downstream Microwave Plasma
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系碩博士班
系所名稱(英) Department of Materials Science and Engineering
學年度 96
學期 1
出版年 97
研究生(中文) 翁志強
研究生(英文) Chih-Chiang Weng
電子信箱 n5891110@mail.ncku.edu.tw
學號 n5891110
學位類別 博士
語文別 中文
論文頁數 155頁
口試委員 口試委員-陳家浩
口試委員-吳季珍
口試委員-李玉郎
指導教授-廖峻德
召集委員-黃肇瑞
口試委員-黃振昌
中文關鍵字 同步輻射高解析光電子能譜術  自組裝分子層  順流式微波電漿  掃描式光電子顯微術  圖樣轉印工具 
英文關鍵字 patterning method  Downstream microwave plasma  plasma reactivity  synchrotron-based high resolution X-ray photoele  self-assembled monolayers 
學科別分類
中文摘要 本研究以自製順流式微波電漿機台(downstream microwave plasma, DMP)作用於以化學吸附方式固定於Au(111)或Ag(111)的自組裝分子層Self-assembled monolayers, SAMs),結合同步輻射高解析X光光電子能譜(synchrotron-based high resolution X-ray photoelectron spectroscopy, HRXPS ),即時探討DMP、SAMs以及金屬基材界面的反應機制。
以Langmuir probe對所設計的DMP進行電子密度及電子溫度的量測,所得電漿密度約為106 n/cm3,電子溫度約為0.5 eV,此可証實研究所使用的DMP系統其具高能量的物種少,經順流後主要的作用物種應為以存活期較長的自由基等活性物種為主,因此將本DMP系統定義為以自由基為主的電漿處理系統。
以此定義的電漿系統處理不同SAMs以及不同基材的分子層,其結果顯示,SAM分子以及其頭端硫-金屬的介面反應與電漿的組成相關,尤其以氧的相關物種為主要反應物種。主要的電漿誘導反應為脫氫、碳鍊以及含硫物種的脫附效應、碳鏈層以及硫-金屬介面的氧化效應。而整體反應速率正比於氧的含量,也就是與電漿整體反應性相關。
在探討微量氧於氮氣以及氬氣的反應性差異的實驗中,則顯示在氮氣為主的電漿中,氧的反應性較氬氣電漿顯著,而電漿的反應性以氧相關的物種為主,而氮氣電漿所產生的氮相關物種其能量傳遞的效能優於氬氣電漿。此外,具長碳鏈的SAM分子固定於Ag(111)表面,其可抵抗電漿處理的程度優於固定於Au(111)面的SAM分子。
藉由上述理論的探討,使用此以自由基反應為主的DMP電漿系統於SAMs/Au表面製作圖樣,並以掃描式光電子顯微術(Scanning photoelectron microscopy, SPEM)分析電漿處理後表面鍵結變化。研究結果顯示,藉由電漿處理時間的控制,使SAM分子產生負型或正型光阻的效能,而此效能主要與SAM分子與電漿的反應隨時間變化相關。而藉由蝕刻程序,可證實圖樣轉印的效果。藉由此測試,顯示本系統具有製作微米/奈米等及元件例如微流道、生感測器或者提供微電漿製作的可行性。
英文摘要 In this work, we applied custom-made downstream microwave plasma (DMP) upon self-assembled monolayers (SAMs) chemically adsorbed on Au or Ag (Metal). The pristine and plasma-modified SAMs/Metal substrates were then characterized by synchrotron-based in-situ high resolution X-ray photoelectron spectroscopy. Their reaction mechanisms at the plasma/SAMs/Metal interfaces were studied.
The diagnosis of the DMP system was performed by custom-made Langmuir probe. Plasma density of the DMP system was estimated as 106 particles/cm3 or correlated with an electron temperature of around 0.5 eV. Plasma state of current DMP system was thus considered as low content of energetic species, whereas only long-lives free radicals were possible to survive in the course of traveling a distance. A free radical-dominant DMP system was then provided for the subsequent studies.
This defined plasma system was employed to react with various SAMs/Metal. The SAM molecules and head-group S-Metal bonds were sensitive to plasma composition, in particular, the oxygen-derivative species. The primary plasma-induced processes were dehydrogenation, desorption of hydrocarbon and sulfur-containing species, and the oxidation of the alkyl matrix and S-Metal interface. The reaction rates of all major plasma-induced processes were found to be directly proportional to the oxygen content in the plasma, which can be correlated with the measurement of plasma reactivity.
In the study of minor oxygen content in non-oxygen plasma, it was found that oxygen/nitrogen plasma was much reactive in comparison with oxygen/argon plasma. The minor content of oxygen-derivative species played an important role in plasma reactivity, while nitrogen-derived species were relatively efficient in energy transfer. In addition, SAM molecules with long alkyl chains and S-Ag bonds, compared with S-Au bonds, were much resistant to an analogous plasma treatment owing to the characteristic of low-density plasma.
Based upon these fundamental studies, we applied this technique to make a defined pattern on SAMs/Au using the analogous free radical-dominant DMP system and a particular synchrotron-based scanning photoelectron microscopy. By controlling the plasma exposure time, the modified SAMs/Au exhibited as a respective negative or positive resist, which was mostly related to plasma reaction with SAM molecules. After etching on the modified SAMs/Au, a clear pattern was exactly developed. From this frequently-used example, it is therefore very promising to apply this patterning method for the making of micro/nano devices such as micro-fluid channels, very small scale bio-chip, micro-discharges for novel micro-plasma system.
論文目次 第一章 導論 1
1.1 導論 1
1.2 研究目的 3
第二章 、理論基礎與文獻回顧 6
2.1 SAMs簡介 6
2.2 物理源對Self-assembled monolayers的效應 15
2.2.1溫度對Self-assembled monolayers的效應 15
2.2.2電子束對Self-assembled monolayers的效應 16
2.2.3紫外光對Self-assembled monolayers的效應 22
2.2.4X-ray對Self-assembled monolayers的效應 25
2.3 電漿簡介 27
2.3.1電漿基本原理 27
2.3.2電漿中各種粒子的碰撞 31
2.3.2.1原子的碰撞 31
2.3.2.2分子的碰撞 32
2.3.2.3電漿物種與處理物表面的反應 34
2.3.3微波電漿系統 40
2.4 X-ray光電子能譜術 46
第三章 材料與方法 50
3.1 自組裝單分子層(self-assembled monolayers)製備 50
3.2 順流式微波電漿機台 53
3.3 Langmuir probe 電漿參數量測[66, 102-106] 56
3.4 實驗設計及流程 63
3.4.1.同步輻射X-ray光源誘導損害SAMs效應探討 63
3.4.2. 微量氧(> 1%)添加於以自由碁為主氮氣電漿對SAMs反應速率的影響 64
3.4.3. 順流式電漿對SAMs的改質效應:電漿組成、碳鏈長度、基材的影 66
3.4.4.使用順流式氮氣電漿系統於以SAMs為超薄光阻層的Au表面圖案轉移之研究 67
3.5 高解析光電子能譜儀以及掃描式光電子顯微術分析 69
第四章 同步輻射X-ray光源誘導損害SAMs效應 75
第五章 微量氧添加於以自由基為主的氮氣電漿對SAMs反應機制及速率探討 85
5.1 自由基為主的氮氣電漿對SAMs的反應機制探討 85
5.2 微量氧添加於以自由基為主的氮氣電漿對SAMs反應速率探討 92
第六章 順流式電漿對SAMs的改質效應:電漿組成、碳鏈長度以及基材的影響 107
6.1 電漿組成對ODT/Au反應機制的影響 107
6.2 碳鏈長度及基材對氮、氬氣電漿反應速率的影響 116
第七章 使用順流式氮氣電漿系統於以SAMs為超薄光阻層圖案轉移之研究 125
7.1 順流式氮氣電漿處理ODT/Au表面型態及鍵結變化情形 125
7.2 順流式氮氣電漿處理ODT/Au經濕式蝕刻顯影後表之圖案 134
結論論 136
參考文獻 139
相關著作 150
參考文獻 [1] A. B. Artyukhin and P. Stroeve, "Effects of Corrosive Chemicals on Solid-Supported Lipid Bilayers As Measured by Surface Plasmon Resonance", Ind. Eng. Chem. Res., Vol. 42, pp. 2156-2162, 2003.
[2] Q. Zhang and L. A. Archer, "Boundary Lubrication and Surface Mobility of Mixed Alkylsilane Self-Assembled Monolayers", J. Phys. Chem. B, Vol. 107, pp. 13123-13132, 2003.
[3] A. Ulman, "Formation and Structure of Self-Assembled Monolayers", Chem. Rev., Vol. 96, pp. 1533-1554, 1996.
[4] Y. Xia, X.-M. Zhao and G. M. Whitesides, "Pattern transfer: Self-assembled monolayers as ultrathin resists", Microelectronic Engineering, Vol. 32, pp. 255-268, 1996.
[5] T. Massimo, B. Tatiana, S. Bernd, S. Georg and W. M. Laurens, "Using ultrathin elastomeric stamps to reduce pattern distortion in microcontact printing", Applied Physics Letters, Vol. 81, pp. 2094-2096, 2002.
[6] J. Huang, D. A. Dahlgren and J. C. Hemminger, "Photopatterning of Self-Assembled Alkanethiolate Monolayers on Gold: A Simple Monolayer Photoresist Utilizing Aqueous Chemistry", Langmuir, Vol. 10, pp. 626-628, 1994.
[7] D. A. Hutt and G. J. Leggett, "Influence of Adsorbate Ordering on Rates of UV Photooxidation of Self-Assembled Monolayers", J. Phys. Chem., Vol. 100, pp. 6657-6662, 1996.
[8] M. Lewis, M. Tarlov and K. Carron, "Study of the Photooxidation Process of Self-Assembled Alkanethiol Monolayers", J. Am. Chem. Soc., Vol. 117, pp. 9574-9575, 1995.
[9] E. Cooper and G. J. Leggett, "Static Secondary Ion Mass Spectrometry Studies of Self-Assembled Monolayers: Influence of Adsorbate Chain Length and Terminal Functional Group on Rates of Photooxidation of Alkanethiols on Gold", Langmuir, Vol. 14, pp. 4795-4801, 1998.
[10] M. Zharnikov, W. Geyer, A. Gölzhäuser, S. Frey and M. Grunze, "Modification of alkanethiolate monolayers on Au-substrate by low energy electron irradiation: Alkyl chains and the S/Au interface", Physical Chemistry Chemical Physics, Vol. 1, pp. 3163 - 3171, 1999.
[11] M. Zharnikov and M. Grunze, "Modification of thiol-derived self-assembling monolayers by electron and x-ray irradiation: Scientific and lithographic aspects", Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 20, pp. 1793-1807, 2002.
[12] M. J. Lercel, M. Rooks, R. C. Tiberio, H. G. Craighead, C. W. Sheen, A. N. Parikh and D. L. Allara, "Pattern transfer of electron beam modified self-assembled monolayers for high-resolution lithography", Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 13, pp. 1139-1143, 1995.
[13] W. Geyer, V. Stadler, W. Eck, M. Zharnikov, A. Golzhauser and M. Grunze, "Electron-induced crosslinking of aromatic self-assembled monolayers: Negative resists for nanolithography", Applied Physics Letters, Vol. 75, pp. 2401-2403, 1999.
[14] R. Klauser, M. L. Huang, S. C. Wang, C. H. Chen, T. J. Chuang, A. Terfort and M. Zharnikov, "Lithography with a Focused Soft X-ray Beam and a Monomolecular Resist", Langmuir, Vol. 20, pp. 2050-2053, 2004.
[15] X. Ju, M. Kurahashi, T. Suzuki and Y. Yamauchi, "Fabrication of a gold pattern with a nanoscale edge by using heptanethiol self-assembled monolayers and a metastable helium beam", Applied Surface Science, Vol. 241, pp. 241-245, 2005.
[16] S. C. Brown, Introduction to electrical discharges in gases, Wiley, 1966.
[17] H. V. Boenig, Plasma Science and Technology, Cornell University Press, 1992.
[18] M. A. Lieberman and A. J. Lichtenberg, Principles of plasma discharges and materials processing, John Wiley & Sons, Inc., 1994.
[19] E. E. Kunhardt and L. H. Luessen, Electrical breakdown and discharges in gases, Published in cooperation with NATO Scientific Affairs Division [by] Plenum Press, 1983.
[20] M. S. Rossnagel, J. J. Cuomo and W. D. Westwood, Handbook of plasma processing technology :fundamentals, etching, deposition, and surface interactions, Noyes Publications, 1990.
[21] M. Moisan and J. Pelletier, Microwave excited plasmas, Amsterdam ;Elsevier, 1992.
[22] N. Inagaki, "Surface modification of ethylene-co-tetrafluoroethylene copolymer (ETFE) by plasma", Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 208, pp. 277-280, 2003.
[23] N. Inagaki, S. Tasaka, T. Horiuchi and R. Suyama, "Surface modification of poly(aryl ether ether ketone) film by remote oxygen plasma", Journal of Applied Polymer Science, Vol. 68, pp. 271-279, 1998.
[24] Y. Yamada, T. Yamada, S. Tasaka and N. Inagaki, "Surface Modification of Poly(tetrafluoroethylene) by Remote Hydrogen Plasma", Macromolecules, Vol. 29, pp. 4331-4339, 1996.
[25] Y. W. Park and N. Inagaki, "Surface modification of poly(vinylidene fluoride) film by remote Ar, H2, and O2 plasmas", Polymer, Vol. 44, pp. 1569-1575, 2003.
[26] J. D. Liao, M. C. Wang, C. C. Weng, R. Klauser, S. Frey, M. Zharnikov and M. Grunze, "Modification of Alkanethiolate Self-Assembled Monolayers by Free Radical-Dominant Plasma", J. Phys. Chem. B, Vol. 106, pp. 77-84, 2002.
[27] M. C. Wang, J. D. Liao, C. C. Weng, R. Klauser, S. Frey, M. Zharnikov and M. Grunze, "The Effect of the Substrate on Response of Thioaromatic Self-Assembled Monolayers to Free Radical-Dominant Plasma", J. Phys. Chem. B, Vol. 106, pp. 6220-6226, 2002.
[28] M. C. Wang, J. D. Liao, C. C. Weng, R. Klauser, A. Shaporenko, M. Grunze and M. Zharnikov, "Modification of Aliphatic Monomolecular Films by Free Radical Dominant Plasma: The Effect of the Alkyl Chain Length and the Substrate", Langmuir, Vol. 19, pp. 9774-9780, 2003.
[29] D. Zerulla and T. Chasse, "X-ray Induced Damage of Self-Assembled Alkanethiols on Gold and Indium Phosphide", Langmuir, Vol. 15, pp. 5285-5294, 1999.
[30] S. S. Datwani, R. A. Vijayendran, E. Johnson and S. A. Biondi, "Mixed Alkanethiol Self-Assembled Monolayers as Substrates for Microarraying Applications", Langmuir, Vol. 20, pp. 4970-4976, 2004.
[31] D. Losic, J. G. Shapter and J. J. Gooding, "Influence of Surface Topography on Alkanethiol SAMs Assembled from Solution and by Microcontact Printing", Langmuir, Vol. 17, pp. 3307-3316, 2001.
[32] J. Lahiri, E. Ostuni and G. M. Whitesides, "Patterning Ligands on Reactive SAMs by Microcontact Printing", Langmuir, Vol. 15, pp. 2055-2060, 1999.
[33] Y. Tai, A. Shaporenko, M. Grunze and M. Zharnikov, "Effect of Irradiation Dose in Making an Insulator from a Self-Assembled Monolayer", J. Phys. Chem. B, Vol. 109, pp. 19411-19415, 2005.
[34] Y. Tai, A. Shaporenko, W. Eck, M. Grunze and M. Zharnikov, "Abrupt change in the structure of self-assembled monolayers upon metal evaporation", Applied Physics Letters, Vol. 85, pp. 6257-6259, 2004.
[35] A. Ulman, An Introduction to Ultrathin Organic Films From Langmuir-Blodgett to Self-Assembly, 1991.
[36] C. Vericat, M. E. Vela, G. A. Benitez, J. A. M. Gago, X. Torrelles and R. C. Salvarezza, "Surface characterization of sulfur and alkanethiol self-assembled monolayers on Au(111)", Journal of Physics: Condensed Matter, Vol. 18, pp. R867-R900, 2006.
[37] P. E. Laibinis, G. M. Whitesides, D. L. Allara, Y. T. Tao, A. N. Parikh and R. G. Nuzzo, "Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold", J. Am. Chem. Soc., Vol. 113, pp. 7152-7167, 1991.
[38] F. Frederix, K. Bonroy, W. Laureyn, G. Reekmans, A. Campitelli, W. Dehaen and G. Maes, "Enhanced Performance of an Affinity Biosensor Interface Based on Mixed Self-Assembled Monolayers of Thiols on Gold", Langmuir, Vol. 19, pp. 4351-4357, 2003.
[39] N. Patel, M. C. Davies, M. Hartshorne, R. J. Heaton, C. J. Roberts, S. J. B. Tendler and P. M. Williams, "Immobilization of Protein Molecules onto Homogeneous and Mixed Carboxylate-Terminated Self-Assembled Monolayers", Langmuir, Vol. 13, pp. 6485-6490, 1997.
[40] M. D. Porter, T. B. Bright, D. L. Allara and C. E. D. Chidsey, "Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry", J. Am. Chem. Soc., Vol. 109, pp. 3559-3568, 1987.
[41] C. D. Bain, E. B. Troughton, Y. T. Tao, J. Evall, G. M. Whitesides and R. G. Nuzzo, "Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold", J. Am. Chem. Soc., Vol. 111, pp. 321-335, 1989.
[42] F. Schreiber, "Structure and growth of self-assembling monolayers", Progress in Surface Science, Vol. 65, pp. 151-257, 2000.
[43] P. Fenter, A. Eberhardt and P. Eisenberger, "Self-Assembly of n-Alkyl Thiols as Disulfides on Au(111)", Science, Vol. 266, pp. 1216-1218, 1994.
[44] T. Ishida, M. Hara, I. Kojima, S. Tsuneda, N. Nishida, H. Sasabe and W. Knoll, "High Resolution X-ray Photoelectron Spectroscopy Measurements of Octadecanethiol Self-Assembled Monolayers on Au(111)", Langmuir, Vol. 14, pp. 2092-2096, 1998.
[45] X. Xiao, B. Wang, C. Zhang, Z. Yang and M. M. T. Loy, "Thermal annealing effect of alkanethiol monolayers on Au(1 1 1) in air", Surface Science, Vol. 472, pp. 41-50, 2001.
[46] N. Prathima, M. Harini, N. Rai, R. H. Chandrashekara, K. G. Ayappa, S. Sampath and S. K. Biswas, "Thermal Study of Accumulation of Conformational Disorders in the Self-Assembled Monolayers of C8 and C18 Alkanethiols on the Au(111) Surface", Langmuir, Vol. 21, pp. 2364-2374, 2005.
[47] P. Feulner, T. Niedermayer, K. Eberle, R. Schneider, D. Menzel, A. Baumer, E. Schmich, A. Shaporenko, Y. Tai and M. Zharnikov, "Strong temperature dependence of irradiation effects in organic layers", Surface Science, Vol. 593, pp. 252-255, 2005.
[48] R. C. Tiberio, H. G. Craighead, M. Lercel, T. Lau, C. W. Sheen and D. L. Allara, "Self-assembled monolayer electron beam resist on GaAs", Applied Physics Letters, Vol. 62, pp. 476-478, 1993.
[49] M. J. Lercel, R. C. Tiberio, P. F. Chapman, H. G. Craighead, C. W. Sheen, A. N. Parikh and D. L. Allara, "Self-assembled monolayer electron-beam resists on GaAs and SiO2", Proceedings of the 16th international symposium on electron, ion, and photon beams, Vol. 11, pp. 2823-2828, 1993.
[50] M. J. Lercel, G. F. Redinbo, F. D. Pardo, M. Rooks, R. C. Tiberio, P. Simpson, H. G. Craighead, C. W. Sheen, A. N. Parikh and D. L. Allara, "Electron beam lithography with monolayers of alkylthiols and alkylsiloxanes", The 38th international symposium on electron, ion, and photon beams, Vol. 12, pp. 3663-3667, 1994.
[51] K. Seshadri, K. Froyd, A. N. Parikh, D. L. Allara, M. J. Lercel and H. G. Craighead, "Electron-Beam-Induced Damage in Self-Assembled Monolayers", J. Phys. Chem., Vol. 100, pp. 15900-15909, 1996.
[52] M. Zharnikov, S. Frey, K. Heister and M. Grunze, "Modification of Alkanethiolate Monolayers by Low Energy Electron Irradiation: Dependence on the Substrate Material and on the Length and Isotopic Composition of the Alkyl Chains", Langmuir, Vol. 16, pp. 2697-2705, 2000.
[53] W. Eck, V. Stadler, W. Geyer, M. Zharnikov, A. Gölzhuäser and M. Grunze, "Generation of Surface Amino Groups on Aromatic Self-Assembled Monolayers by Low Energy Electron Beams? First Step Towards Chemical Lithography", Advanced Materials, Vol. 12, pp. 805-808, 2000.
[54] W. E. A. Gölzhäuser, W. Geyer, V. Stadler, T. Weimann, P. Hinze, M. Grunze, "Chemical Nanolithography with Electron Beams", Advanced Materials, Vol. 13, pp. 806-809, 2001.
[55] J. Huang and J. C. Hemminger, "Photooxidation of thiols in self-assembled monolayers on gold", J. Am. Chem. Soc., Vol. 115, pp. 3342-3343, 1993.
[56] D. A. Hutt, E. Cooper and G. J. Leggett, "Structure and Mechanism of Photooxidation of Self-assembled Monolayers of Alkylthiols on Silver Studied by XPS and Static SIMS", J. Phys. Chem. B, Vol. 102, pp. 174-184, 1998.
[57] P. E. Laibinis and R. L. Graham, "X-ray damage to CF3CO2-terminated organic monolayers on Si/Au: Principal effect of electrons", Science, Vol. 254, pp. 981, 1991.
[58] T. Laiho, J. A. Leiro and J. Lukkari, "XPS study of irradiation damage and different metal-sulfur bonds in dodecanethiol monolayers on gold and platinum surfaces", Applied Surface Science, Vol. 212-213, pp. 525-529, 2003.
[59] T. Laiho, J. A. Leiro, M. H. Heinonen, S. S. Mattila and J. Lukkari, "Photoelectron spectroscopy study of irradiation damage and metal-sulfur bonds of thiol on silver and copper surfaces", Journal of Electron Spectroscopy and Related Phenomena, Vol. 142, pp. 105-112, 2005.
[60] W. E. S. Unger, A. Lippitz, T. Gross, J. F. Friedrich, C. Woll and L. Nick, "The Use of Octadecyltrichlorosilane Self-Assembled Layers as a Model for the Assessment of Plasma Treatment and Metallization Effects on Polyolefins", Langmuir, Vol. 15, pp. 1161-1166, 1999.
[61] H. K. Yasuda, Plasma Polymerization and Plasma Interactions with Polymeric Materials, John Wiley & Sons, Inc., 1990.
[62] M. Strobel, C.S. Lyons and K.L. Mittal, Plasma surface modification of polymers :relevance to adhesion, The Netherlands 1994.
[63] A. Grill, Cold Plasma in Materials Fabrication, IEEE Press, 1994.
[64] D. Barton, J. W. Bradley, D. A. Steele and R. D. Short, "Investigating Radio Frequency Plasmas Used for the Modification of Polymer Surfaces", J. Phys. Chem. B, Vol. 103, pp. 4423-4430, 1999.
[65] I. H. Hutchinson, Principles of plasma diagnostics, Cambridge University Press, 2002.
[66] P. M. Chung, L. Talbot and K. J. Touryan, Electric prob in stationary and flowing plasmas: theory and application, Springer verlag, 1975.
[67] R. Hui, Z. Wang, O. Kesler, L. Rose, J. Jankovic, S. Yick, R. Maric and D. Ghosh, "Thermal plasma spraying for SOFCs: Applications, potential advantages, and challenges", Journal of Power Sources, Vol. 170, pp. 308-323, 2007.
[68] S. Kumar, V. Selvarajan, P. V. A. Padmanabhan and K. P. Sreekumar, "Characterization and comparison between ball milled and plasma processed iron-aluminium thermal spray coatings", Surface and Coatings Technology, Vol. 201, pp. 1267-1275, 2006.
[69] T. S. Ko, S. Yang, H. C. Hsu, C. P. Chu, H. F. Lin, S. C. Liao, T. C. Lu, H. C. Kuo, W. F. Hsieh and S. C. Wang, "ZnO nanopowders fabricated by dc thermal plasma synthesis", Materials Science and Engineering: B, Vol. 134, pp. 54-58, 2006.
[70] S. Kumar and V. Selvarajan, "In-flight formation and characterization of nickel aluminide powders in a dc thermal plasma jet", Chemical Engineering and Processing, Vol. 45, pp. 1029-1035, 2006.
[71] S. Kumar and V. Selvarajan, "Spheroidization of metal and ceramic powders in thermal plasma jet", Computational Materials Science, Vol. 36, pp. 451-456, 2006.
[72] G. Shanmugavelayutham, V. Selvarajan, P. V. A. Padmanabhan, K. P. Sreekumar and N. K. Joshi, "Effect of powder loading on the excitation temperature of a plasma jet in DC thermal plasma spray torch", Current Applied Physics, Vol. 7, pp. 186-192, 2007.
[73] T. W. Cheng, M. Z. Huang, C. C. Tzeng, K. B. Cheng and T. H. Ueng, "Production of coloured glass-ceramics from incinerator ash using thermal plasma technology", Chemosphere, Vol. 68, pp. 1937-1945, 2007.
[74] H. Huang and L. Tang, "Treatment of organic waste using thermal plasma pyrolysis technology", Energy Conversion and Management, Vol. 48, pp. 1331-1337, 2007.
[75] A. Anders, "Plasma and ion sources in large area coating: A review", Surface and Coatings Technology, Vol. 200, pp. 1893-1906, 2005.
[76] P. Gupta, G. Tenhundfeld, E. O. Daigle and D. Ryabkov, "Electrolytic plasma technology: Science and engineering--An overview", Surface and Coatings Technology, Vol. 201, pp. 8746-8760, 2007.
[77] Y. Kuo and S. Lee, "A new, room-temperature, high-rate plasma-based copper etch process", Vacuum, Vol. 74, pp. 473-477, 2004.
[78] Y. Taga, "Review of plasma thin-film technology in automobile industry", Surface and Coatings Technology, Vol. 112, pp. 339-346, 1999.
[79] S. Kaplan, "Plasma processes for wide fabric, film and non-wovens", Surface and Coatings Technology, Vol. 186, pp. 214-217, 2004.
[80] R. Li, L. Ye and Y.-W. Mai, "Application of plasma technologies in fibre-reinforced polymer composites: a review of recent developments", Composites Part A: Applied Science and Manufacturing, Vol. 28, pp. 73-86, 1997.
[81] F. S. Denes and S. Manolache, "Macromolecular plasma-chemistry: an emerging field of polymer science", Progress in Polymer Science, Vol. 29, pp. 815-885, 2004.
[82] M. M. Silva, M. Ueda, L. Pichon, H. Reuther and C. M. Lepienski, "Surface modification of Ti6Al4V alloy by PIII at high temperatures: Effects of plasma potential", Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 257, pp. 722-726, 2007.
[83] S. Mandl, "PIII treatment of Ti alloys and NiTi for medical applications", Surface and Coatings Technology, Vol. 201, pp. 6833-6838, 2007.
[84] A. M. Abd El-Rahman, F. M. El-Hossary, N. Z. Negm, F. Prokert, E. Richter and W. Moller, "Influence of gas pressure and substrate temperature on PIII nitrocarburizing process of AISI 304 stainless steel", Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 226, pp. 499-506, 2004.
[85] Y.-M. Sung and H.-J. Kim, "Sputter deposition and surface treatment of TiO2 films for dye-sensitized solar cells using reactive RF plasma", Thin Solid Films, Vol. 515, pp. 4996-4999, 2007.
[86] M. Mamor, F. D. Auret, S. A. Goodman and J. B. Malherbe, "Argon plasma sputter etching induced defect levels in strained, epitaxial p-type Si-Ge alloys", Thin Solid Films, Vol. 343-344, pp. 416-419, 1999.
[87] Y. W. Chen-Yang, J. D. Liao, J. Y. Kau, J. Huang, W. T. Chang and C. W. Chen, "Surface Modifications of Expanded Poly(tetrafluoroethylene) Sheets Assisted by CO2 Antenna Coupling Microwave Plasma", Macromolecules, Vol. 33, pp. 5638-5643, 2000.
[88] M. J. Wang, Y. I. Chang and F. Poncin-Epaillard, "Effects of the Addition of Hydrogen in the Nitrogen Cold Plasma: The Surface Modification of Polystyrene", Langmuir, Vol. 19, pp. 8325-8330, 2003.
[89] M. R. Sanchis, V. Blanes, M. Blanes, D. Garcia and R. Balart, "Surface modification of low density polyethylene (LDPE) film by low pressure O2 plasma treatment", European Polymer Journal, Vol. 42, pp. 1558-1568, 2006.
[90] L. Dai, H. J. Griesser and A. W. Mau, "Surface Modification by Plasma Etching and Plasma Patterning", J. Phys. Chem. B, Vol. 101, pp. 9548-9554, 1997.
[91] K.-i. Takagi, A. Ikeda, T. Fujimura and Y. Kuroki, "Inductively coupled plasma application to the resist ashing", Thin Solid Films, Vol. 386, pp. 160-164, 2001.
[92] D. Barton, A. G. Shard, R. D. Short and J. W. Bradley, "The Effect of Positive Ion Energy on Plasma Polymerization: A Comparison between Acrylic and Propionic Acids", J. Phys. Chem. B, Vol. 109, pp. 3207-3211, 2005.
[93] I. Swindells, S. A. Voronin, C. Fotea, M. R. Alexander and J. W. Bradley, "Detection of Negative Molecular Ions in Acrylic Acid Plasma: Some Implications for Polymerization Mechanisms", J. Phys. Chem. B, Vol. 111, pp. 8720-8722, 2007.
[94] D. O. H. Teare, W. C. E. Schofield, R. P. Garrod and J. P. S. Badyal, "Rapid Polymer Brush Growth by TEMPO-Mediated Controlled Free-Radical Polymerization from Swollen Plasma Deposited Poly(maleic anhydride) Initiator Surfaces", Langmuir, Vol. 21, pp. 10818-10824, 2005.
[95] Q. Chen, L. Dai, M. Gao, S. Huang and A. Mau, "Plasma Activation of Carbon Nanotubes for Chemical Modification", J. Phys. Chem. B, Vol. 105, pp. 618-622, 2001.
[96] Y.-C. Tyan, J.-D. Liao, R. Klauser, I.-D. Wu and C. C. Weng, "Assessment and characterization of degradation effect for the varied degrees of ultra-violet radiation onto the collagen-bonded polypropylene non-woven fabric surfaces", Biomaterials, Vol. 23, pp. 65-76, 2002.
[97] P. K. Chu, J. Y. Chen, L. P. Wang and N. Huang, "Plasma-surface modification of biomaterials", Materials Science and Engineering: R: Reports, Vol. 36, pp. 143-206, 2002.
[98] K. Makasheva, A. Shivarova and L. Stoev, "Applied signal-propagation properties in surface-wave-produced discharges", Vacuum, Vol. 76, pp. 397-400, 2004.
[99] T. J. Wu and C. S. Kou, "Analysis of waves in the plasma guided by a periodical vane-type slow wave structure", Physics of Plasmas, Vol. 12, pp. 103504, 2005.
[100] T. T. Ehler, N. Malmberg and L. J. Noe, "Characterization of Self-Assembled Alkanethiol Monolayers on Silver and Gold Using Surface Plasmon Spectroscopy", J. Phys. Chem. B, Vol. 101, pp. 1268-1272, 1997.
[101] P. A. DiMilla, J. P. Folkers, H. A. Biebuyck, R. Haerter, G. P. Lopez and G. M. Whitesides, "Wetting and Protein Adsorption on Self-Assembled Monolayers of Alkanethiolates Supported on Transparent Films of Gold", J. Am. Chem. Soc., Vol. 116, pp. 2225-2226, 1994.
[102] J. D. Swift and M. J. R. Schwar, Electrical probes for plasma diagnostics, Ilidde books, 1971.
[103] M. Capitelli and C. Gorse, Plasma technology: Probe diagnostics of plasma, Pienum press, 1992.
[104] R. Auciello and D. L. Flamm, Plasma diagnostics, Academic press, 1989.
[105] R. H. Huddleston and S. L. Leonard, Plasma diagnostic technoloques, Acadamic press, 1965.
[106] J.-J. Yeh, Atomic calculation of photoionization cross-sections and asymmetry parameters, Gordon and Breach science, 1993.
[107] D. Stamou, C. Musil, W. P. Ulrich, K. Leufgen, C. Padeste, C. David, J. Gobrecht, C. Duschl and H. Vogel, "Site-Directed Molecular Assembly on Templates Structured with Electron-Beam Lithography", Langmuir, Vol. 20, pp. 3495-3497, 2004.
[108] Y. Xia, X.-M. Zhao, E. Kim and G. M. Whitesides, "A Selective Etching Solution for Use with Patterned Self-Assembled Monolayers of Alkanethiolates on Gold", Chem. Mater., Vol. 7, pp. 2332-2337, 1995.
[109] 洪一弘, 曾平忠 and 曾金榮, "U5球型光柵分光儀光束線的近況", 同步輻射研究中心簡訊, Vol. 43, pp. 17, 1999.
[110] 王兆恩 and 張正祥, "U5聚頻磁鐵介紹", 同步輻射研究中心簡訊, Vol. 37, pp. 12, 1997.
[111] 崔古鼎, "同步輻射研究中心簡介 ", 物理雙月刊, Vol. 20, pp. 607-612, 1998.
[112] 國家同步輻射研究中心, 同步加速器光源, 2005.
[113] 陳家浩, "從光電效應到光電子顯微術", 物理雙月刊, Vol. 27, pp. 666-669, 2005.
[114] 柯正浩, "同步幅射X光掃描式光電子能譜顯微儀 ", 物理雙月刊, Vol. 20, pp. 510-516, 2002.
[115] 洪一弘, 李德輝, 殷廣鈐, 魏德新, 但唐諤, 柯陸詩, 陳建德, 曾金榮 and 莊東榮, "掃描式光電子能譜顯微儀簡介", 科學發展月刊, Vol. 29, pp. 21-28, 2000.
[116] A. Shaporenko, A. Terfort, M. Grunze and M. Zharnikov, "A detailed analysis of the photoemission spectra of basic thioaromatic monolayers on noble metal substrates", Journal of Electron Spectroscopy and Related Phenomena, Vol. 151, pp. 45-51, 2006.
[117] K. Heister, M. Zharnikov, M. Grunze, L. S. O. Johansson and A. Ulman, "Characterization of X-ray Induced Damage in Alkanethiolate Monolayers by High-Resolution Photoelectron Spectroscopy", Langmuir, Vol. 17, pp. 8-11, 2001.
[118] R. Hild, C. David, H. U. Muller, B. Volkel, D. R. Kayser and M. Grunze, "Formation and Characterization of Self-assembled Monolayers of Octadecyltrimethoxysilane on Chromium: Application in Low-Energy Electron Lithography", Langmuir, Vol. 14, pp. 342-346, 1998.
[119] W. Zhang, L. Zhang, Z. Hui, X. Zhang and Y. Qian, "Synthesis of nanocrystalline Ag2S in aqueous solution", Solid State Ionics, Vol. 130, pp. 111-114, 2000.
[120] H. Sellers, A. Ulman, Y. Shnidman and J. E. Eilers, "Structure and binding of alkanethiolates on gold and silver surfaces: implications for self-assembled monolayers", J. Am. Chem. Soc., Vol. 115, pp. 9389-9401, 1993.
[121] P. Gupta, A. Ulman, S. Fanfan, A. Korniakov and K. Loos, "Mixed Self-Assembled Monolayers of Alkanethiolates on Ultrasmooth Gold Do Not Exhibit Contact-Angle Hysteresis", J. Am. Chem. Soc., Vol. 127, pp. 4-5, 2005.
[122] D. H. Lee, T. Oh and K. Cho, "Combined Effect of Chain Length and Phase State on Adhesion/Friction Behavior of Self-Assembled Monolayers", J. Phys. Chem. B, Vol. 109, pp. 11301-11306, 2005.
[123] K. A. Simon, E. A. Burton, Y. Han, J. Li, A. Huang and Y. Y. Luk, "Enhancing Cell Adhesion and Confinement by Gradient Nanotopography", J. Am. Chem. Soc., Vol. 129, pp. 4892-4893, 2007.
[124] C. H. Chang, J. D. Liao, J. J. J. Chen, M. S. Ju and C. C. K. Lin, "Alkanethiolate Self-Assembled Monolayers as Functional Spacers to Resist Protein Adsorption upon Au-Coated Nerve Microelectrode", Langmuir, Vol. 20, pp. 11656-11663, 2004.
[125] J. M. Abad, M. Velez, C. Santamaria, J. M. Guisan, P. R. Matheus, L. Vazquez, I. Gazaryan, L. Gorton, T. Gibson and V. M. Fernandez, "Immobilization of Peroxidase Glycoprotein on Gold Electrodes Modified with Mixed Epoxy-Boronic Acid Monolayers", J. Am. Chem. Soc., Vol. 124, pp. 12845-12853, 2002.
[126] L. Cai, Y. Yao, J. Yang, D. W. Price and J. M. Tour, "Chemical and Potential-Assisted Assembly of Thiolacetyl-Terminated Oligo(phenylene ethynylene)s on Gold Surfaces", Chem. Mater., Vol. 14, pp. 2905-2909, 2002.
[127] M. Zharnikov and M. Grunze, "Spectroscopic characterization of thiol-derived self-assembling monolayers", Journal of Physics: Condensed Matter, Vol. 13, pp. 11333-11365, 2001.
[128] A. Shaporenko, A. Ulman, A. Terfort and M. Zharnikov, "Self-Assembled Monolayers of Alkaneselenolates on (111) Gold and Silver", J. Phys. Chem. B, Vol. 109, pp. 3898-3906, 2005.
[129] H. Rieley, G. K. Kendall, F. W. Zemicael, T. L. Smith and S. Yang, "X-ray Studies of Self-Assembled Monolayers on Coinage Metals. 1. Alignment and Photooxidation in 1,8-Octanedithiol and 1-Octanethiol on Au", Langmuir, Vol. 14, pp. 5147-5153, 1998.
[130] N. J. Brewer, R. E. Rawsterne, S. Kothari and G. J. Leggett, "Oxidation of Self-Assembled Monolayers by UV Light with a Wavelength of 254 nm", J. Am. Chem. Soc., Vol. 123, pp. 4089-4090, 2001.
[131] X. M. Yang, R. D. Peters, T. K. Kim, P. F. Nealey, S. L. Brandow, M. S. Chen, L. M. Shirey and W. J. Dressick, "Proximity X-ray Lithography Using Self-Assembled Alkylsiloxane Films: Resolution and Pattern Transfer", Langmuir, Vol. 17, pp. 228-233, 2001.
[132] C. Olsen and P. A. Rowntree, "Bond-selective dissociation of alkanethiol based self-assembled monolayers adsorbed on gold substrates, using low-energy electron beams", The Journal of Chemical Physics, Vol. 108, pp. 3750-3764, 1998.
[133] B. H. Wolf, Handbook of ion sources, CRC press, 1995.
[134] M. M. Walczak, C. Chung, S. M. Stole, C. A. Widrig and M. D. Porter, "Structure and interfacial properties of spontaneously adsorbed n-alkanethiolate monolayers on evaporated silver surfaces", J. Am. Chem. Soc., Vol. 113, pp. 2370-2378, 1991.
[135] S. P. Chenakin, B. Heinz and H. Morgner, "Substrate effect in sputtering of self-assembled monolayers: hexadecanethiol on Au(111) and Ag(111)", Surface Science, Vol. 421, pp. 337-352, 1999.
[136] S. Shuqing, S. L. C. Karen and J. L. Graham, "Photopatterning of self-assembled monolayers at 244 nm and applications to the fabrication of functional microstructures and nanostructures", Nanotechnology, Vol. pp. 1798, 2005.
[137] J. Rundqvist, J. H. Hoh and D. B. Haviland, "Directed Immobilization of Protein-Coated Nanospheres to Nanometer-Scale Patterns Fabricated by Electron Beam Lithography of Poly(ethylene glycol) Self-Assembled Monolayers", Langmuir, Vol. 22, pp. 5100-5107, 2006.
[138] R. Klauser, I. H. Hong, S. C. Wang, M. Zharnikov, A. Paul, A. Golzhauser, A. Terfort and T. J. Chuang, "Imaging and Patterning of Monomolecular Resists by Zone-Plate-Focused X-ray Microprobe", J. Phys. Chem. B, Vol. 107, pp. 13133-13142, 2003.
[139] R. K. Smith, P. A. Lewis and P. S. Weiss, "Patterning self-assembled monolayers", Progress in Surface Science, Vol. 75, pp. 1-68, 2004.
[140] N. Saito, Y. Wu, K. Hayashi, H. Sugimura and O. Takai, "Principle in Imaging Contrast in Scanning Electron Microscopy for Binary Microstructures Composed of Organosilane Self-Assembled Monolayers", J. Phys. Chem. B, Vol. 107, pp. 664-667, 2003.
[141] A. G. Bittermann, S. Jacobi, L. F. Chi, H. Fuchs and R. Reichelt, "Contrast Studies on Organic Monolayers of Different Molecular Packing in FESEM and Their Correlation with SFM Data", Langmuir, Vol. 17, pp. 1872-1877, 2001.
[142] G. P. Lopez, H. A. Biebuyck and G. M. Whitesides, "Scanning electron microscopy can form images of patterns in self-assembled monolayers", Langmuir, Vol. 9, pp. 1513-1516, 1993.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2010-01-24起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2010-01-24起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw