進階搜尋


 
系統識別號 U0026-0812200914045427
論文名稱(中文) 國人細胞色素3A單一核苷酸基因多型性對於尼菲迪平藥物動力學的影響以及雄性素受體基因多型性與泌尿上皮細胞的致癌影響
論文名稱(英文) Effect of CYP3A Single Nucleotide Polymorphism on Nifedipine Pharmacokinetics and Effect of Androgen Receptor Length Polymorphism on Urothelial Carcinogenesis in Chinese
校院名稱 成功大學
系所名稱(中) 基礎醫學研究所
系所名稱(英) Institute of Basic Medical Sciences
學年度 96
學期 1
出版年 97
研究生(中文) 劉晉宏
研究生(英文) Chin-Hung Liu
學號 s5888111
學位類別 博士
語文別 中文
論文頁數 202頁
口試委員 口試委員-孫孝芳
口試委員-簡偉明
口試委員-蒲永孝
口試委員-白果能
召集委員-李益謙
指導教授-黃金鼎
中文關鍵字 細胞色素P450  藥物遺傳學  藥物基因體學  分子診斷  基因型鑑定  微陣列  基因晶片  基因多型性  尼菲迪平  單一核苷酸基因多型性  藥物動力學  酵素呈色法  多重聚合酶鏈鎖反應  雄性素受體  膀胱癌  泌尿上皮細胞癌  基因多型性  抽煙  致癌性 
英文關鍵字 pharmacogenetics  pharmacogenomics  single nucleotide polymorphisms  SNP  pharmacokinetics  genotyping array  genotyping chip  nifedipine  plasma steady-state concentration  CYP  cytochrome P450  CYP3A4  CYP3A5  multiplex polymerase chain reaction  allele-specific primer extension  ASPE  bladder neoplasms  enzymatic colorimetry  urinary tract  tobacco  trinucleotide repeats  carcinogenesis  polymorphism  androgen receptor  urothelial carcinoma  smoking 
學科別分類
中文摘要 人體當中的細胞色素P450 (CYP) 3A是肝臟及胃腸道中最主要的P450酵素。CYP3A之所以重要乃在於它廣泛性的參與了許多藥物、一些內生性類固醇及環境有害物質的代謝過程。目前已經瞭解,當CYP3A基因序列上存在著某些SNPs,將會造成CYP3A酵素活性的降低或尚失活性。然而大多數所被觀察到的CYP3A SNPs其發生的遺傳頻率都很低,並且有種族上的特異性存在,因此需要在一種族當中以較大量的樣本數目進行特定性研究,以確保能夠獲得較精確的評估數據。本論文研發了一套以微陣列酵素呈色方法為基礎的基因型檢測晶片,我們利用此晶片在451位中國漢族群的個體上同步偵測22個已知的CYP3A SNPs。這個方法是經由多重聚合酶鏈鎖反應的增幅與等位基因專一性引子延伸法的標示,並藉由酵素呈色法來達到檢出的目的。此系統能夠將基因型鑑識結果以可見的方式呈現在尼龍晶片之上。藉由此套健全的基因型檢測平台,我們獲得了正確的鑑別能力,並且在本實驗中執行了將近9,922個基因型的檢測工作。結果我們發現451位中國漢族群個體中主要的CYP3A SNPs為CYP3A4*4 (頻率2.4%)、CYP3A4*5 (0.7%)、CYP3A4*18A (2.7%) 和 CYP3A5*3C (70.2%)。而大部分曾在其他種族當中被發現到過的CYP3A4 SNPs在本實驗中並未被發現到。我們也利用這四個SNPs分析出了11組Haplotypes。若與其他先前的研究報告相比較,可以發現CYP3A4*4和CYP3A4*5可能是專屬於中國漢族群所特有的基因多型性。本實驗所發展出的CYP3A基因型鑑定晶片,不但能夠應用於大量檢體與多重SNPs的檢測工作,也是一個集效益、經濟和精確性於一身的基因型檢測方法。若與其他基因型檢測方法相較起來,這個方法除了可以提升整體基因型檢測工作的效率,本身也是一個可依實驗室自身需求而自行量身打造的基因型檢測平台。此外我們也觀察了169位個體們的基因型與他們服用降血壓劑Nifedipine (Adalat® OROS) 後的穩定狀態血中濃度間的相關性;我們發現唯有男性個體的CYP3A5基因型與nifedipine穩定狀態血中濃度會有統計學上的相關性 (p = 0.036) 之外,其他的基因型則都不具有統計學上的相關性。在缺乏CYP3A5表現的個體中,男性的nifedipine穩定狀態血中濃度為女性的1.5倍 (1315.1 ± 941.5 versus 868.6 ± 746.5 ng/mL/g; p = 0.012)。

本篇論文主要在探討雄性素受體 (AR) 的基因多型性是否與膀胱癌的風險有關。我們分析了277位膀胱癌患者與280位年齡及性別相配對的非膀胱癌控制組共557位,直接以DNA定序的方式獲得這些個體們的AR CAG和GGN重複序列數據。個體的抽煙狀況也利用了結構性問卷的方式訪談取得。我們將這些數據以各式各樣的切點進行統計分析後,找出了最有可能與膀胱癌有關的AR CAG和GGN重複序列組合。我們發現當男性與女性個體分別帶有AR CAG 23與44 (累加) 基因型時,在統計學上會有較顯著的膀胱癌風險 (分別為OR 2.09, 95% CI 1.05 to 4.17, p = 0.036 和 OR 4.95, 95% CI 1.56 to 15.73, p = 0.007)。此外,有中度抽煙習慣的男性 (1~24 PPD-years) 若本身又帶著AR CAG 23或帶著偏短性的AR GGN (< 22) 長度者,統計上也比較有導致膀胱癌的機會 (分別為OR 4.32 和 4.57, p = 0.034以及0.042)。然而相同情形的觀察並不會存在於不抽煙以及重度抽煙 (³ 25 PPD-years) 的男性身上。因此我們認為AR CAG的基因多型性可能與導致膀胱癌的風險有關聯,AR基因多型性在有中程度抽煙的男性身上所扮演罹患膀胱癌的影響性也會更深於他人。
英文摘要 Human cytochrome P450 (CYP) 3A is a major P450 enzyme found in the liver and gastrointestinal tract. It plays an important role in the metabolism of a wide variety of drugs, some endogenous steroids and harmful environmental contaminants. It has been shown that CYP3A allele encoding enzymes with little or no activity are largely created by single nucleotide polymorphisms (SNPs) in the sequences of these genes. The most prevalent of these SNPs are often of low allelic frequency, and many are specific to certain ethnic groups. Therefore, an accurate determination of their frequency in any given ethnic population requires investigations involving large sample sizes. A genotyping chip with enzyme-colorimetric detection was developed and used for simultaneous analysis of 22 known CYP3A SNPs in 451 Han Chinese subjects. Following multiplex polymerase chain reaction and allele-specific primer extension labeling, an enzymatic colorimetry detection system was employed to visualize genotype patterns on a nylon membrane. With this robust system, accurate discrimination ratios were obtained, and approximately 9,922 genotypes were determined. We found that the major four CYP3A SNPs in the Chinese subjects were CYP3A4*4 (allele frequency 2.4%), CYP3A4*5 (0.7%), CYP3A4*18A (2.7%) and CYP3A5*3C (70.2%). Most of the major CYP3A4 SNPs found in other ethnicities were not found in this study. Using the four SNPs, 11 haplotypes were identified. Comparison between present and previous studies shows that CYP3A4*4 and CYP3A4*5 alleles were Chinese-specific. The genotyping chip developed in this study is an efficient, economic and accurate system for screening multiple SNPs in a large population. Application of such technology is expected to be less labor intensive and easier to adapt to specific searches when compared with other methodologies. In addition, 169 subjects were screened for plasma steady-state concentration of nifedipine (Adalat® OROS), an in vivo marker of CYP3A activity. Most of CYP3A alleles found here on nifedipine plasma steady-state concentration had no statistical correlation when the overall cohort was analysed; however, in a separate analysis according to gender, it was revealed that the significant effect of CYP3A5 alleles were attributable to males only (p = 0.036). Nifedipine plasma steady-state concentration was significantly higher in men compared with women (1315.1 ± 941.5 versus 868.6 ± 746.5 ng/mL/g; p = 0.012) in the CYP3A5 defective subjects.

The study sought to explore if androgen receptor gene (AR) polymorphisms are associated with the risk of urothelial carcinoma (UC) which is male-predominant. AR CAG and GGN repeat lengths were analyzed in 277 UC cases and 280 age and sex-matched controls by direct sequencing of leukocyte DNA. Smoking habits were obtained using a structured questionnaire interview. Relative risks were compared between groups categorized by all possible cutoffs of AR CAG and GGN repeat lengths. Men and women who had 23 and 44 (cumulative) CAG repeats had a significantly greater risk of UC, respectively (OR 2.09, 95% CI 1.05 to 4.17, p = 0.036 and OR 4.95, 95% CI 1.56 to 15.73, p = 0.007). Amongst males who were medium-dose cigarette smokers, those who had 23 CAG and shorter GGN (< 22) repeats, had an elevated risk than those with longer CAG and GGN (OR 4.32 and 4.57, p = 0.034 and 0.042, respectively). However, neither CAG nor GGN affected the UC risk in non-smokers or heavy smokers (³ 25 packs per day-years). AR CAG polymorphism may affect the risk of UC in both genders. In addition, AR polymorphisms may influence carcinogenic effect of medium-dose of cigarette smoking in men.
論文目次 考試合格證明……………………………………………………………I
誌謝………………………………………………………………………1
目錄………………………………………………………………………2
中文摘要…………………………………………………………………4
英文摘要…………………………………………………………………6
表目錄……………………………………………………………………8
圖目錄……………………………………………………………………9
縮寫檢索表……………………………………………………………12
第一章 緒論……………………………………………………………15
第一節 引言……………………………………………………………15
第二節 文獻回顧………………………………………………………17
第三節 研究目標………………………………………………………35
第二章 實驗材料與方法………………………………………………37
第一節 研究族群………………………………………………………37
第二節 標的片段的增幅………………………………………………40
第三節 CYP3A基因型鑑定晶片的製備………………………………44
第四節 酵素呈色法……………………………………………………48
第五節 方法確效………………………………………………………51
第六節 基因型數據的取得……………………………………………52
第七節 DNA定序確認…………………………………………………52
第八節 Haplotype分析………………………………………………53
第九節 統計學分析……………………………………………………54
第三章 實驗結果………………………………………………………56
第一節 最佳化設計的多重聚合酶鏈鎖反應…………………………56
第二節 最佳化設計的CYP3A晶片內容………………………………56
第三節 CYP3A基因型鑑定晶片的檢測結果…………………………56
第四節 DNA定序之確認結果…………………………………………57
第五節 群組分析結果 (Cluster analysis)………………………58
第六節 CYP3A的Haplotype分析………………………………………58
第七節CYP3A基因型與其代謝活性的相關性…………………………58
第四章 討論……………………………………………………………60
第一節 中國漢族群的CYP3A基因型…………………………………60
第二節 CYP3A基因型鑑定晶片的研發………………………………62
第三節 CYP3A基因型鑑定晶片的檢測方法改善與加強……………63
第四節 CYP3A基因型與口服nifedipine的藥動相關性……………64
第五章 總結……………………………………………………………65
第六章 研究計畫經費來源……………………………………………66
附表與附圖………………………………………………………67 & 79
參考文獻………………………………………………………………114
附錄……………………………………………………………………129
中文摘要………………………………………………………………140
英文摘要………………………………………………………………141
表、圖目錄……………………………………………………………142
縮寫檢索表……………………………………………………………143
第一章 緒論…………………………………………………………145
第一節 引言…………………………………………………………145
第二節 膀胱癌………………………………………………………145
第三節 膀胱癌的高危險因子………………………………………146
第四節 雄性素受體…………………………………………………146
第五節 研究目標……………………………………………………147
第二章 實驗材料與方法……………………………………………149
第一節 研究族群……………………………………………………149
第二節 問卷調查與訪談……………………………………………149
第三節 基因型分析…………………………………………………149
第四節 統計學分析…………………………………………………152
第三章 實驗結果……………………………………………………154
第一節 人口統計資料………………………………………………154
第二節 抽煙本身與膀胱癌的風險…………………………………154
第三節AR CAG和GGN重複序列與膀胱癌的風險……………………154
第四節 合併分析AR CAG和GGN 重複序列之基因多型性…………156
第五節 抽煙與AR基因多型性的互動關係…………………………156
第四章 討論…………………………………………………………157
第五章 總結…………………………………………………………159
第六章 研究計畫經費來源…………………………………………159
附表……………………………………………………………………160
附圖……………………………………………………………………165
參考文獻………………………………………………………………168
學術著作………………………………………………………………174
本論文已發表之兩篇學術著作
參考文獻 P.114
1.Wrighton SA, Brian WR, Sari MA, Iwasaki M, Guengerich FP, Raucy JL, Molowa DT, and Vandenbranden M, Studies on the expression and metabolic capabilities of human liver cytochrome P450IIIA5 (HLp3). Mol.Pharmacol. 38: 207-213, 1990.
2.Evans WE and Relling MV, Pharmacogenomics: translating functional genomics into rational therapeutics. Science 286: 487-491, 1999.
3.Rendic S, Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev. 34: 83-448, 2002.
4.Shimada T, Yamazaki H, Mimura M, Inui Y, and Guengerich FP, Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J.Pharmacol.Exp.Ther. 270: 414-423, 1994.
5.Guengerich FP, Cytochrome P-450 3A4: regulation and role in drug metabolism. Annu.Rev.Pharmacol.Toxicol. 39: 1-17, 1999.
6.Hustert E, Haberl M, Burk O, Wolbold R, He YQ, Klein K, Nuessler AC, Neuhaus P, Klattig J, Eiselt R, Koch I, Zibat A, Brockmoller J, Halpert JR, Zanger UM, and Wojnowski L, The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics 11: 773-779, 2001.
7.Lin YS, Dowling AL, Quigley SD, Farin FM, Zhang J, Lamba J, Schuetz EG, and Thummel KE, Co-regulation of CYP3A4 and CYP3A5 and contribution to hepatic and intestinal midazolam metabolism. Mol.Pharmacol. 62: 162-172, 2002.
8.Ozdemir V, Kalow W, Tang BK, Paterson AD, Walker SE, Endrenyi L, and Kashuba AD, Evaluation of the genetic component of variability in CYP3A4 activity: a repeated drug administration method. Pharmacogenetics 10: 373-388, 2000.
9.WATSON JD and CRICK FH, Genetical implications of the structure of deoxyribonucleic acid. Nature 171: 964-967, 1953.
10.Collins FS, Ahead of schedule and under budget: the Genome Project passes its fifth birthday. Proc.Natl.Acad.Sci.U.S.A 92: 10821-10823, 1995.
11.Meyer UA, Genotype or phenotype: the definition of a pharmacogenetic polymorphism. Pharmacogenetics 1: 66-67, 1991.
12.Botstein D and Risch N, Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat.Genet. 33 Suppl: 228-237, 2003.
13.Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la BM, Dedhia N, Blocker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowski J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, and Chen YJ, Initial sequencing and analysis of the human genome. Nature 409: 860-921, 2001.
14.Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N, Levine AJ, Roberts RJ, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, Di F, V, Dunn P, Eilbeck K, Evangelista C, Gabrielian AE, Gan W, Ge W, Gong F, Gu Z, Guan P, Heiman TJ, Higgins ME, Ji RR, Ke Z, Ketchum KA, Lai Z, Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, Merkulov GV, Milshina N, Moore HM, Naik AK, Narayan VA, Neelam B, Nusskern D, Rusch DB, Salzberg S, Shao W, Shue B, Sun J, Wang Z, Wang A, Wang X, Wang J, Wei M, Wides R, Xiao C, Yan C, Yao A, Ye J, Zhan M, Zhang W, Zhang H, Zhao Q, Zheng L, Zhong F, Zhong W, Zhu S, Zhao S, Gilbert D, Baumhueter S, Spier G, Carter C, Cravchik A, Woodage T, Ali F, An H, Awe A, Baldwin D, Baden H, Barnstead M, Barrow I, Beeson K, Busam D, Carver A, Center A, Cheng ML, Curry L, Danaher S, Davenport L, Desilets R, Dietz S, Dodson K, Doup L, Ferriera S, Garg N, Gluecksmann A, Hart B, Haynes J, Haynes C, Heiner C, Hladun S, Hostin D, Houck J, Howland T, Ibegwam C, Johnson J, Kalush F, Kline L, Koduru S, Love A, Mann F, May D, McCawley S, McIntosh T, McMullen I, Moy M, Moy L, Murphy B, Nelson K, Pfannkoch C, Pratts E, Puri V, Qureshi H, Reardon M, Rodriguez R, Rogers YH, Romblad D, Ruhfel B, Scott R, Sitter C, Smallwood M, Stewart E, Strong R, Suh E, Thomas R, Tint NN, Tse S, Vech C, Wang G, Wetter J, Williams S, Williams M, Windsor S, Winn-Deen E, Wolfe K, Zaveri J, Zaveri K, Abril JF, Guigo R, Campbell MJ, Sjolander KV, Karlak B, Kejariwal A, Mi H, Lazareva B, Hatton T, Narechania A, Diemer K, Muruganujan A, Guo N, Sato S, Bafna V, Istrail S, Lippert R, Schwartz R, Walenz B, Yooseph S, Allen D, Basu A, Baxendale J, Blick L, Caminha M, Carnes-Stine J, Caulk P, Chiang YH, Coyne M, Dahlke C, Mays A, Dombroski M, Donnelly M, Ely D, Esparham S, Fosler C, Gire H, Glanowski S, Glasser K, Glodek A, Gorokhov M, Graham K, Gropman B, Harris M, Heil J, Henderson S, Hoover J, Jennings D, Jordan C, Jordan J, Kasha J, Kagan L, Kraft C, Levitsky A, Lewis M, Liu X, Lopez J, Ma D, Majoros W, McDaniel J, Murphy S, Newman M, Nguyen T, Nguyen N, and Nodell M, The sequence of the human genome. Science 291: 1304-1351, 2001.
15.MOTULSKY AG, Drug reactions enzymes, and biochemical genetics. J.Am.Med.Assoc. 165: 835-837, 1957.
16.Ingelman-Sundberg M, Pharmacogenetics of cytochrome P450 and its applications in drug therapy: the past, present and future. Trends Pharmacol.Sci. 25: 193-200, 2004.
17.Zanger UM, Fischer J, Raimundo S, Stuven T, Evert BO, Schwab M, and Eichelbaum M, Comprehensive analysis of the genetic factors determining expression and function of hepatic CYP2D6. Pharmacogenetics 11: 573-585, 2001.
18.Meyer UA and Zanger UM, Molecular mechanisms of genetic polymorphisms of drug metabolism. Annu.Rev.Pharmacol.Toxicol. 37: 269-296, 1997.
19.Nebert DW, Polymorphisms in drug-metabolizing enzymes: what is their clinical relevance and why do they exist? Am.J.Hum.Genet. 60: 265-271, 1997.
20.Lazarou J, Pomeranz BH, and Corey PN, Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 279: 1200-1205, 1998.
21.Danielson PB, The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Curr.Drug Metab 3: 561-597, 2002.
22.Nelson DR, Zeldin DC, Hoffman SM, Maltais LJ, Wain HM, and Nebert DW, Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics 14: 1-18, 2004.
23.Nelson DR, Koymans L, Kamataki T, Stegeman JJ, Feyereisen R, Waxman DJ, Waterman MR, Gotoh O, Coon MJ, Estabrook RW, Gunsalus IC, and Nebert DW, P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 6: 1-42, 1996.
24.Bertz RJ and Granneman GR, Use of in vitro and in vivo data to estimate the likelihood of metabolic pharmacokinetic interactions. Clin.Pharmacokinet. 32: 210-258, 1997.
25.Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, Watkins PB, Daly A, Wrighton SA, Hall SD, Maurel P, Relling M, Brimer C, Yasuda K, Venkataramanan R, Strom S, Thummel K, Boguski MS, and Schuetz E, Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat.Genet. 27: 383-391, 2001.
26.Schuetz JD, Beach DL, and Guzelian PS, Selective expression of cytochrome P450 CYP3A mRNAs in embryonic and adult human liver. Pharmacogenetics 4: 11-20, 1994.
27.Gellner K, Eiselt R, Hustert E, Arnold H, Koch I, Haberl M, Deglmann CJ, Burk O, Buntefuss D, Escher S, Bishop C, Koebe HG, Brinkmann U, Klenk HP, Kleine K, Meyer UA, and Wojnowski L, Genomic organization of the human CYP3A locus: identification of a new, inducible CYP3A gene. Pharmacogenetics 11: 111-121, 2001.
28.Finta C and Zaphiropoulos PG, The human cytochrome P450 3A locus. Gene evolution by capture of downstream exons. Gene 260: 13-23, 2000.
29.Paine MF, Khalighi M, Fisher JM, Shen DD, Kunze KL, Marsh CL, Perkins JD, and Thummel KE, Characterization of interintestinal and intraintestinal variations in human CYP3A-dependent metabolism. J.Pharmacol.Exp.Ther. 283: 1552-1562, 1997.
30.de Wildt SN, Kearns GL, Leeder JS, and van den Anker JN, Cytochrome P450 3A: ontogeny and drug disposition. Clin.Pharmacokinet. 37: 485-505, 1999.
31.Domanski TL, Finta C, Halpert JR, and Zaphiropoulos PG, cDNA cloning and initial characterization of CYP3A43, a novel human cytochrome P450. Mol.Pharmacol. 59: 386-392, 2001.
32.Westlind A, Malmebo S, Johansson I, Otter C, Andersson TB, Ingelman-Sundberg M, and Oscarson M, Cloning and tissue distribution of a novel human cytochrome p450 of the CYP3A subfamily, CYP3A43. Biochem.Biophys.Res.Commun. 281: 1349-1355, 2001.
33.Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G, Sherry S, Mullikin JC, Mortimore BJ, Willey DL, Hunt SE, Cole CG, Coggill PC, Rice CM, Ning Z, Rogers J, Bentley DR, Kwok PY, Mardis ER, Yeh RT, Schultz B, Cook L, Davenport R, Dante M, Fulton L, Hillier L, Waterston RH, McPherson JD, Gilman B, Schaffner S, Van Etten WJ, Reich D, Higgins J, Daly MJ, Blumenstiel B, Baldwin J, Stange-Thomann N, Zody MC, Linton L, Lander ES, and Altshuler D, A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409: 928-933, 2001.
34.Kruglyak L and Nickerson DA, Variation is the spice of life. Nat.Genet. 27: 234-236, 2001.
35.Westlind-Johnsson A, Hermann R, Huennemeyer A, Hauns B, Lahu G, Nassr N, Zech K, Ingelman-Sundberg M, and von Richter O, Identification and characterization of CYP3A4*20, a novel rare CYP3A4 allele without functional activity. Clin.Pharmacol.Ther. 79: 339-349, 2006.
36.Rebbeck TR, Jaffe JM, Walker AH, Wein AJ, and Malkowicz SB, Modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J.Natl.Cancer Inst. 90: 1225-1229, 1998.
37.Walker AH, Jaffe JM, Gunasegaram S, Cummings SA, Huang CS, Chern HD, Olopade OI, Weber BL, and Rebbeck TR, Characterization of an allelic variant in the nifedipine-specific element of CYP3A4: ethnic distribution and implications for prostate cancer risk. Mutations in brief no. 191. Online. Hum.Mutat. 12: 289, 1998.
38.Hsieh KP, Lin YY, Cheng CL, Lai ML, Lin MS, Siest JP, and Huang JD, Novel mutations of CYP3A4 in Chinese. Drug Metab Dispos. 29: 268-273, 2001.
39.Ball SE, Scatina J, Kao J, Ferron GM, Fruncillo R, Mayer P, Weinryb I, Guida M, Hopkins PJ, Warner N, and Hall J, Population distribution and effects on drug metabolism of a genetic variant in the 5' promoter region of CYP3A4. Clin.Pharmacol.Ther. 66: 288-294, 1999.
40.Garcia-Martin E, Martinez C, Pizarro RM, Garcia-Gamito FJ, Gullsten H, Raunio H, and Agundez JA, CYP3A4 variant alleles in white individuals with low CYP3A4 enzyme activity. Clin.Pharmacol.Ther. 71: 196-204, 2002.
41.Paris PL, Kupelian PA, Hall JM, Williams TL, Levin H, Klein EA, Casey G, and Witte JS, Association between a CYP3A4 genetic variant and clinical presentation in African-American prostate cancer patients. Cancer Epidemiol.Biomarkers Prev. 8: 901-905, 1999.
42.Sata F, Sapone A, Elizondo G, Stocker P, Miller VP, Zheng W, Raunio H, Crespi CL, and Gonzalez FJ, CYP3A4 allelic variants with amino acid substitutions in exons 7 and 12: evidence for an allelic variant with altered catalytic activity. Clin.Pharmacol.Ther. 67: 48-56, 2000.
43.Lamba JK, Lin YS, Thummel K, Daly A, Watkins PB, Strom S, Zhang J, and Schuetz EG, Common allelic variants of cytochrome P4503A4 and their prevalence in different populations. Pharmacogenetics 12: 121-132, 2002.
44.Hamzeiy H, Vahdati-Mashhadian N, Edwards HJ, and Goldfarb PS, Mutation analysis of the human CYP3A4 gene 5' regulatory region: population screening using non-radioactive SSCP. Mutat.Res. 500: 103-110, 2002.
45.Lim YP, Liu CH, Shyu LJ, and Huang JD, Functional characterization of a novel polymorphism of pregnane X receptor, Q158K, in Chinese subjects. Pharmacogenet.Genomics 15: 337-341, 2005.
46.Eiselt R, Domanski TL, Zibat A, Mueller R, Presecan-Siedel E, Hustert E, Zanger UM, Brockmoller J, Klenk HP, Meyer UA, Khan KK, He YA, Halpert JR, and Wojnowski L, Identification and functional characterization of eight CYP3A4 protein variants. Pharmacogenetics 11: 447-458, 2001.
47.Dai D, Tang J, Rose R, Hodgson E, Bienstock RJ, Mohrenweiser HW, and Goldstein JA, Identification of variants of CYP3A4 and characterization of their abilities to metabolize testosterone and chlorpyrifos. J.Pharmacol.Exp.Ther. 299: 825-831, 2001.
48.van Schaik RH, de Wildt SN, Brosens R, van Fessem M, van den Anker JN, and Lindemans J, The CYP3A4*3 allele: is it really rare? Clin.Chem. 47: 1104-1106, 2001.
49.Aoyama T, Yamano S, Waxman DJ, Lapenson DP, Meyer UA, Fischer V, Tyndale R, Inaba T, Kalow W, Gelboin HV, and ., Cytochrome P-450 hPCN3, a novel cytochrome P-450 IIIA gene product that is differentially expressed in adult human liver. cDNA and deduced amino acid sequence and distinct specificities of cDNA-expressed hPCN1 and hPCN3 for the metabolism of steroid hormones and cyclosporine. J.Biol.Chem. 264: 10388-10395, 1989.
50.Schuetz JD, Molowa DT, and Guzelian PS, Characterization of a cDNA encoding a new member of the glucocorticoid-responsive cytochromes P450 in human liver. Arch.Biochem.Biophys. 274: 355-365, 1989.
51.Hustert E, Haberl M, Burk O, Wolbold R, He YQ, Klein K, Nuessler AC, Neuhaus P, Klattig J, Eiselt R, Koch I, Zibat A, Brockmoller J, Halpert JR, Zanger UM, and Wojnowski L, The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics 11: 773-779, 2001.
52.Chou FC, Tzeng SJ, and Huang JD, Genetic polymorphism of cytochrome P450 3A5 in Chinese. Drug Metab Dispos. 29: 1205-1209, 2001.
53.Lee SJ, Usmani KA, Chanas B, Ghanayem B, Xi T, Hodgson E, Mohrenweiser HW, and Goldstein JA, Genetic findings and functional studies of human CYP3A5 single nucleotide polymorphisms in different ethnic groups. Pharmacogenetics 13: 461-472, 2003.
54.Lee SJ, van dH, I, Goldstein JA, and van Schaik RH, A new CYP3A5 variant, CYP3A5*11, is shown to be defective in nifedipine metabolism in a recombinant cDNA expression system. Drug Metab Dispos. 35: 67-71, 2007.
55.Evans WE and Johnson JA, Pharmacogenomics: the inherited basis for interindividual differences in drug response. Annu.Rev.Genomics Hum.Genet. 2: 9-39, 2001.
56.Chen X and Sullivan PF, Single nucleotide polymorphism genotyping: biochemistry, protocol, cost and throughput. Pharmacogenomics.J. 3: 77-96, 2003.
57.Nakashima H, Otsuka T, Ohba Y, Akahoshi M, Nagano S, Ogami E, Arinobu Y, Miyake K, Inoue Y, Niiro H, Kaji Y, and Niho Y, Two polymorphisms within interleukin-3 (hIL3) gene detected by mismatch PCR/RFLP. Genes Immun. 1: 156-158, 1999.
58.Sobrino B, Brion M, and Carracedo A, SNPs in forensic genetics: a review on SNP typing methodologies. Forensic Sci.Int. 154: 181-194, 2005.
59.Stoneking M, Hedgecock D, Higuchi RG, Vigilant L, and Erlich HA, Population variation of human mtDNA control region sequences detected by enzymatic amplification and sequence-specific oligonucleotide probes. Am.J.Hum.Genet. 48: 370-382, 1991.
60.Pastinen T, Kurg A, Metspalu A, Peltonen L, and Syvanen AC, Minisequencing: a specific tool for DNA analysis and diagnostics on oligonucleotide arrays. Genome Res. 7: 606-614, 1997.
61.Jungerius BJ, Veenendaal A, Van Oost BA, Te Pas MF, and Groenen MA, Typing single-nucleotide polymorphisms using a gel-based sequencer: a new data analysis tool and suggestions for improved efficiency. Mol.Biotechnol. 25: 283-288, 2003.
62.Chen J, Iannone MA, Li MS, Taylor JD, Rivers P, Nelsen AJ, Slentz-Kesler KA, Roses A, and Weiner MP, A microsphere-based assay for multiplexed single nucleotide polymorphism analysis using single base chain extension. Genome Res. 10: 549-557, 2000.
63.Paracchini S, Arredi B, Chalk R, and Tyler-Smith C, Hierarchical high-throughput SNP genotyping of the human Y chromosome using MALDI-TOF mass spectrometry. Nucleic Acids Res. 30: e27, 2002.
64.Pastinen T, Kurg A, Metspalu A, Peltonen L, and Syvanen AC, Minisequencing: a specific tool for DNA analysis and diagnostics on oligonucleotide arrays. Genome Res. 7: 606-614, 1997.
65.Ronaghi M, Pyrosequencing sheds light on DNA sequencing. Genome Res. 11: 3-11, 2001.
66.Holland PM, Abramson RD, Watson R, and Gelfand DH, Detection of specific polymerase chain reaction product by utilizing the 5'----3' exonuclease activity of Thermus aquaticus DNA polymerase. Proc.Natl.Acad.Sci.U.S.A 88: 7276-7280, 1991.
67.Karas M and Hillenkamp F, Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal.Chem. 60: 2299-2301, 1988.
68.Chalmers MJ and Gaskell SJ, Advances in mass spectrometry for proteome analysis. Curr.Opin.Biotechnol. 11: 384-390, 2000.
69.Haff LA and Smirnov IP, Single-nucleotide polymorphism identification assays using a thermostable DNA polymerase and delayed extraction MALDI-TOF mass spectrometry. Genome Res. 7: 378-388, 1997.
70.Wenzel T, Elssner T, Fahr K, Bimmler J, Richter S, Thomas I, and Kostrzewa M, Genosnip: SNP genotyping by MALDI-TOF MS using photocleavable oligonucleotides. Nucleosides Nucleotides Nucleic Acids 22: 1579-1581, 2003.
71.Sauer S, Lehrach H, and Reinhardt R, MALDI mass spectrometry analysis of single nucleotide polymorphisms by photocleavage and charge-tagging. Nucleic Acids Res. 31: e63, 2003.
72.Braun A, Little DP, and Koster H, Detecting CFTR gene mutations by using primer oligo base extension and mass spectrometry. Clin.Chem. 43: 1151-1158, 1997.
73.Sun X, Ding H, Hung K, and Guo B, A new MALDI-TOF based mini-sequencing assay for genotyping of SNPS. Nucleic Acids Res. 28: E68, 2000.
74.Blondal T, Waage BG, Smarason SV, Jonsson F, Fjalldal SB, Stefansson K, Gulcher J, and Smith AV, A novel MALDI-TOF based methodology for genotyping single nucleotide polymorphisms. Nucleic Acids Res. 31: e155, 2003.
75.Dutt A and Beroukhim R, Single nucleotide polymorphism array analysis of cancer. Curr.Opin.Oncol. 19: 43-49, 2007.
76.Fan JB, Chen X, Halushka MK, Berno A, Huang X, Ryder T, Lipshutz RJ, Lockhart DJ, and Chakravarti A, Parallel genotyping of human SNPs using generic high-density oligonucleotide tag arrays. Genome Res. 10: 853-860, 2000.
77.Peng W, Takabayashi H, and Ikawa K, Whole genome amplification from single cells in preimplantation genetic diagnosis and prenatal diagnosis. Eur.J.Obstet.Gynecol.Reprod.Biol. 131: 13-20, 2007.
78.Yuan R, Madani S, Wei XX, Reynolds K, and Huang SM, Evaluation of cytochrome P450 probe substrates commonly used by the pharmaceutical industry to study in vitro drug interactions. Drug Metab Dispos. 30: 1311-1319, 2002.
79.Shih PS and Huang JD, Pharmacokinetics of midazolam and 1'-hydroxymidazolam in Chinese with different CYP3A5 genotypes. Drug Metab Dispos. 30: 1491-1496, 2002.
80.Vallone PM and Butler JM, AutoDimer: a screening tool for primer-dimer and hairpin structures. Biotechniques 37: 226-231, 2004.
81.Telenius H, Carter NP, Bebb CE, Nordenskjold M, Ponder BA, and Tunnacliffe A, Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics 13: 718-725, 1992.
82.Grant SF, Steinlicht S, Nentwich U, Kern R, Burwinkel B, and Tolle R, SNP genotyping on a genome-wide amplified DOP-PCR template. Nucleic Acids Res. 30: e125, 2002.
83.Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, Bray-Ward P, Sun Z, Zong Q, Du Y, Du J, Driscoll M, Song W, Kingsmore SF, Egholm M, and Lasken RS, Comprehensive human genome amplification using multiple displacement amplification. Proc.Natl.Acad.Sci.U.S.A 99: 5261-5266, 2002.
84.Vos P, Hogers R, Bleeker M, Reijans M, van de LT, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, and ., AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23: 4407-4414, 1995.
85.Cheng JY, Chen HH, Kao YS, Kao WC, and Peck K, High throughput parallel synthesis of oligonucleotides with 1536 channel synthesizer. Nucleic Acids Res. 30: e93, 2002.
86.Lawyer FC, Stoffel S, Saiki RK, Myambo K, Drummond R, and Gelfand DH, Isolation, characterization, and expression in Escherichia coli of the DNA polymerase gene from Thermus aquaticus. J.Biol.Chem. 264: 6427-6437, 1989.
87.Vainshtein I, Atrazhev A, Eom SH, Elliott JF, Wishart DS, and Malcolm BA, Peptide rescue of an N-terminal truncation of the Stoffel fragment of taq DNA polymerase. Protein Sci. 5: 1785-1792, 1996.
88.Chen JJ, Wu R, Yang PC, Huang JY, Sher YP, Han MH, Kao WC, Lee PJ, Chiu TF, Chang F, Chu YW, Wu CW, and Peck K, Profiling expression patterns and isolating differentially expressed genes by cDNA microarray system with colorimetry detection. Genomics 51: 313-324, 1998.
89.Stephens M, Smith NJ, and Donnelly P, A new statistical method for haplotype reconstruction from population data. Am.J.Hum.Genet. 68: 978-989, 2001.
90.Stephens M and Donnelly P, A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am.J.Hum.Genet. 73: 1162-1169, 2003.
91.Fukushima-Uesaka H, Saito Y, Watanabe H, Shiseki K, Saeki M, Nakamura T, Kurose K, Sai K, Komamura K, Ueno K, Kamakura S, Kitakaze M, Hanai S, Nakajima T, Matsumoto K, Saito H, Goto Y, Kimura H, Katoh M, Sugai K, Minami N, Shirao K, Tamura T, Yamamoto N, Minami H, Ohtsu A, Yoshida T, Saijo N, Kitamura Y, Kamatani N, Ozawa S, and Sawada J, Haplotypes of CYP3A4 and their close linkage with CYP3A5 haplotypes in a Japanese population. Hum.Mutat. 23: 100, 2004.
92.Plummer SJ, Conti DV, Paris PL, Curran AP, Casey G, and Witte JS, CYP3A4 and CYP3A5 genotypes, haplotypes, and risk of prostate cancer. Cancer Epidemiol.Biomarkers Prev. 12: 928-932, 2003.
93.Zeigler-Johnson C, Friebel T, Walker AH, Wang Y, Spangler E, Panossian S, Patacsil M, Aplenc R, Wein AJ, Malkowicz SB, and Rebbeck TR, CYP3A4, CYP3A5, and CYP3A43 genotypes and haplotypes in the etiology and severity of prostate cancer. Cancer Res. 64: 8461-8467, 2004.
94.Garsa AA, McLeod HL, and Marsh S, CYP3A4 and CYP3A5 genotyping by Pyrosequencing. BMC.Med.Genet. 6: 19, 2005.
95.Wen S, Wang H, Ding Y, Liang H, and Wang S, Screening of 12 SNPs of CYP3A4 in a Chinese population using oligonucleotide microarray. Genet.Test. 8: 411-416, 2004.
96.Xin X, Luan X, Xiao J, Wei D, Wang J, Lu D, and Yang S, Association study of four activity SNPs of CYP3A4 with the precocious puberty in Chinese girls. Neurosci.Lett. 381: 284-288, 2005.
97.Hu YF, He J, Chen GL, Wang D, Liu ZQ, Zhang C, Duan LF, and Zhou HH, CYP3A5*3 and CYP3A4*18 single nucleotide polymorphisms in a Chinese population. Clin.Chim.Acta 353: 187-192, 2005.
98.Wang A, Yu BN, Luo CH, Tan ZR, Zhou G, Wang LS, Zhang W, Li Z, Liu J, and Zhou HH, Ile118Val genetic polymorphism of CYP3A4 and its effects on lipid-lowering efficacy of simvastatin in Chinese hyperlipidemic patients. Eur.J.Clin.Pharmacol. 60: 843-848, 2005.
99.Fukuen S, Fukuda T, Maune H, Ikenaga Y, Yamamoto I, Inaba T, and Azuma J, Novel detection assay by PCR-RFLP and frequency of the CYP3A5 SNPs, CYP3A5*3 and *6, in a Japanese population. Pharmacogenetics 12: 331-334, 2002.
100.Dubiley S, Kirillov E, and Mirzabekov A, Polymorphism analysis and gene detection by minisequencing on an array of gel-immobilized primers. Nucleic Acids Res. 27: e19, 1999.
101.Shalon D, Smith SJ, and Brown PO, A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res. 6: 639-645, 1996.
102.Pease AC, Solas D, Sullivan EJ, Cronin MT, Holmes CP, and Fodor SP, Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc.Natl.Acad.Sci.U.S.A 91: 5022-5026, 1994.
103.Syvanen AC, Aalto-Setala K, Harju L, Kontula K, and Soderlund H, A primer-guided nucleotide incorporation assay in the genotyping of apolipoprotein E. Genomics 8: 684-692, 1990.
104.Ayyadevara S, Thaden JJ, and Shmookler Reis RJ, Discrimination of primer 3'-nucleotide mismatch by taq DNA polymerase during polymerase chain reaction. Anal.Biochem. 284: 11-18, 2000.
105.Greenblatt DJ, Allen MD, Harmatz JS, and Shader RI, Diazepam disposition determinants. Clin.Pharmacol.Ther. 27: 301-312, 1980.
106.Watkins PB, Murray SA, Winkelman LG, Heuman DM, Wrighton SA, and Guzelian PS, Erythromycin breath test as an assay of glucocorticoid-inducible liver cytochromes P-450. Studies in rats and patients. J.Clin.Invest 83: 688-697, 1989.
107.Gorski JC, Jones DR, Haehner-Daniels BD, Hamman MA, O'Mara EM, Jr., and Hall SD, The contribution of intestinal and hepatic CYP3A to the interaction between midazolam and clarithromycin. Clin.Pharmacol.Ther. 64: 133-143, 1998.
108.Cheung C, Yu AM, Chen CS, Krausz KW, Byrd LG, Feigenbaum L, Edwards RJ, Waxman DJ, and Gonzalez FJ, Growth hormone determines sexual dimorphism of hepatic cytochrome P450 3A4 expression in transgenic mice. J.Pharmacol.Exp.Ther. 316: 1328-1334, 2006.
109.Wolbold R, Klein K, Burk O, Nussler AK, Neuhaus P, Eichelbaum M, Schwab M, and Zanger UM, Sex is a major determinant of CYP3A4 expression in human liver. Hepatology 38: 978-988, 2003.
110.Fukuda T, Onishi S, Fukuen S, Ikenaga Y, Ohno M, Hoshino K, Matsumoto K, Maihara A, Momiyama K, Ito T, Fujio Y, and Azuma J, CYP3A5 genotype did not impact on nifedipine disposition in healthy volunteers. Pharmacogenomics.J. 4: 34-39, 2004.
111.Chowbay B, Cumaraswamy S, Cheung YB, Zhou Q, and Lee EJ, Genetic polymorphisms in MDR1 and CYP3A4 genes in Asians and the influence of MDR1 haplotypes on cyclosporin disposition in heart transplant recipients. Pharmacogenetics 13: 89-95, 2003.
112.Du J, Xing Q, Xu L, Xu M, Shu A, Shi Y, Yu L, Zhang A, Wang L, Wang H, Li X, Feng G, and He L, Systematic screening for polymorphisms in the CYP3A4 gene in the Chinese population. Pharmacogenomics. 7: 831-841, 2006.
113.Ingelman-Sundberg M and Rodriguez-Antona C, Pharmacogenetics of drug-metabolizing enzymes: implications for a safer and more effective drug therapy. Philos.Trans.R.Soc.Lond B Biol.Sci. 360: 1563-1570, 2005.
114.Ahrendt SA, Halachmi S, Chow JT, Wu L, Halachmi N, Yang SC, Wehage S, Jen J, and Sidransky D, Rapid p53 sequence analysis in primary lung cancer using an oligonucleotide probe array. Proc.Natl.Acad.Sci.U.S.A 96: 7382-7387, 1999.
115.Shi MM, Enabling large-scale pharmacogenetic studies by high-throughput mutation detection and genotyping technologies. Clin.Chem. 47: 164-172, 2001.
116.Rodi CP, Darnhofer-Patel B, Stanssens P, Zabeau M, and van den BD, A strategy for the rapid discovery of disease markers using the MassARRAY system. Biotechniques Suppl: 62-69, 2002.
117.Tost J and Gut IG, Genotyping single nucleotide polymorphisms by MALDI mass spectrometry in clinical applications. Clin.Biochem. 38: 335-350, 2005.
118.Dalma-Weiszhausz DD, Warrington J, Tanimoto EY, and Miyada CG, The affymetrix GeneChip platform: an overview. Methods Enzymol. 410: 3-28, 2006.
P.168
1.Jemal A, Murray T, Samuels A, Ghafoor A, Ward E, and Thun MJ, Cancer statistics, 2003. CA Cancer J.Clin. 53: 5-26, 2003.
2.Chiang PH, Huang MS, Tsai CJ, Tsai EM, Huang CH, and Chiang CP, Transitional cell carcinoma of the renal pelvis and ureter in Taiwan. DNA analysis by flow cytometry. Cancer 71: 3988-3992, 1993.
3.Chiou HY, Hsueh YM, Liaw KF, Horng SF, Chiang MH, Pu YS, Lin JS, Huang CH, and Chen CJ, Incidence of internal cancers and ingested inorganic arsenic: a seven-year follow-up study in Taiwan. Cancer Res 55: 1296-1300, 1995.
4.Yang CY, Chiu HF, Chang CC, Ho SC, and Wu TN, Bladder cancer mortality reduction after installation of a tap-water supply system in an arsenious-endemic area in southwestern Taiwan. Environ.Res. 98: 127-132, 2005.
5.Miyamoto H, Yang Z, Chen YT, Ishiguro H, Uemura H, Kubota Y, Nagashima Y, Chang YJ, Hu YC, Tsai MY, Yeh S, Messing EM, and Chang C, Promotion of bladder cancer development and progression by androgen receptor signals. J.Natl.Cancer Inst. 99: 558-568, 2007.
6.Celis JE, Gromova I, Moreira JM, Cabezon T, and Gromov P, Impact of proteomics on bladder cancer research. Pharmacogenomics. 5: 381-394, 2004.
7.Prout GR, Jr., Barton BA, Griffin PP, and Friedell GH, Treated history of noninvasive grade 1 transitional cell carcinoma. The National Bladder Cancer Group. J.Urol. 148: 1413-1419, 1992.
8.Cheng L, Neumann RM, Nehra A, Spotts BE, Weaver AL, and Bostwick DG, Cancer heterogeneity and its biologic implications in the grading of urothelial carcinoma. Cancer 88: 1663-1670, 2000.
9.Leppert JT, Shvarts O, Kawaoka K, Lieberman R, Belldegrun AS, and Pantuck AJ, Prevention of bladder cancer: a review. Eur.Urol. 49: 226-234, 2006.
10.Burch JD, Rohan TE, Howe GR, Risch HA, Hill GB, Steele R, and Miller AB, Risk of bladder cancer by source and type of tobacco exposure: a case-control study. Int.J.Cancer 44: 622-628, 1989.
11.Hoover R and Cole P, Population trends in cigarette smoking and bladder cancer. Am.J.Epidemiol. 94: 409-418, 1971.
12.Morrison AS and Cole P, Epidemiology of bladder cancer. Urol.Clin.North Am. 3: 13-29, 1976.
13.Steineck G, Plato N, Norell SE, and Hogstedt C, Urothelial cancer and some industry-related chemicals: an evaluation of the epidemiologic literature. Am.J.Ind.Med. 17: 371-391, 1990.
14.Lamm SH, Engel A, Kruse MB, Feinleib M, Byrd DM, Lai S, and Wilson R, Arsenic in drinking water and bladder cancer mortality in the United States: an analysis based on 133 U.S. counties and 30 years of observation. J.Occup.Environ.Med. 46: 298-306, 2004.
15.Morales Suarez-Varela M, Llopis GA, Tejerizo Perez ML, and Ferrandiz FJ, Concentration of nitrates in drinking water and its relationship with bladder cancer. J.Environ.Pathol.Toxicol.Oncol. 12: 229-236, 1993.
16.Weyer PJ, Cerhan JR, Kross BC, Hallberg GR, Kantamneni J, Breuer G, Jones MP, Zheng W, and Lynch CF, Municipal drinking water nitrate level and cancer risk in older women: the Iowa Women's Health Study. Epidemiology 12: 327-338, 2001.
17.Wynder EL and Goldsmith R, The epidemiology of bladder cancer: a second look. Cancer 40: 1246-1268, 1977.
18.Garcia-Closas M, Malats N, Silverman D, Dosemeci M, Kogevinas M, Hein DW, Tardon A, Serra C, Carrato A, Garcia-Closas R, Lloreta J, Castano-Vinyals G, Yeager M, Welch R, Chanock S, Chatterjee N, Wacholder S, Samanic C, Tora M, Fernandez F, Real FX, and Rothman N, NAT2 slow acetylation, GSTM1 null genotype, and risk of bladder cancer: results from the Spanish Bladder Cancer Study and meta-analyses. Lancet 366: 649-659, 2005.
19.Hsieh FI, Pu YS, Chern HD, Hsu LI, Chiou HY, and Chen CJ, Genetic polymorphisms of N-acetyltransferase 1 and 2 and risk of cigarette smoking-related bladder cancer. Br.J.Cancer. 81: 537-541, 1999.
20.Yeh SH, Chang CF, Shau WY, Chen YW, Hsu HC, Lee PH, Chen DS, and Chen PJ, Dominance of functional androgen receptor allele with longer CAG repeat in hepatitis B virus-related female hepatocarcinogenesis. Cancer Res. 62: 4346-4351, 2002.
21.Yu MW, Cheng SW, Lin MW, Yang SY, Liaw YF, Chang HC, Hsiao TJ, Lin SM, Lee SD, Chen PJ, Liu CJ, and Chen CJ, Androgen-receptor gene CAG repeats, plasma testosterone levels, and risk of hepatitis B-related hepatocellular carcinoma. J.Natl.Cancer Inst. 92: 2023-2028, 2000.
22.Zhou ZX, Sar M, Simental JA, Lane MV, and Wilson EM, A ligand-dependent bipartite nuclear targeting signal in the human androgen receptor. Requirement for the DNA-binding domain and modulation by NH2-terminal and carboxyl-terminal sequences. J.Biol.Chem. 269: 13115-13123, 1994.
23.Trapman J and Brinkmann AO, The androgen receptor in prostate cancer. Pathol.Res.Pract. 192: 752-760, 1996.
24.Brown CJ, Goss SJ, Lubahn DB, Joseph DR, Wilson EM, French FS, and Willard HF, Androgen receptor locus on the human X chromosome: regional localization to Xq11-12 and description of a DNA polymorphism. Am.J.Hum.Genet. 44: 264-269, 1989.
25.Jenster G, van der Korput HA, van Vroonhoven C, van der Kwast TH, Trapman J, and Brinkmann AO, Domains of the human androgen receptor involved in steroid binding, transcriptional activation, and subcellular localization. Mol.Endocrinol. 5: 1396-1404, 1991.
26.Quigley CA, De Bellis A, Marschke KB, el Awady MK, Wilson EM, and French FS, Androgen receptor defects: historical, clinical, and molecular perspectives. Endocr.Rev. 16: 271-321, 1995.
27.Lubahn DB, Joseph DR, Sullivan PM, Willard HF, French FS, and Wilson EM, Cloning of human androgen receptor complementary DNA and localization to the X chromosome. Science 240: 327-330, 1988.
28.Kuiper GG, Faber PW, van Rooij HC, van der Korput JA, Ris-Stalpers C, Klaassen P, Trapman J, and Brinkmann AO, Structural organization of the human androgen receptor gene. J.Mol.Endocrinol. 2: R1-R4, 1989.
29.Hsing AW, Gao YT, Wu G, Wang X, Deng J, Chen YL, Sesterhenn IA, Mostofi FK, Benichou J, and Chang C, Polymorphic CAG and GGN repeat lengths in the androgen receptor gene and prostate cancer risk: a population-based case-control study in China. Cancer Res. 60: 5111-5116, 2000.
30.Chamberlain NL, Driver ED, and Miesfeld RL, The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Res. 22: 3181-3186, 1994.
31.Ding D, Xu L, Menon M, Reddy GP, and Barrack ER, - Effect of GGC (glycine) repeat length polymorphism in the human androgen receptor on androgen action -9.
32.Liu CH, Peck K, Huang JD, Lin MS, Wang CH, Hsu WP, Wang HW, Lee HL, and Lai ML, Screening CYP3A single nucleotide polymorphisms in a Han Chinese population with a genotyping chip. Pharmacogenomics. 6: 731-747, 2005.
33.Yu H, Bharaj B, Vassilikos EJ, Giai M, and Diamandis EP, - Shorter CAG repeat length in the androgen receptor gene is associated with more aggressive forms of breast cancer -61.
34.Li AJ, Baldwin RL, and Karlan BY, - Short androgen receptor allele length is a poor prognostic factor in epithelial ovarian carcinoma -73.
35.Edwards SM, Badzioch MD, Minter R, Hamoudi R, Collins N, Ardern-Jones A, Dowe A, Osborne S, Kelly J, Shearer R, Easton DF, Saunders GF, Dearnaley DP, and Eeles RA, Androgen receptor polymorphisms: association with prostate cancer risk, relapse and overall survival. Int.J.Cancer 84: 458-465, 1999.
36.Boorman GA, Animal model of human disease: carcinoma of the ureter and urinary bladder. Am.J.Pathol. 88: 251-254, 1977.
37.Cheng L, MacLennan GT, Pan CX, Jones TD, Moore CR, Zhang S, Gu J, Patel NB, Kao C, and Gardner TA, Allelic loss of the active X chromosome during bladder carcinogenesis. Arch Pathol Lab Med 128: 187-190, 2004.
38.Suter NM, Malone KE, Daling JR, Doody DR, and Ostrander EA, Androgen receptor (CAG)n and (GGC)n polymorphisms and breast cancer risk in a population-based case-control study of young women. Cancer Epidemiol.Biomarkers Prev. 12: 127-135, 2003.
39.Liede A, Zhang W, Leon Matsuda ML, Tan A, and Narod SA, Androgen receptor gene polymorphism and breast cancer susceptibility in The Philippines. Cancer Epidemiol.Biomarkers Prev. 12: 848-852, 2003.
40.Roberts RO, Bergstralh EJ, Cunningham JM, Hebbring SJ, Thibodeau SN, Lieber MM, and Jacobsen SJ, Androgen receptor gene polymorphisms and increased risk of urologic measures of benign prostatic hyperplasia. Am.J Epidemiol. 159: 269-276, 2004.
41.Gacy AM, Goellner G, Juranic N, Macura S, and McMurray CT, Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell 81: 533-540, 1995.
42.Yeap BB, Wilce JA, and Leedman PJ, The androgen receptor mRNA. Bioessays 26: 672-682, 2004.
43.Reid J, Betney R, Watt K, and McEwan IJ, The androgen receptor transactivation domain: the interplay between protein conformation and protein-protein interactions. Biochem.Soc.Trans. 31: 1042-1046, 2003.
44.Choudhry MA and McEwan IJ, In vitro regulation of reporter gene transcription by the androgen receptor AF1 domain. Biochem.Soc.Trans. 32: 1103-1106, 2004.
45.Gottlieb B, Beitel LK, Wu JH, and Trifiro M, The androgen receptor gene mutations database (ARDB): 2004 update. Hum.Mutat. 23: 527-533, 2004.
46.Heinlein CA and Chang C, Androgen receptor in prostate cancer. Endocr.Rev. 25: 276-308, 2004.
47.Yu MC, Skipper PL, Tannenbaum SR, Chan KK, and Ross RK, Arylamine exposures and bladder cancer risk. Mutat.Res. 506-507: 21-28, 2002.
48.Visvanathan K, Helzlsouer KJ, Boorman DW, Strickland PT, Hoffman SC, Comstock GW, O'Brien TG, and Guo Y, Association among an ornithine decarboxylase polymorphism, androgen receptor gene (CAG) repeat length and prostate cancer risk. J Urol. 171: 652-655, 2004.
49.Nakanishi H, Takeuchi S, Kato K, Shimizu S, Kobayashi K, Tatematsu M, and Shirai T, Establishment and characterization of three androgen-independent, metastatic carcinoma cell lines from 3,2'-dimethyl-4-aminobiphenyl-induced prostatic tumors in F344 rats. Jpn.J.Cancer Res. 87: 1218-1226, 1996.
50.Svartberg J, Midtby M, Bonaa KH, Sundsfjord J, Joakimsen RM, and Jorde R, The associations of age, lifestyle factors and chronic disease with testosterone in men: the Tromso Study. Eur.J.Endocrinol. 149: 145-152, 2003.
51.Trummer H, Habermann H, Haas J, and Pummer K, The impact of cigarette smoking on human semen parameters and hormones. Hum.Reprod. 17: 1554-1559, 2002.
52.Marsh JD, Lehmann MH, Ritchie RH, Gwathmey JK, Green GE, and Schiebinger RJ, Androgen receptors mediate hypertrophy in cardiac myocytes. Circulation 98: 256-261, 1998.
53.Racchi O, Mangerini R, Rapezzi D, Rolfo M, Gaetani GF, and Ferraris AM, X chromosome inactivation patterns in normal females. Blood Cells Mol.Dis. 24: 439-447, 1998.
54.Rajender S, Singh L, and Thangaraj K, Phenotypic heterogeneity of mutations in androgen receptor gene. Asian J.Androl 9: 147-179, 2007.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2007-12-10起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2007-12-10起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw