進階搜尋


 
系統識別號 U0026-0812200914005545
論文名稱(中文) 過氧化聚吡咯修飾電極對酪胺酸感測特性之研究
論文名稱(英文) Study of Sensing Property of Tyrosine with Overoxidized Polypyrrole Modified Electrode
校院名稱 成功大學
系所名稱(中) 化學工程學系碩博士班
系所名稱(英) Department of Chemical Engineering
學年度 95
學期 2
出版年 96
研究生(中文) 葉書瑄
研究生(英文) Shu-Hsuan Yeh
學號 n3694125
學位類別 碩士
語文別 中文
論文頁數 128頁
口試委員 口試委員-杜景順
指導教授-楊明長
口試委員-周澤川
口試委員-許梅娟
口試委員-何國川
中文關鍵字 聚吡咯  過氧化反應  修飾電極  酪胺酸 
英文關鍵字 tyrosine  polypyrrole  overoxidation  modified electrode 
學科別分類
中文摘要 由於過氧化聚吡咯膜主幹上之羧基及羰基,過氧化聚吡咯能促使陽離子穿越而陰離子被排斥,所以具有陽離子滲透選擇性,近年來過氧化聚吡咯膜因此而應用於感測器上以增加選擇性。本研究以過氧化聚吡咯膜修飾網印白金電極,應用在pH 2和7下感測酪胺酸。酪胺酸二鈉鹽與酪胺酸結構相似,製備聚吡咯時以酪胺酸二鈉鹽為摻雜質。0.1 M NaOH溶液中,在聚吡咯施加0.8 V (vs. Ag/AgCl),聚吡咯進行不可逆之過氧化反應,摻雜質則自聚吡咯中去摻雜,形成孔洞並失去聚吡咯之導電性。進行電化學感測時,酪胺酸由孔洞滲透過修飾層到達網印白金電極表面進行氧化反應。
酪胺酸為非必需胺基酸,pI值為5.66。本研究在pH 2和7下,以三極式的系統 (工作電極:過氧化聚吡咯修飾網印白金電極,Pt-OPPy; 對電極:白金片;參考電極:銀-氯化銀參考電極) 感測酪胺酸。pH 2時,以1.02 V (vs. Ag/AgCl) 感測酪胺酸可得比pH 3~11之感測電流密度高,靈敏度為28.38 μAmM-1cm-2,線性感測範圍為0.2~1.0 mM;然而,pH 7時,以0.73 V (vs. Ag/AgCl) 感測酪胺酸,靈敏度為37.22 μAmM-1cm-2,線性感測範圍為0.2~1.0 mM。
選擇性的比較上,本研究以抗壞血酸 (維他命C) 為競爭物,修飾電極在0.73 V (vs. Ag/AgCl)、pH 7時,表現出對酪胺酸較高之選擇性 (1.88);1.02 V (vs. Ag/AgCl)、pH 2時,則降為0.59。
英文摘要 In recent year, overoxidation polypyrrole (OPPy) film has been used as a modified layer for the sensors with an improved selectivity. The overoxidation of the polypyrrole films has been shown to give high cation permselectivity because of the carboxyl and carbonyl group attached to OPPy backbone. The OPPy film allowed cations transport and excluded anions. In this study, a screen-printing platinum electrode was modified with OPPy film, abbreviated as Pt-OPPy, to detect the tyrosine in pH 2 and 7. During the polymerization of polypyrrole, tyrosine disodium salt was the dopant due to the similarity in structure with tyrosine. The following overoxidation of the polypyrrole at 0.8 V (vs. Ag/AgCl) in 0.1 M NaOH led to dedoping with a loss in conductivity. At electrochemical sensing, tyrosine penetrated the modifying layer to the surface of the screen-printing electrode and carried out an oxidation reaction.
Tyrosine is a non-essential amino acid with a pI value 5.66. The tyrosine was sensed in a three-electrode system (working electrode:Pt-OPPy; counter electrode: Pt sheet; reference electrode: Ag/AgCl (sat’d KCl)) at pH 2 and 7. At applying potential 1.02 V, pH 2 gave higher sensing current density than the other pHs. The sensitivity of tyrosine with Pt-OPPy in a amperometric method was 28.38 μAmM-1cm-2 with a linear range of 0.2 and 1.0 mM. However, the sensitivity at 0.73 V (vs. Ag/AgCl) in pH 7 was 37.22 μAmM-1cm-2 with a linear range of 0.2 and 1.0 mM.
In the selectivity test, ascorbic acid (vitamin C) was selected as a competitor. At 0.73 V (vs. Ag/AgCl), the Pt-OPPy modified electrode at pH 7 showed higher selectivity toward tyrosine (STyr-AA/Pt-OPPy=1.88) than at pH 2 (STyr-AA/Pt-OPPy=0.59).
論文目次 中文摘要 I
Abstract III
誌謝 V
表目錄 XI
圖目錄 XII
符號說明 XVIII
第一章 緒論 1
1.1 前言 1
1.2 酪胺酸 3
1.2.1 酪胺酸之特性 3
1.2.2 酪胺酸之感測發展 4
1.3 過氧化聚吡咯 5
1.3.1 吡咯 5
1.3.2 聚咯吡 6
1.3.2.1 聚吡咯化學聚合 6
1.3.2.2 聚吡咯電化學聚合 8
1.3.3 過氧化聚吡咯 13
1.3.3.1 過氧化聚吡咯之電化學聚合原理 13
1.3.3.2 過氧化聚吡咯在感測器上之應用 15
1.4 研究動機 17
第二章 原理 18
2.1 酪胺酸在白金電極上之氧化反應機制 18
2.1.1 酸性環境 18
2.1.2 中性環境 22
2.1.3 鹼性環境 24
2.2 電極表面之電化學感測機構 27
2.2.1 感測原理 28
2.3 以過氧化聚吡咯修飾白金電極感測酪胺酸 32
第三章 實驗設備與方法 36
3.1 藥品與材料 36
3.2 儀器設備 38
3.3 感測元件之製備 39
3.3.1 氧化鋁陶瓷基板之前處理 39
3.3.2 網印白金電極之製備 39
3.3.3 外接電路之連結 39
3.3.4 過氧化聚吡咯白金修飾電極之製備 40
3.4 網印白金電極面積 44
3.5 感測特性分析 45
3.5.1 感測系統 45
3.5.2 感測電位之確定 47
3.5.2.1 循環伏安法 47
3.5.2.2 極化曲線 47
3.5.2.3 線性掃描伏安法 48
3.5.3 靈敏度測試 51
3.5.4 選擇性測試 52
第四章 結果與討論 54
4.1 網印白金電極 54
4.2 過氧化聚吡咯修飾電極製備 61
4.3 感測電位之確定 66
4.3.1 循環伏安法 66
4.3.2 極化曲線 66
4.3.3 線性掃描伏安法 68
4.3.4 pH對半波電位、感測電位及感測電流之影響 73
4.3.4.1 半波電位 73
4.3.4.2 感測電位 74
4.3.4.3 感測電流 74
4.4 修飾電極之製備修件對感測電流的影響 80
4.4.1 過氧化反應對感測電流之影響 80
4.4.2 摻雜劑濃度對感測電流密度之影響 83
4.4.3 聚合速率對感測電流密度之影響 85
4.4.4 高分子聚合量對感測電流密度之影響 90
4.5 修飾電極之感測特性 93
4.5.1 定電位電流式感測分析 93
4.5.2 靈敏度測試 93
4.5.3 選擇性 95
第五章 綜合討論 106
5.1 修飾電極製備條件 106
5.1.1 聚合反應電位範圍 106
5.1.2 摻雜質濃度 107
5.1.3 聚合圈數 107
5.1.4 聚合時掃描速率 108
5.2 修飾電極的感測特性 108
5.2.1 靈敏度 109
5.2.2 選擇性 110
5.3 酪胺酸電化學感測器文獻回顧 111
第六章 結論與建議 115
6.1 結論 115
6.1.1 修飾電極製備 115
6.1.2 酪胺酸之感測 115
6.1.3 靈敏性與選擇性 116
6.2 建議事項 116
參考文獻 118
附錄 127
自述 128
參考文獻 1. Y. Azuma, M. Maekawa, Y. Kuwabara, T. Nakajima, K.Taniguchi, and T. Kanno, Determination of branched-chain amino acids and tyrosine in serum of patients with various hepatic diseases, and its clinical usefulness, Clin. Chem. 35, 1399-1403 (1989).
2. C. Massip, P. Riollet, E. Quemener, C. Bayle, R. Salvayre, F. Couderc, and E. Caussé, Choice of different dyes to label tyrosine and nitrotyrosine, J. Chromatogr., A 979, 209-215 (2002).
3. M. Koller, and H. Eckert, Derivatization of peptides for their determination by chromatographic methods, Anal. Chim. Acta 352, 31-59 (1997).
4. H. Orhan, N.P.E. Vermeulen, C. Tump, H. Zappey, and J.H.N. Meeran, Simultaneous determination of tyrosine, phenylalanine and deoxyguanosine oxidation products by liquid chromatography–tandem mass spectrometry as non-invasive biomarkers for oxidative damage, J. Chromatogr., B 799, 245-254 (2004).
5. C.H. Deng, Y.H. Deng, B. Wang, and X.H. Yang, Gas chromatography–mass spectrometry method for determination of phenylalanine and tyrosine in neonatal blood spots, J. Chromatogr., B 780, 407-413 (2002).
6. P. Kumarathasan, and R. Vincent, New approach to the simultaneous analysis of catecholamines and tyrosines in biological fluids, J. Chromatogr., A 987, 349-358 (2003).
7. Y.V. Tcherkas, L.A. Kartsova, and I. N. Krasnova, Analysis of amino acids in human serum by isocratic reversed-phase high-performance liquid chromatography with electrochemical detection, J. Chromatogr., A 913, 303-308 (2001).
8. M.E. Johll, D.G. Williams, and D. C. Johnson, Activated pulsed amperometric detection of cysteine at platinum electrodes in acidic media, Electroanalysis 9, 1397-1402 (1997).
9. A.P. Clarke, P. Jandik, R.D. Rocklin, Y. Liu, and N. Avdalovic, An integrated amperometry waveform for the direct, sensitive detection of amino acids and amino sugars following anion-exchange chromatography Anal. Chem. 71, 2774-2781 (1999).
10. Y. Guo, L.A.Colón, R. Dadoo, and R. N. Zare, Analysis of underivatized amino acids by capillary electrophoresis using constant potential amperometric detection, Electrophoresis 16, 493-497 (1995).
11. P. Luo, F. Zhang, and R. P. Baldwin, Constant-potential amperometric detection of underivatized amino acids and peptides at a copper electrode, Anal. Chem. 63, 1702-1707 (1991).
12. J.B. Kafil, and C. O. Huber, A nickel oxide amperometric detector in the chromatographic separation of amino acids, Anal. Chim. Acta 175, 275-280 (1985).
13. I.G. Casella, M. Gatta, and T. R. I. Cataldi., Amperometric determination of underivatized amino acids at a nickel-modified gold electrode by anion-exchange chromatography, J. Chromatogr., A 878, 57-67 (2000).
14. I.G. Casella, T.R.I. Cataldi, A. Guerrieri, and E. Desimoni, Copper dispersed into polyaniline films as an amperometric sensor in alkaline solutions of amino acids and polyhydric compounds, Anal. Chim. Acta 335, 217-225 (1996).
15. K. Sato, J.Y. Jin, T. Takeuchi, T. Miwa, Y. Takekoshi, S. Kanno, and S. Kawase, Nickel–titanium alloy electrodes for stable amperometric detection of underivatized amino acids in anion-exchange chromatography, Talanta 53, 1037-1044 (2001).
16. S.M. MacDonald, and S.G. Roscoe, Electrochemical oxidation reactions of tyrosine, tryptophan and related dipeptides, Electrochim. Acta 42, 1189-1200 (1997).
17. K. Ogura, M. Kobayashi, M. Nakayama, and Y. Miho, In-situ FTIR studies on the electrochemical oxidation of histidine and tyrosine, J. Electroanal. Chem. 463, 218-223 (1999).
18. L. Agüý, A. González-Cortés, P. Yáñez-Sedeño, and J.M. Pingarrón, Continuous monitoring of amino acids and related compounds with poly(3-methylthiophene)-coated cylindrical carbon fiber microelectrodes, Anal. Chim. Acta 401, 145-154 (1999).
19. C.F. Zinola, J.L. Rodríguez, M. C. Arévalo, and E. Pastor, FTIR studies of tyrosine oxidation at polycrystalline Pt and Pt(1 1 1) electrodes, J. Electroanal. Chem 585, 230-239 (2005).
20. G.P. Jin, and X. Q. Lin, The electrochemical behavior and amperometric determination of tyrosine and tryptophan at a glassy carbon electrode modified with butyrylcholine, Electrochem. Commun. 6, 454-460 (2004).
21. M. Vasjari, A. Merkoc, J.P. Hart, and S. Alegret, Amino acid determination using screen-printed electrochemical sensors, Microchim. Acta 150, 233-238 (2005).
22. J. Xu, Y. Wang, Y. Xian, L. Jin, and K. Tanaka, Preparation of multiwall carbon nanotubes film modified electrode and its application to simultaneous determination of oxidizable amino acids in ion chromatography, Talanta 60, 1123-1130 (2003).
23. J. Saurina, S. Hernández-Cassou, E. Fàbregas, and S. Alegret, Cyclic voltammetric simultaneous determination of oxidizable amino acids using multivariate calibration methods, Anal. Chim. Acta 405, 153-160 (2000).
24. A. Malinauskas, R. Garjonyte, R. Mazeikiene, and I. Jureviciute, Electrochemical response of ascorbic acid at conducting and electrogenerated polymer modified electrodes for electroanalytical applications: a review, Talanta 64, 121-129 (2004).
25. Q. Pei, and R. Qian, Electrode potentials of electronically conducting polymer polypyrrole, Electrochim. Acta 37, 1075-1081 (1992).
26. J. Wang, M. Jiang, and B. Mukherjee, Flow detection of nucleic acids at a conducting polymer-modified electrode, Anal. Chem. 71, 4095-4099 (1999).
27. Y.J. Yuan, H. Zhao, G. G. Wallace, and S. B. Adeloju, Effect of an intermediate on the amperometric response of a polypyrrole-based formate biosensing membrane, Electrochem. Commun. 2, 27-31 (2000).
28. S.B. Saidman, and M. E. Vela, Electropolymerisation of pyrrole onto aluminium from alkaline solutions containing a surfactant, Thin Solid Films 493, 96-103 (2005).
29. C.R. Fincher, M. Ozaki, M. Tanaka, D. Peebles, L. Lauchlan, A.J. Heeger, and A.G. MacDiarmid, Electronic structure of polyacetylene: Optical and infrared studies of undoped semiconducting (CH)x and heavily doped metallic (CH)x, Phys. Rev. B: Condens. Matter Mater. Phys. 20, 1589-1602 (1979).
30. A. Angeli, and L. Alessandri, Gazz. Chim. Ital. 46, 283 (1916).
31. H. Okuno, T.Kitano, H. Yakabe , M.Kishimoto , and B. Deore, Characterization of overoxidized polypyrrole colloids imprinted with L-lactate and their application to enantioseparation of amino acids Anal. Chem. 74, 4184-4190 (2002).
32. H. Shiigi, M. Kishimoto, H.Yakabe, and B. Deore, Highly selective molecularly imprinted overoxidized polypyrrole colloids: one-step preparation technique, Anal. Sci 18, 41-44 (2002).
33. 洪學良, "吡咯導電高分子導電度及應用之研究,國立成功大學化學工程研究所碩士論文," (2001).
34. A. Dall'Olio, Y. Dascola, V. Varacca, and V. Bocchi, C. R. Chim. 267, 433 (1968).
35. A.F. Diaz, K.K. Kanaawa, and G.P. Gardini, J. Chem. Soc. Chem. Commun. 635 (1979).
36. J. Preiza, I. Lundstrom, and T. Skotheim, J. Electrochem. Soc., 129, 1685 (1982).
37. F. Beck, P. Braun, and M. Oberst, Organic electrochemistry in the solid state-overoxidation of polypyrrole, Ber. Bunsengers Phys. Chem. 91, 967 (1987).
38. A. Witkowski, M.S. Freund, and A. Brajter-Toth, Effect of electrode substrate on the morphology and selectivity of overoxidized polypyrrole films, Anal. Chem. 63, 622-626 (1991).
39. Z. Gao, and A. Ivaska, Electrochemical behaviour of dopamine and ascorbic acid at overoxidized polypyrrole(dodecyl sulphate) film-coated electrodes, Anal. Chim. Acta 284, 393-404 (1993).
40. F. Palmisano, C. Malitesta, D. Centonze, and P. G. Zambonin, Correlation between permselectivity and chemical structure of overoxidized polypyrrole membranes used in electroproduced enzyme biosensors, Anal. Chem. 67, 2207-2211 (1995).
41. C. Hsueh, and A. Brajter-Toth, Electrochemical preparation and analytical applications of ultrathin overoxidized polypyrrole films, Anal. Chem. 66, 2458-2464 (1994).
42. Z. Gao, M. Zi, and B. Chen, Permeability controllable overoxidised polypyrrole film modified glassy carbon electrodes, Anal. Chim. Acta 286, 213-218 (1994).
43. T. Osaka, T. Momma, S. Komaba, H. Kanagawa, and S. Nakamura, Electrochemical process of formation of an insulating polypyrrole film, J. Electroanal. Chem. 372, 201-207 (1994).
44. A. Jaramillo, L.D. Spurlock, V. Young, and A. Brajter-Toth, XPS characterization of nanosized overoxidized polypyrrole films on graphite electrodes, Analyst (Cambridge, U. K.) 124, 1215-1221 (1999).
45. S. Asavapiriyanont, G.K. Chandler, G. A. Gunawardena, and D. Pletcher, The electrodeposition of polypyrrole films from aqueous solutions, J. Electroanal. Chem. 177, 229-244 (1984).
46. A. Witkowski, and A. Brajter-Toth, Overoxidized polypyrrole films: a model for the design of permselective electrodes, Anal. Chem. 64, 635-641 (1992).
47. M. Freund, L. A. Kartsova, and A. Brajter-Toth, Anion-excluding polypyrrole films, Talanta 38, 95-99 (1991).
48. Z. Gao, M. Zi, and B. Chen, The influence of overoxidation treatment on the permeability of polypyrrole films, J. Electroanal. Chem. 373, 141-148 (1994).
49. J. Migdalski, T. Blaz, and A. Lewenstam, Conducting polymer-based ion-selective electrodes, Anal. Chim. Acta 322, 141-149 (1996).
50. J. Mostany, and B. R. Scharifker, Impedance spectroscopy of undoped, doped and overoxidized polypyrrole films, Synth Met. 87, 179-185 (1997).
51. P.A. Christensen, and A. Hamnett, In situ spectroscopic investigations of the growth, electrochemical cycling and overoxidation of polypyrrole in aqueous solution, Electrochim. Acta 36, 1263-1286 (1991).
52. H. Ge, G. Qi, E. Kang, and K.G. Neoh, Study of overoxidized polypyrrole using X-ray photoelectron spectroscopy, Polymer 35, 504-508 (1994).
53. J. Janata, Chemical sensors, Anal. Chem. 62, 33R-44R (1990).
54. R.W. Murray, A.G. Ewing, and R.A. Durst, Chemically modified electrodes. Molecular design for electroanalysis, Anal. Chem. 59, 379A-390A (1987).
55. K. Pihel, Q.D. Walker, and R. M. Wightman, Overoxidized polypyrrole-coated carbon fiber microelectrodes for dopamine measurements with fast-scan cyclic voltammetry, Anal. Chem. 68, 2084-2089 (1996).
56. Z. Gao, B. Chen, and M. Zi, Voltammetric determination of dopamine in the presence of ascorbic acid at over-oxidized polypyrrole–indigo carmine film-coated electrodes, Analyst 119, 459-464 (1994).
57. X. Jiang, and X. Lin, Overoxidized polypyrrole film directed DNA immobilization for construction of electrochemical micro-biosensors and simultaneous determination of serotonin and dopamine, Anal. Chim. Acta 29, 145-151 (2005).
58. T.F. Kang, G.L. Shen, and R. Q. Yu, Permselectivity of neurotransmitters at overoxidized polypyrrole-film-coated glassy carbon electrodes, Talanta 43, 2007-2013 (1996).
59. H. Olivia, B.V. Sarada, D. Shin, T.N. Rao, and A. Fujishima, Selective amperometric detection of dopamine using OPPy-modified diamond microsensor system, Analyst 127, 1572-1575 (2002).
60. Z. Chen, K. Okamura, M. Hanaki, and T. Nagaoka, Selective determination of tryptophan by using a carbon paste electrode modified with an overoxidized polypyrrole film, Anal. Sci. 18, 417-421 (2002).
61. M.F. Amiel, and M. S. Jonathan, Prediction and characterization of the charge/size exclusion properties of over-oxidized poly(pyrrole) films, Electroanalysis 9, 843-847 (1997).
62. V. Brabec, and V. Mornstein, Electrochemical behaviour of proteins at graphite electrodes II. Electrooxidation of amino acids., Biophys. Chem. 12, 159-165 (1980).
63. J.A. Reynaud, B. Malfoy, and P. Canesson, Electrochemical investigations of amino acids at solid electrodes. Part I. Sulfur components: Cystine, cysteine, methionine j. Electroanal. Chem. 114, 195-211 (1980).
64. A.K. Vijh, and B. E. Conway, Electrode kinetic aspects of the Kolbe reaction Chem. Rev. 67, 623-664 (1967).
65. A.J. Bard, and L. R. Faulkner, Electrochemical Method: Fundamentals and Applications (John Wiley & Son, Inc., New York, 23-24, 2001).
66. B. Deore, H. Yakabe, H. Shiigi, and T. Nagaoka, Enantioselective uptake of amino acids using an electromodulated column packed with carbon fibres modified with overoxidised polypyrrole, Analyst 127, 935-939 (2002).
67. Z. Chen, Y. Takei, B.A. Deore, and T. Nagaoka, Enantioselective uptake of amino acid with overoxidized polypyrrole colloid templated with L-lactate, Analyst 125, 2249-2254 (2000).
68. H. Shiigi, H. Yakabe, M. Kishimoto, D. Kijima, Y. Zhang, U. Sree, B.A. Deore, and T. Nagaoka, Molecularly imprinted overoxidized polypyrrole colloids: promising materials for molecular recognition, Microchim Acta 143, 155-162 (2003).
69. A.J. Bard, and L. R. Faulkner, Electrochemical Method: Fundamentals and Applications (John Wiley & Son, Inc., New York, 813, 2001).
70. A.J. Bard, and L. R. Faulkner, Electrochemical Method: Fundamentals and Applications (John Wiley & Son, Inc., New York, 161-164, 2001).
71. A.W. Bott, and W. R. Heineman, Chronocolometry, Curr. Sep. 20, 121-126 (2004).
72. S. Komaba, M. Seyama, T. Momma, and T. Osaka, Potentiometric biosensor for urea based on electropolymerized electroinactive polypyrrole, Electrochim. Acta 42, 383-388 (1996).
73. A.J. Bard, and L. R. Faulkner, Electrochemical Method: Fundamentals and Applications (John Wiley & Son, Inc., New York, 178-179, 2001).
74. B. Deore, Z. Chen, and T. Nagaoka, Potential-Induced enantioselective uptake of amino acid into molecularly imprinted overoxidized polypyrrole, Anal. Chem. 72, 3989-3994 (2000).
75. 張素芳, 袁勇, 劉月成, and 吳錫尊, 酪氨酸電氧化的循環伏安行為分析, 雁北師範學院學報 21, 41-43 (2005).
76. X. Zhang, B. Ogorevc, G. Tavčar, and I. G. Švegl, Over-oxidized polypyrrole-modified carbon fibre ultramicroelectrode with an integrated silver/silver chloride reference electrode for the selective voltammetric measurement of dopamine in extremely small sample volumes, Analyst 121, 1817-1822 (1996).
77. Z. Nagy, http://electrochem.cwru.edu/ed/dict.htm#d41, Accessed July ninth, 2007.
78. D. W. M. Arrigan, Permselective behaviour at overoxidised poly[1-(2-carboxyethyl)pyrrole] films: dopamine versus ascorbate, Anal. Commun. 34, 241-244 (1997).
79. S. Sadki, P. Chottland, N. Brodie, and G.Sabouraud, The mechanisms of pyrrole electropolymerization, Chem. Soc. Rev. 29, 283-293 (2000).
80. S. Zhang, Q. Xu, W. Zhang, L. Jin, and J. Y. Jin, In vivo monitoring of the monoamine neurotransmitters in rat brain using microdialysis sampling with liquid chromatography electrochemical detection, Anal. Chim. Acta 427, 45-53 (2001).
81. D.T. Sawyer, and J. J.L. Roberts, Experimental electrochemistry for chemists (John Wiley & Son, Inc., New York, 74-78, 1983).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2010-08-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2012-08-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw