
系統識別號 
U00260812200914002090 
論文名稱(中文) 
應用於微波及毫米波之超寬頻帶通濾波器之設計與製作 
論文名稱(英文) 
Design and fabrication of ultrawideband (UWB) bandpass filter for microwave and millimeterwave applications 
校院名稱 
成功大學 
系所名稱(中) 
微電子工程研究所碩博士班 
系所名稱(英) 
Institute of Microelectronics 
學年度 
95 
學期 
2 
出版年 
96 
研究生(中文) 
洪政源 
研究生(英文) 
ChengYuan Hung 
電子信箱 
q1893113@mail.ncku.edu.tw 
學號 
Q1893113 
學位類別 
博士 
語文別 
英文 
論文頁數 
137頁 
口試委員 
召集委員雷添福 口試委員朱俊勳 口試委員許渭州 指導教授蘇炎坤 口試委員葉文冠 口試委員莊賦祥 口試委員劉文超 指導教授翁敏航 口試委員張守進

中文關鍵字 
毫米波
微波
超寬頻
帶通濾波器

英文關鍵字 
ultrawideband (UWB)
bandpass filter
microwave
millimeterwave

學科別分類 

中文摘要 
本論文主要分成三大部分：(a) 超寬頻濾波器之設計；(b) 介電材料之微波量測；(c) 具整合型超寬頻濾波器的設計。
首先本研究設計及製作一些超寬頻濾波器於商用基板上方。一利用直接鐀入之微小化虛接地指插型超寬頻濾波器，其被製作在低成本的FR4基板上。一種鑲埋開路樁改善止帶之微小化髮夾型寬頻濾波器。一應用於直接序列超寬頻通訊之髮夾型雙工器。上述所設計之超寬頻濾波器都具有相當好的模擬及實驗結果。
此外，本研究發展一套新的量測技術，為有限接地共面波導法。該方法可精確量測不具二氧化矽緩衝層之矽基板之微波特性。該有限接地共面波導法經校正到20GHz後，可量測並萃取出介電常數及特性阻抗。接著，利用萃取出之介電常數及特性阻抗帶入保角映襯法中，其可精確萃取出正切損失。
最後，本研究製作一具有微小化且高效能之釐米波共平面波導超寬頻濾波器於高阻值基板上方。在此可利用等效電路模型事先得知該濾波器結構尺寸對頻率響應之變化。該濾波器具有相當好的量測特性，如中心頻率為27.4 GHz、低插入損失、快速截止、寬頻及低群速延遲。在此實驗製作之濾波器量測響應與模擬響應相當的匹配。因此，本實驗研製之被動元件可有效的被應用到晶元級釐米波超寬頻系統中。

英文摘要 
The thesis divides into three types: (a) design of the UWB filters; (b) microwave measurements of the dielectric materials and (c) design of the integrated UWB filter.
I first design and fabricate several UWB filters on PCB substrate. The compact pseudointerdigital ultrawideband filter (PIDTUWBF) using the tapped input/output (I/O) and strong coupling is designed and implemented on FR4 substrate. The compact threepoles hairpin line wideband bandpass filter (HLWBF) with several embedded open stubs to improve the stopband is designed and implemented on print circuit board (PCB) substrate. The high performance hairpin line diplexer for the direct sequence ultrawideband communication is designed and implemented. Experimental results also show a good agreement with the simulated results.
In addition, I have developed a novel finite ground coplanar waveguide (FGCPW) to precise measure the microwave properties of silicon substrates without a thin SiO2 buffer layer. The dielectric constant and the characteristic impedance were extracted from calibrated measurements made at up to 20 GHz using the FGCPW method. The loss tangent was then obtained by the conformal mapping approach after the dielectric constant and characteristic impedance had been accurately extracted.
Finally, I fabricated a compact and high performance integrated coplanar waveguide UWB filter on high resistivity silicon (HRS) substrate at millimeter wave. The equivalent circuit model is also developed to predict the filter performances corresponding with structural dimensions. This filter at center frequency f0 of 27.4 GHz has presented very good measured characteristics including the low insertion loss, sharp rejection, wide bandwidth and low group delay. Experimental results of the fabricated filter show a good agreement with the predicted results. Thus, the proposed passive component is useful at the wafer level for compact millimeterwave UWB systems.

論文目次 
摘要 I
Abstract II
Acknowledgement IV
Contents V
Table Captions VIII
Figure Captions IX
Chapter 1 General Introduction 1
1.1 Background 1
1.2 General review of wideband filters 2
1.3 Microwave dielectric measurement [2027] 3
1.4 Basic theory of microstrip lines [2831] 4
1.5 Basic theory of Coplanar Waveguide (CPW) line [2832] 5
1.6 Basic theory of microwave filters [2831] 6
1.7 Organization of the thesis 7
Reference 9
Chapter 2 A SteppedImpedance Resonators (SIRs) Parallel CoupledLine Microstrip Wideband Bandpass Filter 24
2.1 Introduction 24
2.2 Design Procedure 24
2.3 Experimental results and discussion 26
2.4 Summary 27
References 28
Chapter 3 Interdigital Wideband Bandpass Filters (WBFs) 33
3.1 Introduction 33
3.2 Interdigital Resonator Wideband Bandpass Filter (WBF) using uniformimpedance resonator (UIR) 34
3.3 Interdigital wideband bandpass filter (WBF) using steppedimpedance resonator (SIR) 36
3.4 Summary 39
References 40
Chapter 4 The Compact Parallel Coupled Wideband Bandpass Filters (WBFs) 51
4.1 Introduction 51
4.2 The parallel coupled wideband bandpass filter (WBF) with one attenuation pole 52
4.3 The parallel coupled wideband bandpass filter (WBF) with two attenuation poles 53
4.4 Summary 57
References 58
Chapter 5 Design of Wideband Bandpass Filters (WBFs) Design with Wide Stopband 65
5.1 Introduction 65
5.2 A hairpin line wideband bandpass filter (HLWBF) with embedding open stubs 66
5.3 A wideband bandpass filter (WBF) using SIRs to have a wide outofband 68
5.4 A UWB bandpass filter using asymmetrical locations of transmission zeros 71
5.5 Summary 73
References 75
Chapter 6 Design of Wideband Diplexers 90
6.1 Introduction 90
6.2 A wideband hairpin line diplexer 91
6.3 A wideband diplexer using coupled lines 93
6.4 Summary 97
References 99
Chapter 7 Design of Wideband Bandpass Filters (WBFs) on Silicon Substrate 112
7.1 Introduction 112
7.2 Onwafer dielectric measurement technology for high resistivity silicon substrate 112
7.3 A millimeterwave on chip semilumped ultrawideband bandpass (UWB) filter 116
7.4 Summary 118
References 120
Chapter 8 Conclusions and Future Works 131
8.1 Conclusions 131
8.2 Future works 132
List of Publications 133
Vita 137

參考文獻 
Chapter 1
[1] Federal Communications Commission, “Revision of part 15 of the commission’s rules regarding ultrawideband transmission systems,” Tech. Rep., ETDocket 98–153, FCC02–48, Apr. 2002.
[2] IEEE P802.15 Working Group for Wireless Personal Area Networks, “Detailed DSUWB simulation results,” IEEE 802.15 Working Group for WPAN, 2004.
[3] http://www.intel.com/technology/comms/uwb
[4] http://www.motorola.com/semiconductors
[5] http://www.freescale.com/webapp/sps/site/homepage.jsp?nodeId=0106B9
[6] D. C. Chang and C. W. Hsue, “Wideband equalripple filters in nonuniform transmission lines,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 4, pp. 11141119, Apr. 2002.
[7] W. Menzel, L. Zhu, K. Wu, and F. Bögelsack, “On the design of novel compact broadband planar filters,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 364370, Feb. 2003.
[8] J. T. Kuo and E. Shih, “Wideband bandpass filter design with threeline microstrip structures,” IEEE MTTS Int. Microwave Symp. Dig., vol. 3, pp. 15931596, May 2001.
[9] C. C. Chen, J. T. Kuo, M. Jiang and A. Chin, “Study of parallel coupledline microstrip filter in broadband,” Microw. Opt. Tech. Lett., vol. 48, no. 2, pp. 373375, Feb. 2006.
[10] K. S. Chin, L. Y. Lin, and J. T. Kuo, “New formulas for synthesizing microstrip bandpass filters with relatively wide bandwidths,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 5, pp. 231233, May 2004.
[11] G. G. Roberto, and I. A. Jose, “Design of sharprejection and lowloss wideband planar filters using signalinterference techniques,” IEEE Trans. Microw. Theory Tech., vol. 15, no.8, pp. 530532, Aug. 2005.
[12] Saito, H. Harada, and A. Nishikata, “Development of band pass filter for ultra wideband (UWB) communication,” in Proc. IEEE Conf. Ultra Wideband Systems Technology, pp. 76–80, Nov. 2003.
[13] H. Ishida and K. Araki, “Design and analysis of UWB bandpass filter with ring filter,” in IEEE MTTS Int. Dig., vol. 3, pp.1307–1310, Jun. 2004.
[14] C. L. Hsu, F. C. Hsu, and J. T. Kuo, “Microstrip bandpass filters for ultrawideband (UWB) wireless communications,” in IEEE MTTS Int. Dig., pp. 679–682, June 2005.
[15] K. Li, D. Kurita, and T. Matsui, “An ultrawideband bandpass filter using broadsidecoupled microstripcoplanar waveguide structure,” in IEEE MTTS Int. Dig., pp. 675–678, June 2005.
[16] L. Zhu, S. Sun, and W. Menzel, “Ultrawideband (UWB) bandpass filters using multiplemode resonator,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 11, pp. 796798, Nov. 2005.
[17] H. Wang, L. Zhu, and W. Menzel, “Ultrawideband bandpass filter with hybrid microstrip/CPW structure,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 12, pp. 844846, Dec. 2005.
[18] M. K. Mandal, and S. Sanyal, “Compact wideband bandpass filter,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 1, pp. 4648, Jan. 2006.
[19] S. Sun and L. Zhu, “Capacitiveended interdigital coupled lines for UWB bandpass filters with improved outofband performances,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 8, pp. 440442, Aug. 2006.
[20] Y. Kobayashi and M. Katoh, “Microwave Measurement of Dielectric Properties of LowLoss Materials by the Dielectric Rod Resonator Method,” IEEE Trans. Microw. Theory and Tech, vol. 33, no. 7, pp. 586592, Jul. 1985.
[21] R. L. Peterson and R. F. Drayton, ”A CPW Tresonator technique for electrical characterization of microwave substrates,” IEEE Microwave and Guided Wave Lett., vol. 12, no. 3, pp. 9092, Mar. 2002.
[22] S. A. Ivanov and V. N. Peshlov, ”Ringresonator method  effective procedure for investigation of microstrip line,” IEEE Microw. and Guided Wave Lett., vol. 13, no. 6, pp. 244246, Jun. 2003.
[23] L. H. Hsieh, and K. Chang, “Equivalent lumped elements G, L, C, and unloaded Q's of closed and openloop ring resonators,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 2, pp. 453460, Feb. 2002.
[24] F. Xiangyi, L. David, W. Chris, C. Brian, “Dielectric constant characterization using a numerical method for the microstrip ring resonator,” Microw. and Optical Tech. Lett., vol. 41, no. 1, pp. 1417, Apr. 2004.
[25] M. D. Janezic and J. A. Jargon, “Complex permittivity determination from propagation constant measurements,” IEEE Microw. and Wireless Components Lett., vol. 9, no. 2, pp. 7678, Feb. 1999.
[26] W. R. Eisenstadt and Y. Eo, ”Sparameterbased IC interconnect transmission line characterization,” IEEE Trans. on Comp., Hybrids, Manufact. Technol., vol. 15, no. 4, pp. 483490, Aug. 1992.
[27] Y. Eo, and W. R. Eisenstadt, ”Highspeed VLSI interconnect modeling based on Sparameter measurements,” IEEE Trans. on Comp., Hybrids, Manufact. Technol., vol. 16, no. 5, pp. 555562, Aug. 1993.
[28] D. M. Pozar, Microwave Engineering, Second Edition. John Wiley & Sons, Inc., 1998.
[29] G. L. Matthaei, L. Young, E. M. T. Jone, Microwave Filters, ImpedanceMaching Networks and Coupling Strustures, New York, McGraw Hill, 1964.
[30] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, Inc., 2001.
[31] T. C. Edwards and M. J. Lancaster, Foundations of Interconnect and Microstrip Design. Reading, John Wiley and Sons, 2000.
[32] C. Veyres and V. F. Hanna, “Extension of the Application of Conformal Mapping Techniques to Coplanar Lines with Finite Dimensions”, Int. J. Electron., vol. 48, no. 1, pp. 4756, Jan. 1980.
Chapter 2
[1] W. Menzel, L. Zhu, K. Wu, and F. Bögelsack, “On the design of novel compact broadband planar filters,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 364370, Feb. 2003.
[2] C. C. Chen, J. T. Kuo, M. Jiang and A. Chin, “Study of parallel coupledline microstrip filter in broadband,” Microw. Opt. Tech. Lett., vol. 48, no. 2, pp. 373375, Feb. 2006.
[3] G. G. Roberto, and I. A. Jose, “Design of sharprejection and lowloss wideband planar filters using signalinterference techniques,” IEEE Trans. Microw. Theory Tech., vol. 15, no.8, pp. 530532, Aug. 2005.
[4] M. Makimoto and S.Yamashita, “Bandpass filters using parallel coupled stripline stepped impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 28, no. 12, pp. 1413–1417, Dec. 1980.
[5] Zeland Software, Inc., IE3D Simulator, 1997.
[6] C .F Chen, T. Y. Huang, and R. B. Wu, “Design of microstrip bandpass filters with multiorder spuriousmode suppression,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 12, pp. 37883793, Dec. 2005.
Chapter 3
[1] W. Menzel, L. Zhu, K. Wu, and F. Bögelsack, “On the design of novel compact broadband planar filters,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 364370, Feb. 2003.
[2] C. C. Chen, J. T. Kuo, M. Jiang and A. Chin, “Study of parallel coupledline microstrip filter in broadband,” Microw. Opt. Tech. Lett., vol. 48, no. 2, pp. 373375, Feb. 2006.
[3] G. G. Roberto, and I. A. Jose, “Design of sharprejection and lowloss wideband planar filters using signalinterference techniques,” IEEE Trans. Microw. Theory Tech., vol. 15, no.8, pp. 530532, Aug. 2005.
[4] G. L. Matthaei, “Interdigital bandpass filters,” IEEE Trans. Microwave Theory Tech., vol. 10, no. 6, pp. 479491, Nov. 1962.
[5] D. G. Swanson, R. J, “Grounding microstrip lines with via holes,” IEEE Trans. Microwave Theory Tech. vol. 40, no. 8, pp. 17191721, Aug. 1992.
[6] J. S. Hong and M. J. Lancaster, “Development of new microstrip pseudointerdigital bandpass filters,” IEEE Microwave and Guided Wave Letters, vol. 5, no. 8, pp. 261263, Aug. 1995.
[7] M. H. Weng, W. N. Chen, T. H. Huang, C. Y. Hung, H. W. Wu, “Stepped impedance resonator bandpass filters using tappedline for controlling spurious response,” Microw. Opt. Tech. Lett., vol. 40, no. 6, pp. 481484, Mar. 2004.
[8] Federal Communications Commission, “Revision of part 15 of the commission’s rules regarding ultrawideband transmission systems,” Tech. Rep., ETDocket 98–153, FCC02–48, Apr. 2002.
[9] IEEE P802.15 Working Group for Wireless Personal Area Networks, “Detailed DSUWB simulation results,” IEEE 802.15 Working Group for WPAN, Nov. 2004.
[10] Zeland Software, Inc., IE3D Simulator, 1997.
[11] RuYung Yuan, MinHung Weng, ChengYuan Hung, HanJan Chen, and MauPhon Houng, “Novel Microstrip Interdigital Bandstop Filters,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 50, pp. 10221025, Aug. 2004.
[12] C. M. Tsai, S. Y. Lee and C. C. Tai, “Hairpin filters with tunable transmission zero,” IEEE MTTS Int. Dig., vol. 3, pp. 21752178, May 2001.
[13] M. Makimoto and S.Yamashita, “Bandpass filters using parallel coupled stripline stepped impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 28, no. 12, pp. 1413–1417, Dec. 1980.
[14] C .F Chen, T. Y. Huang, and R. B. Wu, “Design of microstrip bandpass filters with multiorder spuriousmode suppression,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 12, pp. 37883793, Dec. 2005.
Chapter 4
[1] D. C. Chang and C. W. Hsue, “Wideband equalripple filters in nonuniform transmission lines,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 4, pp. 11141119, Apr. 2002.
[2] C. C. Chen, J. T. Kuo, M. Jiang and A. Chin, “Study of parallel coupledline microstrip filter in broadband,” Microw. Opt. Tech. Lett., vol. 48, no. 2, pp. 373375, Feb. 2006.
[3] H. Wang, L. Zhu, and W. Menzel, “Ultrawideband bandpass filter with hybrid microstrip/CPW structure,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 12, pp. 844846, Dec. 2005.
[4] M. K. Mandal, and S. Sanyal, “Compact wideband bandpass filter,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 1, pp. 4648, Jan. 2006.
[5] K. S. Chin, L. Y. Lin, and J. T. Kuo, “New formulas for synthesizing microstrip bandpass filters with relatively wide bandwidths,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 5, pp. 231233, May 2004.
[6] H. W. Wu, M. H. Weng, Y. K. Su, C. Y. Hung, and R. Y. Yang, “Improved stopband of the dualmode ring bandpass filter using periodic complementary spiltring resonators,” IEICE Trans. Electronics Letters, vol. E89C, no. 8, pp.12551258, Aug. 2006.
[7] D. M. Pozar, Microwave Engineering, 2nd ed. NewYork:Wiley, 1998.
[8] M. Kirschning and R. H. Jansen, “Accurate widerange design equations for the frequencydependent characteristic of parallel coupled microstrip lines,” IEEE Trans. Microw. Theory Tech., vol. 32, no. 1, pp. 8390, Jan. 1984.
[9] Zeland Software, Inc., IE3D Simulator, 1997.
[10] M. Makimoto and S.Yamashita, “Bandpass filters using parallel coupled stripline stepped impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 28, no. 12, pp. 1413–1417, Dec. 1980.
Chapter 5
[1] G. G. Roberto, and I. A. Jose, “Design of sharprejection and lowloss wideband planar filters using signalinterference techniques,” IEEE Trans. Microw. Theory Tech., vol. 15, no.8, pp. 530532, Aug. 2005.
[2] W. Menzel, L. Zhu, K. Wu, and F. Bögelsack, “On the design of novel compact broadband planar filters,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 364370, Feb. 2003.
[3] C. C. Chen, J. T. Kuo, M. Jiang and A. Chin, “Study of parallel coupledline microstrip filter in broadband,” Microw. Opt. Tech. Lett., vol. 48, no. 2, pp. 373375, Feb. 2006.
[4] G. L. Matthaei, “Interdigital bandpass filters,” IEEE Trans. Microwave Theory Tech., vol. 10, no. 6, pp. 479491, Nov. 1962.
[5] H. W. Wu, M. H. Weng, Y. K. Su, R. Y. Yang, and C. Y. Hung, “Spurious suppression of a parallel coupled microstrip bandpass filter with simple ring EBG cells on the middle layer,” IEICE Electron Lett , vol. E89C, no. 4, pp. 568570, Apr. 2006.
[6] L. Zhu, S. Sun, and W. Menzel, “Ultrawideband (UWB) bandpass filters using multiplemode resonator,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 11, pp. 796798, Nov. 2005.
[7] S. Sun and L. Zhu, “Capacitiveended interdigital coupled lines for UWB bandpass filters with improved outofband performances,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 8, pp. 440442, Aug. 2006.
[8] H. Wang, L. Zhu, and W. Menzel, “Ultrawideband bandpass filter with hybrid microstrip/CPW structure,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 12, pp. 844846, Dec. 2005.
[9] J. S. Hong and M. J. Lancaster, “Development of new microstrip pseudointerdigital bandpass filters,” IEEE Microwave and Guided Wave Letters, vol. 5, no. 8, pp. 261263, Aug. 1995.
[10] J. R. Lee, J. H. Cho, and S. W. Yun, “New compact bandpass filter using microstrip λ/4 resonators with open stub inverter,” IEEE Microwave and Guided Wave Letters, vol. 10, no. 12, pp. 526527, Dec 2000.
[11] Zeland Software, Inc., IE3D Simulator, 1997.
[12] M. Makimoto and S.Yamashita, “Bandpass filters using parallel coupled stripline stepped impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 28, no. 12, pp. 1413–1417, Dec. 1980.
[13] C .F Chen, T. Y. Huang, and R. B. Wu, “Design of microstrip bandpass filters with multiorder spuriousmode suppression,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 12, pp. 37883793, Dec. 2005.
[14] C. Y. Hung, M. H. Weng, Y. K. Su, R. Y. Yang, and H. W. Wu, “Design of sharprejection, compact and lowcost ultrawideband bandpass filters using interdigital resonators,” Microw. Opt. Tech. Lett., vol. 48, no. 10, pp. 20932096, Oct. 2006.
[15] M. Y. Hsieh and S. M. Wang, “Compact and wideband microstrip bandstop filter,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 7, pp. 472474, Jul. 2005.
[16] K. M. Shum, W. T. Luk, C. H. Chan, and Q. Xue, “A UWB bandpass filter with two transmission zeros using a single stub with CMRC,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 1, pp. 4345, Jan 2007.
[17] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Application, John Wiley and Sons, 2001.
Chapter 6
[1] H. Wang, L. Zhu, and W. Menzel, “Ultrawideband bandpass filter with hybrid microstrip/CPW structure,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 12, pp. 844846, Dec. 2005.
[2] L. Zhu, S. Sun, and W. Menzel, “Ultrawideband (UWB) bandpass filters using multiplemode resonator,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 11, pp. 796798, Nov. 2005.
[3] IEEE P802.15 Working Group for Wireless Personal Area Networks, “Detailed DSUWB simulation results,” IEEE 802.15 Working Group for WPAN, Nov. 2004.
[4] H. W. Yao, A. E. Abdelmonem, J. F. Liang, X. P. Liang, K. A. Zaki, A. Martin, "Wideband waveguide and ridge waveguide Tjunctions for diplexer applications,” IEEE Trans. Microw. Theory Tech., vol. 41, no. 12, pp. 2166–2173, Dec. 1993.
[5] B. Strassner and K. Chang, "Wideband lowloss highisolation microstrip periodicstub diplexer for multiplefrequency applications,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 10, pp. 1818–1820, Oct. 2001.
[6] S. Srisathit, S. Patisang, R. Phromloungsri, S. Bunnjaweht, S. Kosulvit, M. Chongcheawchamnan, "High isolation and compact size microstrip hairpin line diplexer," IEEE Microw. Wireless Compon. Lett., vol. 15, no. 2, pp. 101103, Feb. 2005.
[7] Zeland Software, Inc., IE3D Simulator, 1997.
[8] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Application, John Wiley and Sons, 2001.
[9] H. W. Yao, A. E. Abdelmonem, J. F. Liang, X. P. Liang, K. A. Zaki, A. Martin, "Wideband waveguide and ridge waveguide Tjunctions for diplexer applications,” IEEE Trans. Microw. Theory Tech., vol. 41, no. 12, pp. 2166–2173, Dec. 1993.
[10] D. M. Pozar, Microwave Engineering, 2nd ed. NewYork:Wiley, 1998.
[11] K. S. Chin, L. Y. Lin, and J. T. Kuo, “New formulas for synthesizing microstrip bandpass filters with relatively wide bandwidths,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 5, pp. 231233, May 2004.
[12] M. H. Weng, C. S. Pan, C. W. Shao, and H. W. Wu, “Steppedimpedance resonator bandpass diplexers with overcoupling structures,” Microw. Opt. Tech. Lett., vol. 42, no. 1, pp. 7982, Jul. 2004.
[13] J. R. Lee, J. H. Cho, and S. W. Yun, “New compact bandpass filter using microstrip λ/4 resonators with open stub inverter,” IEEE Microwave and Guided Wave Letters, vol. 10, no. 12, pp. 526527, Dec 2000.
Chapter 7
[1] L. E. Larson, “Integrated circuit technology options for RFICs—Present status and future directions,” IEEE J. SolidState Circuits, vol. 33, no. 3, pp. 387–399, Mar. 1998.
[2] International Technology Roadmap for Semiconductors (ITRS), RF & A/MS Technologies for Wireless Chapter, pp. 10, 2004.
[3] A. Chin, K. T. Chan, C. H Huang, et al, “RF passive devices on Si with excellent performance close to ideal devices designed by electromagnetic simulation,” in IEDM Tech. Dig., pp. 15.5.1  15.5.4, Dec. 2003.
[4] C. Schollhorn, W. Zhao; M. Morschbach, E. Kasper, “Attenuation mechanisms of aluminum millimeterwave coplanar waveguides on silicon,” IEEE Trans. Electron Devices, vol. 50, no. 3, pp. 740  746, Mar. 2003.
[5] R. E. Collin, Foundations for microwave engineering, McGrawHill, Inc., 1992.
[6] R. N. Simons, Coplanar waveguide circuits, components, and systems, New York: John Wiley & Sons, 2001.
[7] W. H. Haydl, “Conductive substrate losses in conplanar and microstrip transmission line,” in Microwave Conference and Exhibition, 27th European, pp. 532537, 1997.
[8] A. R. Brown and G. M. Rebeiz, “A highperformance integrated Kband diplexer,” IEEE Trans. Microwave and Tech., vol. 47, pp.14771481, Aug. 1999.
[9] Federal Communications Commission, “Revision of part 15 of the commission’s rules regarding ultrawideband transmission systems,” Tech. Rep., ETDocket 98–153, FCC02–48, Apr. 2002.

論文全文使用權限 
同意授權校內瀏覽/列印電子全文服務，於20100829起公開。同意授權校外瀏覽/列印電子全文服務，於20100829起公開。 


