進階搜尋


 
系統識別號 U0026-0812200914002090
論文名稱(中文) 應用於微波及毫米波之超寬頻帶通濾波器之設計與製作
論文名稱(英文) Design and fabrication of ultra-wideband (UWB) bandpass filter for microwave and millimeter-wave applications
校院名稱 成功大學
系所名稱(中) 微電子工程研究所碩博士班
系所名稱(英) Institute of Microelectronics
學年度 95
學期 2
出版年 96
研究生(中文) 洪政源
研究生(英文) Cheng-Yuan Hung
電子信箱 q1893113@mail.ncku.edu.tw
學號 Q1893113
學位類別 博士
語文別 英文
論文頁數 137頁
口試委員 召集委員-雷添福
口試委員-朱俊勳
口試委員-許渭州
指導教授-蘇炎坤
口試委員-葉文冠
口試委員-莊賦祥
口試委員-劉文超
指導教授-翁敏航
口試委員-張守進
中文關鍵字 毫米波  微波  超寬頻  帶通濾波器 
英文關鍵字 ultra-wideband (UWB)  bandpass filter  microwave  millimeter-wave 
學科別分類
中文摘要 本論文主要分成三大部分:(a) 超寬頻濾波器之設計;(b) 介電材料之微波量測;(c) 具整合型超寬頻濾波器的設計。
首先本研究設計及製作一些超寬頻濾波器於商用基板上方。一利用直接鐀入之微小化虛接地指插型超寬頻濾波器,其被製作在低成本的FR4基板上。一種鑲埋開路樁改善止帶之微小化髮夾型寬頻濾波器。一應用於直接序列超寬頻通訊之髮夾型雙工器。上述所設計之超寬頻濾波器都具有相當好的模擬及實驗結果。
此外,本研究發展一套新的量測技術,為有限接地共面波導法。該方法可精確量測不具二氧化矽緩衝層之矽基板之微波特性。該有限接地共面波導法經校正到20GHz後,可量測並萃取出介電常數及特性阻抗。接著,利用萃取出之介電常數及特性阻抗帶入保角映襯法中,其可精確萃取出正切損失。
最後,本研究製作一具有微小化且高效能之釐米波共平面波導超寬頻濾波器於高阻值基板上方。在此可利用等效電路模型事先得知該濾波器結構尺寸對頻率響應之變化。該濾波器具有相當好的量測特性,如中心頻率為27.4 GHz、低插入損失、快速截止、寬頻及低群速延遲。在此實驗製作之濾波器量測響應與模擬響應相當的匹配。因此,本實驗研製之被動元件可有效的被應用到晶元級釐米波超寬頻系統中。
英文摘要 The thesis divides into three types: (a) design of the UWB filters; (b) microwave measurements of the dielectric materials and (c) design of the integrated UWB filter.
I first design and fabricate several UWB filters on PCB substrate. The compact pseudo-interdigital ultra-wideband filter (PIDT-UWBF) using the tapped input/output (I/O) and strong coupling is designed and implemented on FR4 substrate. The compact three-poles hairpin line wideband bandpass filter (HL-WBF) with several embedded open stubs to improve the stopband is designed and implemented on print circuit board (PCB) substrate. The high performance hairpin line diplexer for the direct sequence ultra-wideband communication is designed and implemented. Experimental results also show a good agreement with the simulated results.
In addition, I have developed a novel finite ground coplanar waveguide (FG-CPW) to precise measure the microwave properties of silicon substrates without a thin SiO2 buffer layer. The dielectric constant and the characteristic impedance were extracted from calibrated measurements made at up to 20 GHz using the FG-CPW method. The loss tangent was then obtained by the conformal mapping approach after the dielectric constant and characteristic impedance had been accurately extracted.
Finally, I fabricated a compact and high performance integrated coplanar waveguide UWB filter on high resistivity silicon (HRS) substrate at millimeter wave. The equivalent circuit model is also developed to predict the filter performances corresponding with structural dimensions. This filter at center frequency f0 of 27.4 GHz has presented very good measured characteristics including the low insertion loss, sharp rejection, wide bandwidth and low group delay. Experimental results of the fabricated filter show a good agreement with the predicted results. Thus, the proposed passive component is useful at the wafer level for compact millimeter-wave UWB systems.
論文目次 摘要 I
Abstract II
Acknowledgement IV
Contents V
Table Captions VIII
Figure Captions IX
Chapter 1 General Introduction 1
1.1 Background 1
1.2 General review of wideband filters 2
1.3 Microwave dielectric measurement [20-27] 3
1.4 Basic theory of microstrip lines [28-31] 4
1.5 Basic theory of Coplanar Waveguide (CPW) line [28-32] 5
1.6 Basic theory of microwave filters [28-31] 6
1.7 Organization of the thesis 7
Reference 9
Chapter 2 A Stepped-Impedance Resonators (SIRs) Parallel Coupled-Line Microstrip Wideband Bandpass Filter 24
2.1 Introduction 24
2.2 Design Procedure 24
2.3 Experimental results and discussion 26
2.4 Summary 27
References 28
Chapter 3 Interdigital Wideband Bandpass Filters (WBFs) 33
3.1 Introduction 33
3.2 Interdigital Resonator Wideband Bandpass Filter (WBF) using uniform-impedance resonator (UIR) 34
3.3 Interdigital wideband bandpass filter (WBF) using stepped-impedance resonator (SIR) 36
3.4 Summary 39
References 40
Chapter 4 The Compact Parallel Coupled Wideband Bandpass Filters (WBFs) 51
4.1 Introduction 51
4.2 The parallel coupled wideband bandpass filter (WBF) with one attenuation pole 52
4.3 The parallel coupled wideband bandpass filter (WBF) with two attenuation poles 53
4.4 Summary 57
References 58
Chapter 5 Design of Wideband Bandpass Filters (WBFs) Design with Wide Stopband 65
5.1 Introduction 65
5.2 A hairpin line wideband bandpass filter (HL-WBF) with embedding open stubs 66
5.3 A wideband bandpass filter (WBF) using SIRs to have a wide out-of-band 68
5.4 A UWB bandpass filter using asymmetrical locations of transmission zeros 71
5.5 Summary 73
References 75
Chapter 6 Design of Wideband Diplexers 90
6.1 Introduction 90
6.2 A wideband hairpin line diplexer 91
6.3 A wideband diplexer using coupled lines 93
6.4 Summary 97
References 99
Chapter 7 Design of Wideband Bandpass Filters (WBFs) on Silicon Substrate 112
7.1 Introduction 112
7.2 On-wafer dielectric measurement technology for high resistivity silicon substrate 112
7.3 A millimeter-wave on chip semi-lumped ultra-wideband bandpass (UWB) filter 116
7.4 Summary 118
References 120
Chapter 8 Conclusions and Future Works 131
8.1 Conclusions 131
8.2 Future works 132
List of Publications 133
Vita 137
參考文獻 Chapter 1
[1] Federal Communications Commission, “Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems,” Tech. Rep., ET-Docket 98–153, FCC02–48, Apr. 2002.
[2] IEEE P802.15 Working Group for Wireless Personal Area Networks, “Detailed DS-UWB simulation results,” IEEE 802.15 Working Group for WPAN, 2004.
[3] http://www.intel.com/technology/comms/uwb
[4] http://www.motorola.com/semiconductors
[5] http://www.freescale.com/webapp/sps/site/homepage.jsp?nodeId=0106B9
[6] D. C. Chang and C. W. Hsue, “Wide-band equal-ripple filters in nonuniform transmission lines,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 4, pp. 1114-1119, Apr. 2002.
[7] W. Menzel, L. Zhu, K. Wu, and F. Bögelsack, “On the design of novel compact broad-band planar filters,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 364-370, Feb. 2003.
[8] J. T. Kuo and E. Shih, “Wideband bandpass filter design with three-line microstrip structures,” IEEE MTT-S Int. Microwave Symp. Dig., vol. 3, pp. 1593-1596, May 2001.
[9] C. C. Chen, J. T. Kuo, M. Jiang and A. Chin, “Study of parallel coupled-line microstrip filter in broadband,” Microw. Opt. Tech. Lett., vol. 48, no. 2, pp. 373-375, Feb. 2006.
[10] K. S. Chin, L. Y. Lin, and J. T. Kuo, “New formulas for synthesizing microstrip bandpass filters with relatively wide bandwidths,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 5, pp. 231-233, May 2004.
[11] G. G. Roberto, and I. A. Jose, “Design of sharp-rejection and low-loss wide-band planar filters using signal-interference techniques,” IEEE Trans. Microw. Theory Tech., vol. 15, no.8, pp. 530-532, Aug. 2005.
[12] Saito, H. Harada, and A. Nishikata, “Development of band pass filter for ultra wideband (UWB) communication,” in Proc. IEEE Conf. Ultra Wideband Systems Technology, pp. 76–80, Nov. 2003.
[13] H. Ishida and K. Araki, “Design and analysis of UWB bandpass filter with ring filter,” in IEEE MTT-S Int. Dig., vol. 3, pp.1307–1310, Jun. 2004.
[14] C. L. Hsu, F. C. Hsu, and J. T. Kuo, “Microstrip bandpass filters for ultra-wideband (UWB) wireless communications,” in IEEE MTT-S Int. Dig., pp. 679–682, June 2005.
[15] K. Li, D. Kurita, and T. Matsui, “An ultra-wideband bandpass filter using broadside-coupled microstrip-coplanar waveguide structure,” in IEEE MTT-S Int. Dig., pp. 675–678, June 2005.
[16] L. Zhu, S. Sun, and W. Menzel, “Ultra-wideband (UWB) bandpass filters using multiple-mode resonator,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 11, pp. 796-798, Nov. 2005.
[17] H. Wang, L. Zhu, and W. Menzel, “Ultra-wideband bandpass filter with hybrid microstrip/CPW structure,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 12, pp. 844-846, Dec. 2005.
[18] M. K. Mandal, and S. Sanyal, “Compact wideband bandpass filter,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 1, pp. 46-48, Jan. 2006.
[19] S. Sun and L. Zhu, “Capacitive-ended interdigital coupled lines for UWB bandpass filters with improved out-of-band performances,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 8, pp. 440-442, Aug. 2006.
[20] Y. Kobayashi and M. Katoh, “Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method,” IEEE Trans. Microw. Theory and Tech, vol. 33, no. 7, pp. 586-592, Jul. 1985.
[21] R. L. Peterson and R. F. Drayton, ”A CPW T-resonator technique for electrical characterization of microwave substrates,” IEEE Microwave and Guided Wave Lett., vol. 12, no. 3, pp. 90-92, Mar. 2002.
[22] S. A. Ivanov and V. N. Peshlov, ”Ring-resonator method - effective procedure for investigation of microstrip line,” IEEE Microw. and Guided Wave Lett., vol. 13, no. 6, pp. 244-246, Jun. 2003.
[23] L. H. Hsieh, and K. Chang, “Equivalent lumped elements G, L, C, and unloaded Q's of closed- and open-loop ring resonators,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 2, pp. 453-460, Feb. 2002.
[24] F. Xiangyi, L. David, W. Chris, C. Brian, “Dielectric constant characterization using a numerical method for the microstrip ring resonator,” Microw. and Optical Tech. Lett., vol. 41, no. 1, pp. 14-17, Apr. 2004.
[25] M. D. Janezic and J. A. Jargon, “Complex permittivity determination from propagation constant measurements,” IEEE Microw. and Wireless Components Lett., vol. 9, no. 2, pp. 76-78, Feb. 1999.
[26] W. R. Eisenstadt and Y. Eo, ”S-parameter-based IC interconnect transmission line characterization,” IEEE Trans. on Comp., Hybrids, Manufact. Technol., vol. 15, no. 4, pp. 483-490, Aug. 1992.
[27] Y. Eo, and W. R. Eisenstadt, ”High-speed VLSI interconnect modeling based on S-parameter measurements,” IEEE Trans. on Comp., Hybrids, Manufact. Technol., vol. 16, no. 5, pp. 555-562, Aug. 1993.
[28] D. M. Pozar, Microwave Engineering, Second Edition. John Wiley & Sons, Inc., 1998.
[29] G. L. Matthaei, L. Young, E. M. T. Jone, Microwave Filters, Impedance-Maching Networks and Coupling Strustures, New York, McGraw Hill, 1964.
[30] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, Inc., 2001.
[31] T. C. Edwards and M. J. Lancaster, Foundations of Interconnect and Microstrip Design. Reading, John Wiley and Sons, 2000.
[32] C. Veyres and V. F. Hanna, “Extension of the Application of Conformal Mapping Techniques to Coplanar Lines with Finite Dimensions”, Int. J. Electron., vol. 48, no. 1, pp. 47-56, Jan. 1980.

Chapter 2
[1] W. Menzel, L. Zhu, K. Wu, and F. Bögelsack, “On the design of novel compact broad-band planar filters,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 364-370, Feb. 2003.
[2] C. C. Chen, J. T. Kuo, M. Jiang and A. Chin, “Study of parallel coupled-line microstrip filter in broadband,” Microw. Opt. Tech. Lett., vol. 48, no. 2, pp. 373-375, Feb. 2006.
[3] G. G. Roberto, and I. A. Jose, “Design of sharp-rejection and low-loss wide-band planar filters using signal-interference techniques,” IEEE Trans. Microw. Theory Tech., vol. 15, no.8, pp. 530-532, Aug. 2005.
[4] M. Makimoto and S.Yamashita, “Bandpass filters using parallel coupled stripline stepped impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 28, no. 12, pp. 1413–1417, Dec. 1980.
[5] Zeland Software, Inc., IE3D Simulator, 1997.
[6] C .F Chen, T. Y. Huang, and R. B. Wu, “Design of microstrip bandpass filters with multiorder spurious-mode suppression,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 12, pp. 3788-3793, Dec. 2005.

Chapter 3
[1] W. Menzel, L. Zhu, K. Wu, and F. Bögelsack, “On the design of novel compact broad-band planar filters,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 364-370, Feb. 2003.
[2] C. C. Chen, J. T. Kuo, M. Jiang and A. Chin, “Study of parallel coupled-line microstrip filter in broadband,” Microw. Opt. Tech. Lett., vol. 48, no. 2, pp. 373-375, Feb. 2006.
[3] G. G. Roberto, and I. A. Jose, “Design of sharp-rejection and low-loss wide-band planar filters using signal-interference techniques,” IEEE Trans. Microw. Theory Tech., vol. 15, no.8, pp. 530-532, Aug. 2005.
[4] G. L. Matthaei, “Interdigital band-pass filters,” IEEE Trans. Microwave Theory Tech., vol. 10, no. 6, pp. 479-491, Nov. 1962.
[5] D. G. Swanson, R. J, “Grounding microstrip lines with via holes,” IEEE Trans. Microwave Theory Tech. vol. 40, no. 8, pp. 1719-1721, Aug. 1992.
[6] J. S. Hong and M. J. Lancaster, “Development of new microstrip pseudo-interdigital bandpass filters,” IEEE Microwave and Guided Wave Letters, vol. 5, no. 8, pp. 261-263, Aug. 1995.
[7] M. H. Weng, W. N. Chen, T. H. Huang, C. Y. Hung, H. W. Wu, “Stepped impedance resonator bandpass filters using tapped-line for controlling spurious response,” Microw. Opt. Tech. Lett., vol. 40, no. 6, pp. 481-484, Mar. 2004.
[8] Federal Communications Commission, “Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems,” Tech. Rep., ET-Docket 98–153, FCC02–48, Apr. 2002.
[9] IEEE P802.15 Working Group for Wireless Personal Area Networks, “Detailed DS-UWB simulation results,” IEEE 802.15 Working Group for WPAN, Nov. 2004.
[10] Zeland Software, Inc., IE3D Simulator, 1997.
[11] Ru-Yung Yuan, Min-Hung Weng, Cheng-Yuan Hung, Han-Jan Chen, and Mau-Phon Houng, “Novel Microstrip Interdigital Bandstop Filters,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 50, pp. 1022-1025, Aug. 2004.
[12] C. M. Tsai, S. Y. Lee and C. C. Tai, “Hairpin filters with tunable transmission zero,” IEEE MTT-S Int. Dig., vol. 3, pp. 2175-2178, May 2001.
[13] M. Makimoto and S.Yamashita, “Bandpass filters using parallel coupled stripline stepped impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 28, no. 12, pp. 1413–1417, Dec. 1980.
[14] C .F Chen, T. Y. Huang, and R. B. Wu, “Design of microstrip bandpass filters with multiorder spurious-mode suppression,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 12, pp. 3788-3793, Dec. 2005.

Chapter 4
[1] D. C. Chang and C. W. Hsue, “Wide-band equal-ripple filters in nonuniform transmission lines,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 4, pp. 1114-1119, Apr. 2002.
[2] C. C. Chen, J. T. Kuo, M. Jiang and A. Chin, “Study of parallel coupled-line microstrip filter in broadband,” Microw. Opt. Tech. Lett., vol. 48, no. 2, pp. 373-375, Feb. 2006.
[3] H. Wang, L. Zhu, and W. Menzel, “Ultra-wideband bandpass filter with hybrid microstrip/CPW structure,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 12, pp. 844-846, Dec. 2005.
[4] M. K. Mandal, and S. Sanyal, “Compact wideband bandpass filter,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 1, pp. 46-48, Jan. 2006.
[5] K. S. Chin, L. Y. Lin, and J. T. Kuo, “New formulas for synthesizing microstrip bandpass filters with relatively wide bandwidths,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 5, pp. 231-233, May 2004.
[6] H. W. Wu, M. H. Weng, Y. K. Su, C. Y. Hung, and R. Y. Yang, “Improved stopband of the dual-mode ring bandpass filter using periodic complementary spilt-ring resonators,” IEICE Trans. Electronics Letters, vol. E89-C, no. 8, pp.1255-1258, Aug. 2006.
[7] D. M. Pozar, Microwave Engineering, 2nd ed. NewYork:Wiley, 1998.
[8] M. Kirschning and R. H. Jansen, “Accurate wide-range design equations for the frequency-dependent characteristic of parallel coupled microstrip lines,” IEEE Trans. Microw. Theory Tech., vol. 32, no. 1, pp. 83-90, Jan. 1984.
[9] Zeland Software, Inc., IE3D Simulator, 1997.
[10] M. Makimoto and S.Yamashita, “Bandpass filters using parallel coupled stripline stepped impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 28, no. 12, pp. 1413–1417, Dec. 1980.

Chapter 5
[1] G. G. Roberto, and I. A. Jose, “Design of sharp-rejection and low-loss wide-band planar filters using signal-interference techniques,” IEEE Trans. Microw. Theory Tech., vol. 15, no.8, pp. 530-532, Aug. 2005.
[2] W. Menzel, L. Zhu, K. Wu, and F. Bögelsack, “On the design of novel compact broad-band planar filters,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 364-370, Feb. 2003.
[3] C. C. Chen, J. T. Kuo, M. Jiang and A. Chin, “Study of parallel coupled-line microstrip filter in broadband,” Microw. Opt. Tech. Lett., vol. 48, no. 2, pp. 373-375, Feb. 2006.
[4] G. L. Matthaei, “Interdigital band-pass filters,” IEEE Trans. Microwave Theory Tech., vol. 10, no. 6, pp. 479-491, Nov. 1962.
[5] H. W. Wu, M. H. Weng, Y. K. Su, R. Y. Yang, and C. Y. Hung, “Spurious suppression of a parallel coupled microstrip bandpass filter with simple ring EBG cells on the middle layer,” IEICE Electron Lett , vol. E89-C, no. 4, pp. 568-570, Apr. 2006.
[6] L. Zhu, S. Sun, and W. Menzel, “Ultra-wideband (UWB) bandpass filters using multiple-mode resonator,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 11, pp. 796-798, Nov. 2005.
[7] S. Sun and L. Zhu, “Capacitive-ended interdigital coupled lines for UWB bandpass filters with improved out-of-band performances,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 8, pp. 440-442, Aug. 2006.
[8] H. Wang, L. Zhu, and W. Menzel, “Ultra-wideband bandpass filter with hybrid microstrip/CPW structure,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 12, pp. 844-846, Dec. 2005.
[9] J. S. Hong and M. J. Lancaster, “Development of new microstrip pseudo-interdigital bandpass filters,” IEEE Microwave and Guided Wave Letters, vol. 5, no. 8, pp. 261-263, Aug. 1995.
[10] J. R. Lee, J. H. Cho, and S. W. Yun, “New compact bandpass filter using microstrip λ/4 resonators with open stub inverter,” IEEE Microwave and Guided Wave Letters, vol. 10, no. 12, pp. 526-527, Dec 2000.
[11] Zeland Software, Inc., IE3D Simulator, 1997.
[12] M. Makimoto and S.Yamashita, “Bandpass filters using parallel coupled stripline stepped impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 28, no. 12, pp. 1413–1417, Dec. 1980.
[13] C .F Chen, T. Y. Huang, and R. B. Wu, “Design of microstrip bandpass filters with multiorder spurious-mode suppression,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 12, pp. 3788-3793, Dec. 2005.
[14] C. Y. Hung, M. H. Weng, Y. K. Su, R. Y. Yang, and H. W. Wu, “Design of sharp-rejection, compact and low-cost ultra-wideband bandpass filters using interdigital resonators,” Microw. Opt. Tech. Lett., vol. 48, no. 10, pp. 2093-2096, Oct. 2006.
[15] M. Y. Hsieh and S. M. Wang, “Compact and wideband microstrip bandstop filter,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 7, pp. 472-474, Jul. 2005.
[16] K. M. Shum, W. T. Luk, C. H. Chan, and Q. Xue, “A UWB bandpass filter with two transmission zeros using a single stub with CMRC,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 1, pp. 43-45, Jan 2007.
[17] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Application, John Wiley and Sons, 2001.

Chapter 6
[1] H. Wang, L. Zhu, and W. Menzel, “Ultra-wideband bandpass filter with hybrid microstrip/CPW structure,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 12, pp. 844-846, Dec. 2005.
[2] L. Zhu, S. Sun, and W. Menzel, “Ultra-wideband (UWB) bandpass filters using multiple-mode resonator,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 11, pp. 796-798, Nov. 2005.
[3] IEEE P802.15 Working Group for Wireless Personal Area Networks, “Detailed DS-UWB simulation results,” IEEE 802.15 Working Group for WPAN, Nov. 2004.
[4] H. W. Yao, A. E. Abdelmonem, J. F. Liang, X. P. Liang, K. A. Zaki, A. Martin, "Wide-band waveguide and ridge waveguide T-junctions for diplexer applications,” IEEE Trans. Microw. Theory Tech., vol. 41, no. 12, pp. 2166–2173, Dec. 1993.
[5] B. Strassner and K. Chang, "Wide-band low-loss high-isolation microstrip periodic-stub diplexer for multiple-frequency applications,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 10, pp. 1818–1820, Oct. 2001.
[6] S. Srisathit, S. Patisang, R. Phromloungsri, S. Bunnjaweht, S. Kosulvit, M. Chongcheawchamnan, "High isolation and compact size microstrip hairpin line diplexer," IEEE Microw. Wireless Compon. Lett., vol. 15, no. 2, pp. 101-103, Feb. 2005.
[7] Zeland Software, Inc., IE3D Simulator, 1997.
[8] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Application, John Wiley and Sons, 2001.
[9] H. W. Yao, A. E. Abdelmonem, J. F. Liang, X. P. Liang, K. A. Zaki, A. Martin, "Wide-band waveguide and ridge waveguide T-junctions for diplexer applications,” IEEE Trans. Microw. Theory Tech., vol. 41, no. 12, pp. 2166–2173, Dec. 1993.
[10] D. M. Pozar, Microwave Engineering, 2nd ed. NewYork:Wiley, 1998.
[11] K. S. Chin, L. Y. Lin, and J. T. Kuo, “New formulas for synthesizing microstrip bandpass filters with relatively wide bandwidths,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 5, pp. 231-233, May 2004.
[12] M. H. Weng, C. S. Pan, C. W. Shao, and H. W. Wu, “Stepped-impedance resonator bandpass diplexers with over-coupling structures,” Microw. Opt. Tech. Lett., vol. 42, no. 1, pp. 79-82, Jul. 2004.
[13] J. R. Lee, J. H. Cho, and S. W. Yun, “New compact bandpass filter using microstrip λ/4 resonators with open stub inverter,” IEEE Microwave and Guided Wave Letters, vol. 10, no. 12, pp. 526-527, Dec 2000.

Chapter 7
[1] L. E. Larson, “Integrated circuit technology options for RFICs—Present status and future directions,” IEEE J. Solid-State Circuits, vol. 33, no. 3, pp. 387–399, Mar. 1998.
[2] International Technology Roadmap for Semiconductors (ITRS), RF & A/MS Technologies for Wireless Chapter, pp. 10, 2004.
[3] A. Chin, K. T. Chan, C. H Huang, et al, “RF passive devices on Si with excellent performance close to ideal devices designed by electro-magnetic simulation,” in IEDM Tech. Dig., pp. 15.5.1 - 15.5.4, Dec. 2003.
[4] C. Schollhorn, W. Zhao; M. Morschbach, E. Kasper, “Attenuation mechanisms of aluminum millimeter-wave coplanar waveguides on silicon,” IEEE Trans. Electron Devices, vol. 50, no. 3, pp. 740 - 746, Mar. 2003.
[5] R. E. Collin, Foundations for microwave engineering, McGraw-Hill, Inc., 1992.
[6] R. N. Simons, Coplanar waveguide circuits, components, and systems, New York: John Wiley & Sons, 2001.
[7] W. H. Haydl, “Conductive substrate losses in conplanar and microstrip transmission line,” in Microwave Conference and Exhibition, 27th European, pp. 532-537, 1997.
[8] A. R. Brown and G. M. Rebeiz, “A high-performance integrated K-band diplexer,” IEEE Trans. Microwave and Tech., vol. 47, pp.1477-1481, Aug. 1999.
[9] Federal Communications Commission, “Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems,” Tech. Rep., ET-Docket 98–153, FCC02–48, Apr. 2002.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2010-08-29起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2010-08-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw