進階搜尋


 
系統識別號 U0026-0812200913593718
論文名稱(中文) 斑馬魚10-甲醛四氫葉酸去氫酶啟動子區域的選殖與特性研究
論文名稱(英文) Cloning and characterization of the zebrafish 10-formyltetrahydrofolate dehydrogenase promoter region
校院名稱 成功大學
系所名稱(中) 醫學檢驗生物技術學系碩博士班
系所名稱(英) Department of Medical Laboratory Science and Biotechnology
學年度 95
學期 2
出版年 96
研究生(中文) 鍾宜孝
研究生(英文) I-hsiao Chung
學號 t3694103
學位類別 碩士
語文別 中文
論文頁數 97頁
口試委員 指導教授-傅子芳
口試委員-林尊湄
口試委員-洪建中
中文關鍵字 斑馬魚 
英文關鍵字 zebrafish 
學科別分類
中文摘要 10-甲醛四氫葉酸去氫酶(10-formyltetrahydrofolate dehydrogenase, FDH)可以將10-甲醛四氫葉酸(10-formyltetrahydrofolate, 10-formyl-THF)轉換成四氫葉酸(tetrahydrofolate, THF)。過去研究發現在大量增生的癌細胞株中FDH的表現會受到抑制。而過量的表現FDH則會造成細胞週期阻斷以及細胞程式化凋亡。因此FDH的表現及調控被認為可能與腫瘤生成和胚胎發育有關。在本研究中我們藉由核酸選殖技術將斑馬魚10-甲醛四氫葉酸去氫酶(zFDH)的啟動子區域 (promoter region) 約1703 bp之片段,從斑馬魚染色體放大並選殖入pGL-3載體,以決定啟動子活性。並從斑馬魚5’-RACE cDNA library中選殖出FDH之5’不轉譯區(5’UTR) 以決定轉錄的起始點。在經過連續刪除縮減promoter並測試其活性後,發現-124到+40的區域為具promoter活性之最小片段。同時+1到+40的exon1區域對promoter活性是必需的。利用-124/+40片段為探針進行EMSA發現有特異性的蛋白質與核苷酸的複合物產成。針對此164 bp片段做序列分析後,發現有Sp1及c-Myb的結合位。單點突變(Site-directed mutagenesis)將Sp1結合位置突變後造成promoter活性有意義的下降。但c-Myb結合位的突變則無明顯的變化。我們同時將斑馬魚的Sp1蛋白的編碼序列(coding sequence)選殖到表現蛋白的載體pET43.1a及pcDNA3.1 myc/his中,表現斑馬魚Sp1蛋白並且純化。
英文摘要 10-formyltetrahydrofolate dehydrogenase (FDH) converts 10-formyl- tetrahydrofolate (10-formyl-THF) to tetrahydrofolate (THF) and participates in the biosynthesis nucleotide precursor. It has been shown that FDH was down regulated during cell proliferation while over expression of FDH induced cell cycle arrest and apoptosis in cancer cells. Therefore the expression regulation of FDH is believed to tightly correlate to tumorgenesis and embryonic development. The aim of this study is to search for the possible mechanism of FDH expression regulation by cloning and characterizing the promoter region of zebrafish FDH (zFDH) gene. The 1703 bps fragment of zFDH promoter region was cloned upstream of luciferase coding sequence on pGL3-basic plasmid for transactivation activity analysis with Dual-luciferase assay in zebrafish liver epithelial cells (ZLE cell line). The 5’-UTR was cloned and the transcription starting site identified by PCR-cloning from the zebrafish full-length 5’-RACE cDNA library. Based on the results of serial deletion on promoter region and activity analysis, we found that the 164 bps (-124/+40) fragment is sufficient for substantial promoter activity. Deletion of the 40 bps 5’-UTR in exon 1 results in completely lost of promoter activity. The 164 bps fragment was DIG-labeled and incubated with nuclear extract in Electrophoresis gel Mobility Shift Assay (EMSA) and specific protein-nucleotide complexes were observed. Sequence analysis of the 164 bps fragment reveals potential binding site for Sp1 and c-Myb transcription factors. Site-directed mutagenesis to abolish these corresponding target sites results in decreased for Sp1 but no significant change for c-Myb transactivation activity. The coding sequence of zebrafish Sp1 had been cloned into the pET43.1a and pcDNA 3.1-myc/his expression vectors. We purified and characterized of the over-expressed Sp1 in E.coli and co-expressed the Sp1 in ZLE cells for promoter activity analysis.
論文目次 一、圖目錄 ………………………………3
二、表目錄 …………………………3
三、背景 …………………………4 ~ 11
四、研究動機 ……………… 12
五、研究材料及方法 ………………… 13 ~ 26
I. 材料 ………………………… 13
II. 斑馬魚肝臟上皮細胞與胚胎幹細胞的培養 …………13
III. zFDH 啟動子區域的序列分析 ………………… 13
IV. zFDH 啟動子區域的選殖 …………………… 14
V. zFDH 5’ UTR 全長序列的選殖 ……………… 14 ~ 15
VI. TA 選殖法 (TA cloning) ……………… 15 ~ 16
VII. zFDH 啟動子區域在reporter 載體的選殖與連續序列縮減 ……………… 16
VIII. pGL-3 載体選殖 …………………16
IX. zFDH啟動子-124/+40區域的單點突變 ……………17
X. ZLE細胞的轉染 …………………… 17 ~ 18
XI. 同時轉染與表現zFDH 啟動子-124/+40
和Sp1表現質體至ZLE細胞 ……………18
XII. 啟動子活性分析(Dual-luciferase assay) ……… 18 ~ 19
XIII. 斑馬魚肝臟與胚胎的核蛋白萃取 ………… 19
XIV. 凝膠遷移檢測
(Gel Mobility Shift Assay, GMSA) ………………19 ~ 21
XV. 斑馬魚Sp1短基因序列的選殖 …………… 21 ~ 22
XVI. 斑馬魚Sp1與c-Myb基因序列的選殖 …………22
XVII. 斑馬魚Sp1與c-Myb蛋白
(zSp1&zc-Myb)基因序列的表現………………… 23
XVIII. 斑馬魚Sp1蛋白的純化 …………………23 ~ 25
XIX. 西方墨點法(Western blot) ………………… 25 ~ 26
六、結果 ……………………… 27 ~ 30
七、討論 …………………… 31 ~ 32
八、參考文獻 …………………… 33 ~ 39
九、圖 ……………………… 40 ~ 55
十、表格 …………………… 56 ~ 60
十一、附件 …………… 61 ~ 96
十二、自述 ……………………… 97
參考文獻 Allegra, C. J., Antifolates: the new millennium, Semin. Onco.26: 1-2, 1999.
Anguera, M.C., Field, M.S., Perry, C., Regulation of folate-mediated one-carbon metabolism by 10-formyltetrahydrofolate dehydrogenase, J Biol Chem.
281: 18335-18342, 2006
Armstrong, S.A., Barry, D.A., Casein kinase II-mediated phosphorylation of the C terminus of Sp1 decreases its DNA binding activity, J. Biol. Chem. 272: 13489-13495, 1997
Azizkhan, J.C., Vaughn, J.P., Nucleotide sequence and nuclease hypersensitivity of the Chinese hamster dihydrofolate reductase gene promoter region, Biochemistry.25:6228–6236, 1986
Badiani, P., Corbella, P., Kiossis, D., Dominant interfering alleles define a role for c-Myb in T-cell development, Genes Dev.8:770-782, 1994
Bakovic, M., Waite, K.A., Functional significance of Sp1, Sp2, and Sp3
transcription factors in regulation of the murine CTP: phosphocholine cytidylyltransferase alpha promoter, J Lipid Res.41:583-594, 2000
Bailey, L. B., Gregory, J. F., Folate metabolism and requirements, J. Nutr.129, 779-782, 1999.
Beardsley, G.P., Moroson B.A., A new folate antimetabolite 5,10- dideaza- 5,6,7,8 -tetrahydrofolate is a potent inhibitor of de novo purine synthesis, J Biol Chem.264(1), 328-33, 1989
Benkovic, S. J., The transformylase enzymes in de novo purine biosynthesis, Trends Biochem. Sci.9, 320-322, 1984.
Black, A.R., Azizkhan, J.C., Transcriptional regulation of growth-related genes by E2F and Sp1, The Pezcoller Foundation Journal.3:4-16, 1996
Black, A.R., Jensen, D., Growth/cell cycle regulation of Sp1Phosphorylation, J Biol Chem.274:1207-1215, 1999
Blake, M.C., Azizkhan, J.C., Transcription factor E2F is required for efficient expression of the hamster dihydrofolate reductase gene in vitro and in vivo, Mol Cell Biol 9:4994-5002, 1989
Blake, M.C., Jambou, R.C., Transcriptional initiation is controlled by upstream GC-box interactions in a TATAA-less promoter, Mol Cell Biol. 10: 6632 -6641, 1990
Bower, C. and F. J. Stanley, Dietary folate as a risk factor for neural-tube defects: evidence from a case-control study in Western Australia, Med. J. Aust. 150(11),613-619, 1989.
Brandeis, M., Frank, D., Keshet, I., Sp1 elements protect a CpG island from de novo methylation, Nature.371:435-438, 1994
Burk, O., Worpenberg, S., Tom-1, a novel v-Myb target gene expressed in AMV-
and E26-transformed myelomonocytic cells, Embo J.16:1371-1380, 1997
Chu, E., Allegra, C. J., Antifolates. In: B. A. Chabner and D. L. Longo, Cancer Chemotherapy and Biotherapy: Principles and Practice, pp. 109-148. Philadelphia: Lippincott-Raven Publishers, 1996.
Cook, R.J., Lloyd, R.S., and Wagner, C., Isolation and characterization of cDNA clones for rat liver 10-formyltetrahydrofolate dehydrogenase, J. Biol. Chem.266: 4965-4973, 1991.
Cooper, C., Henderson, A., Artandi, S., Ig/EBP (C/EBP gamma) is a
transdominant negative inhibitor of C/EBP family transcriptional activators, Nucleic Acids Res.23:4371-4377, 1995
Cossins EA, Folates in biological materials. In: Blakely RL, Benkovic SJ, eds. Folates and pterins: Chemistry and biochemistry of folate., pp. 1-60, John Wiley & Sons, New York, 1984.
David, E. J., Adrian R. B., Distinct Roles for Sp1 and E2F Sites in the Growth /Cell Cycle Regulation of the DHFR Promoter, J. Cell. Biochem. 67: 24 - 31, 1997
Davis, R. E., Clinical chemistry of folic acid, Adv. Clin. Chem.25, 233-294, 1986
Dynan, W.S., Tjian R. The promoter-specific transcription factor Sp1 binds to upstream sequences in the SV40 early promoter, Cell.35:79-87, 1983
Fojas, d.e., Borja, P., Cyclin A-CDK phosphorylates Sp1 and enhances Sp1-mediated transcription, EMBO J.20:5737-5747, 2001
Golay, J., Capucci, A., Expression of c-myb and B-myb, but not A-myb, correlates with proliferation in human hematopoietic cells, Blood. 77:149-158, 1991
Golay, J., Luppi, M., Expression of A-myb, but not c-myb and B-myb, is restricted to Burkitt's lymphoma, sIg+ B-acute lymphoblastic leukemia, and a subset of chronic lymphocytic leukemias, Blood. 87:1900-1911, 1996
Graf, T. Myb: a transcriptional activator linking proliferation and differentiation in hematopoietic cells, Curr Opin Genet Dev.2:249-255, 1992
Grunwald, D. J. and J. S. Eisen, Headwaters of the zebrafish--emergence of a newmodel vertebrate, Nat. Rev. Genet.3(9), 717-724, 2002.
Hagen, G., Muller, S., Beato, M., Suske, G., Cloning by recognition site screening of two novel GT box binding proteins: a family of Sp1 related genes, Nucleic Acids Res.20:5519-5525, 1992
Hagen, G., Muller, S., Beato, M., Suske, G., Sp1-mediated transcriptional activation is repressed by Sp3, Embo J.13:3843-3851, 1994
Hall, C. A. and R. C. Chu, Serum homocysteine in routine evaluation of potential vitamin B12 and folate deficiency, Eur. J. Haematol., 45(3), 143-149, 1990.
Harrison, S.M., Houzelstein, D., Dunwoodie, S.L., Sp5, a new member of the Sp1 family, is dynamically expressed during development and genetically interacts with Brachyury, Dev Biol.227:358-372, 2000
Hocker, M., Raychowdhury, R., Plath, T., Sp1 and CREB mediate gastrin- dependent regulation of chromogranin A promoter activity in gastric carcinoma cells, J Biol Chem.273: 34000-34007, 1998
Jackson, S.P., MacDonald, J.J., GC box binding induces phosphorylation of Sp1 by a DNA-dependent protein kinase, Cell.63:155-165, 1990
Jolliff, K., Li, Y., Johnson, L.F., Multiple protein-DNA interactions in the TATAA – less mouse thymidylate synthase promoter, Nucleic Acids Res.19:2267-2274, 1991
Jackson, S.P., Tjian. R., O-glycosylation of eukaryotic transcription factors: implications for mechanisms of transcriptional regulation, Cell. 55:125-133, 1988
Karlseder, J., Rotheneder, H., Wintersberger, E., Interaction of Sp1 with the growth- and cell cycle-regulated transcription factor E2F, Mol Cell Biol.16:1659-1667, 1996
Kaye, S. B. New antimetabolites in cancer chemotherapy and their clinical impact, Br. J. Cancer.78: 1-7, 1998.
Kim, Y. I., Folate and carcinogenesis: evidence, mechanisms, and implications, J.Nutr. Biochem.10(2), 66-88, 1999.
Kingsley, C., Winoto, A., Cloning of GT box-binding proteins: a novel Sp1 multigene family regulating T-cell receptor gene expression, Mol Cell Biol.12:4251-4261, 1992
Kisliuk, R., Folate biochemistry in relation to antifolate selectivity. In:A. L. Jackman, Antifolate Drugs in Cancer Therapy, pp. 13-36.Totowa, NJ: Humana Press Inc., 1999.
Kolb, A.F., Gunzburg, W.H., Negative regulatory element in the mammary specific whey acidic protein promoter, J Cell Biochem.56:245-261, 1994
Kollmar, R., Sukow, K.A., Start site selection at the TATA-less carbamoyl – phosphate synthase(glutamine-hydrolyzing)/aspartate carbamoyltransferase /dihydroorotase promoter, J Biol Chem. 269: 2252 -2257, 1994
Kutzbach, C., Stokstad, E. L. R., 10-Formyl tetrahydrofolate: NADP oxidoreductase, Methods Enzymol.18B: 793-798, 1971.
Lee, H.C., Jeong, Y.M., Lee, S.H., Association study of four polymorphisms in three folate-related enzyme genes with non-obstructive male infertility, Hum. Reprod.21:3162-3170, 2006
Leggett, R.W., Armstrong, S.A., Sp1 is phosphorylated and its DNA binding activity down-regulated upon terminal differentiation in liver, J Biol Chem. 270: 25879-25884, 1995
Lin, S.Y., Black, A.R., Cell cycle-regulated association of E2F1 and Sp1 is related to their functional interaction, Mol Cell Biol.16:1668-1675, 1996
Macleod, D., Charlton, J., Mullins, J., Sp1 sites in the mouse aprt gene promoter are required to prevent methylation of the CpG island, Genes Dev. 8: 2282-2292, 1994
Madsen, C.S., Regan, C.P., Interaction of CArG elements and a GC-rich repressor element in transcriptional regulation of the smooth muscle myosin heavy chain gene in vascular smooth muscle cells, J Biol Chem. 272:29842-29851, 1997
Mason, J. B. and T. Levesque, Folate: effects on carcinogenesis and the potential for cancer chemoprevention, Oncology (Williston. Park), 10(11), 1727-3, 1996.
Marin, M., Karis, A., Visser, P., Transcription factor Sp1 is essential for early embryonic development but dispensable for cell growth and differentiation, Cell.89:619-628, 1997
Mendelsohn, L., Walling J.M., Preclinical and clinical evaluation of the glycinamide ribonucleotide formyltransferase inhibitors Lometrexol and LY309887. In: Jackman AL, editor. Antifolate drugs in cancer therapy. Totowa, New
Jersey: Humana Press. p 261-80, 1999.
Milanini-Mongiat, J., Pouyssegur, J., Identification of two Sp1 phosphorylation sites for p42/p44 mitogen-activated protein kinases: their implication in vascular endothelial growth factor gene transcription, J Biol Chem. 277: 20631-20639, 2002
Mucenski, M.L., McLain, K., A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis, Cell.65:677-689, 1991
Nakashima, K., Zhou, X., Kunkel, G., The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation, Cell.108:17-29, 2002
Natalia, V.O., Natalia I. K., Leucovorin-induced resistance against FDH growth suppressor effects occurs through DHFR up-regulation, Biochemical Pharmacology.72:256-266, 2006
Natalia, V.O., Natalia I. K., Cooperation between JNK1 and JNK2 in activationof p53 apoptotic pathway, Oncogene, 1-9, 2007
Needleman, S.B., Wunsch, C.D., A general method applicable to the search forsimilarities in the amino acid sequence of two proteins, J Mol Biol. 48: 443-453, 1970
Ness, S.A., Kowenz-Leutz, E., Myb and NF-M: combinatorial activators of myeloid genes in heterologous cell types, Genes Dev.7:749-759, 1993
Nomura, N., Takahashi, M., Isolation of human cDNA clones of myb-related genes, A-myb and B-myb, Nucleic Acids Res.16:11075-11089, 1988
Oh, I.H., Reddy, E.P., The myb gene family in cell growth, differentiation and apoptosis, Oncogene.18:3017-3033, 1999
Priest, D. G., Bunni, M. A., Folates and folate antagonists in cancer chemotherapy. In: L. B. Bailey, Folate in Health and Disease, pp. 379- 403. New York: Marcel Dekker, 1995.
Radke, K., Beug, H., Transformation of both erythroid and myeloid cells by E26, an avian leukemia virus that contains the myb gene, Cell.31:643-653, 1982
Rafty, L.A., Khachigian, L.M., Sp1 phosphorylation regulates inducible expression of platelet-derived growth factor B-chain gene via atypical protein kinase C-zeta, Nucleic Acids Res.29:1027-1033, 2001
Reiss, K., Travali, S., Growth regulated expression of B-myb in fibroblasts and hematopoietic cells, J Cell Physiol.148:338-343, 1991
Rohlff, C., Ahmad, S., Modulation of transcription factor Sp1 by cAMP dependent protein kinase, J Biol Chem. 272:21137-21141, 1997
Roman, D.G., Toledano, M.B., Sp1 represses IL-2 receptor alpha chain gene expression, New Biol.2:642-647, 1990
Saffer, J.D., Jackson, S.P., Developmental expression of Sp1 in the mouse, Mol Cell Biol. 11:2189-2199, 1991
Schirch, D., Villar, E., Domain structure and function of 10- formyl - tetrahydrofolate dehydrogenase, J Biol Chem.269:24728-24735, 1994
Scohy, S., Gabant, P., Van, R.T., Identification of KLF13 and KLF14 (SP6), novel members of the SP/XKLF transcription factor family, Genomics. 70:93-101, 2000
Sellak, H., Yang X, Sp1 transcription factor as a molecular target for nitric oxide-and cyclic nucleotide-mediated suppression of cGMP-dependent protein kinase - Ialpha expression in vascular smooth muscle cells, Circ Res.90:405-412, 2000
Steegers-Theunissen, R. P., Folate metabolism and neural tube defects: a review, Eur. J. Obstet. Gynecol. Reprod. Biol.61(1), 39-48, 1995.
Steven, N. R., Alexander P., Modular organization of FDH: Exploring the basis of hydrolase catalysis, Protein Sci.15:1076-1084, 2006
Stover, P. J., L. H. Chen, J. R. Suh, D. M. Stover, K. Keyomarsi and B. Shane, Molecular cloning, characterization, and regulation of the human mitochondrial serine hydroxymethyltransferase gene, J. Biol. Chem. 272(3), 1842-1848, 1997.
Su, K., Roos, M.D., An N-terminal region of Sp1 targets its proteasome - dependent degradation in vitro, J. Biol. Chem.274:15194-15202, 1999
Suske, G., The Sp-family of transcription factors, Gene. 238:291-300, 1999
Takahashi, T., Suwabe, N., Inhibitory interaction of c-Myb and GATA-1 via transcriptional co-activator CBP, Oncogene.19:134-140, 2000
Tephly, T. R., The toxicity of methanol. Life Sci., 48: 1031–1041, 1991.
Tsunenobu, T., Mary F. P., Folate and human reproduction, Am J Clin Nutr. 83:993-1016, 2006
Verhoef, P., de Groot, L.C., Dietary determinants of plasma homocysteine concentrations, Semin Vasc Med.5:110-123, 2005
Wagner, C., Biochemical role of folate in cellular metabolism. In: L. B. Bailey, Folate in Health and Disease, pp. 23-42. New York: Marcel Dekker, 1995.
Wang, S., Wang, W., A Sp1 binding site of the tumor necrosis factor alpha promoter functions as a nitric oxide response element, J Biol Chem. 274: 33190-33193, 1999
Westin, E.H., Gallo, R.C., Differential expression of the amv gene in human hematopoietic cells, Proc Natl Acad Sci U S A.79:2194-2198, 1982
Yang, X., Su, K., O-linkage of N-acetylglucosamine to Sp1 activation domain inhibits its transcriptional capability, Proc Natl Acad Sci U S A.98:6611-6616, 2001
Ye, J., Zhang, X., Dong, Z., Characterization of the human granulocyte-macrophage colony-stimulating factor gene promoter: an AP1 complex and an Sp1- related complex transactivate the promoter activity that is suppressed by a YY1 complex, Mol Cell Biol.16:157-167, 1996
Zenzie-Gregory, B., Khachi, A., Mechanism of initiator-mediated transcription: evidence for a functional interaction between the TATA-binding protein and DNA in the absence of a specific recognition sequence, Mol Cell Biol. 13:3841-3849, 1993
Zhao, J., Ennion, S.J., Sp1/3 and NF-1 mediate basal transcription of the human P2X1 gene in megakaryoblastic MEG-01 cells, BMC Mol Biol.7:10, 2006
Zwicker, J., Liu, N., Engeland, K., Cell cycle regulation of E2F site occupation in vivo, Science.271:1595-159, 1996
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2012-08-28起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2012-08-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw