進階搜尋


 
系統識別號 U0026-0812200913593516
論文名稱(中文) 射頻混頻器與諧波抑制功率分配器之研製
論文名稱(英文) Design and Implementation of RF Mixers and Power Divider for Harmonics Suppression
校院名稱 成功大學
系所名稱(中) 微電子工程研究所碩博士班
系所名稱(英) Institute of Microelectronics
學年度 95
學期 2
出版年 96
研究生(中文) 蘇宣鴻
研究生(英文) Hsuan-Hung Su
電子信箱 q1694120@mail.ncku.edu.tw
學號 q1694120
學位類別 碩士
語文別 中文
論文頁數 71頁
口試委員 口試委員-洪茂峰
口試委員-盧春林
口試委員-江德光
口試委員-陳家豪
指導教授-王永和
中文關鍵字 功率分配器  混頻器  諧波抑制  次諧波  低電壓  寬頻  折疊式 
英文關鍵字 Folded  Low Voltage  Sub-harmonic  Power Divider  Wideband  Mixer  Harmonic Suppression 
學科別分類
中文摘要 本論文首先探討應用在2.4GHz可抑制諧波之平面功率分配器。利用微帶線電磁能隙的結構來抑制n次諧波,與傳統功率分配器相比可減少四分之一波長微帶線的使用長度達30%以上。此平面化的架構易於設計並實現在印刷電路板上,量測結果對於三階諧波抑制為32.5dB,五階諧波抑制為12dB,插入損耗為3.4dB,同時還保有傳統Wilkinson功率分配器的特性。
其次設計可操作在Ku~K頻段之低電壓超寬頻CMOS摺疊式混頻器。以Gilbert混頻器為出發點,針對傳統摺疊式架構為窄頻應用的缺點進行改良,使用高通型的寬頻摺疊式架構,並整合兩個螺旋狀巴倫電路在晶片中以提升頻寬響應。藉由寬頻摺疊式的架構使得汲極偏壓為1V時,操作在10~25GHz範圍內可提供9 4dB的轉換增益,各埠際間的隔離度皆大於47dB。
再則藉由改變傳統環形混頻器的二極體擺置方式,再利用螺旋狀巴倫來增加頻寬的雙平衡次諧波二極體環型混頻器,操作在21~30GHz的範圍內其轉換損耗皆小於13dB,LO-RF、RF-IF、LO-IF的隔離度皆大於34dB。在中頻端輸出電路部份採用與射頻端共用巴倫電路的設計,便於中頻訊號的取出並減小電路面積在1×1mm2以內。
英文摘要 A 2.4GHz planar power divider for harmonics suppression is investigated. The microstrip electromagnetic-bandgap (EBG) cell is used to suppress the nth harmonics and to reduce the length of a quarter-wave line over 30% as compared to the conventional power dividers. The planar structure enables an easy circuit design and implementation in printed circuit boards. From the measured results, a 32.5 dB suppression for the 3rd harmonic and a 12 dB suppression for the 5th harmonic can be achieved. While maintaining the characteristics of a conventional Wilkinson power divider, the two equivalent insertion losses are 3.4dB.
A low voltage, ultra wide band CMOS folded mixer for Ku~K-band applications is proposed. The concept of this design is based on the Gilbert mixer structure, using high pass wideband folded architecture to overcome the disadvantage of narrow band application in traditional folded structure, and increasing the bandwidth by integrating two spiral baluns into the chip. For the reason of using wideband folded structure, the conversion gain of 9 4dB from 10 to 25 GHz is derived, and port-to-port isolations are all better than 47dB.
With suitable diode arrangements and the use of spiral balun, a doubly balanced sub-harmonic diode ring mixer bandwidth enhancement has been achieved. The conversion loss is less than 13dB from 21 to 30GHz, and the isolations are larger than 34dB between LO-RF, RF-IF, and LO-IF ports. The chip size is reduced to 1×1mm2 as a result of IF signal can be extracted directly from RF balun circuit.
論文目次 第一章 緒論 1
1.1 研究背景 1
1.2 章節概述 2
第二章 接收機架構與混頻器簡介 3
2.1 接收機系統簡介 3
2.1.1 外差式接收機 3
2.1.2 直接降頻式接收機 5
2.1.3 低中頻接收機 8
2.2 混頻器簡介 10
2.2.1 主動式混頻器 10
2.2.2 被動式混頻器 12
2.2.3 混頻器架構 13
2.2.4 混頻器基本規格參數 16
第三章 可抑制諧波的Wilkinson功率分配器設計 22
3.1 功率分配器簡介 22
3.2 設計原理與電路架構 25
3.3 模擬與量測結果 29
3.4 結果討論 32
第四章 整合螺旋巴倫之低電壓超寬頻混頻器 33
4.1 Gilbert-cell混頻器架構簡介 33
4.2 設計原理 36
4.2.1 研究動機 36
4.2.2 電路架構 37
4.2.3 設計流程圖 43
4.3 模擬結果 44
4.4 電路佈局 48
4.5 晶片測試 49
4.6 結果討論 49
第五章 雙平衡式次諧波混頻器設計 50
5.1 架構簡介 50
5.2 設計原理 53
5.2.1 研究動機 53
5.2.2 電路架構 54
5.2.3 設計流程圖 58
5.3 模擬結果 59
5.4 電路佈局 63
5.5 結果討論 64
第六章 結論 65
參考文獻 67
作者簡介 71
參考文獻 [1] B. Razavi, “RF Microelectronics,” Prentice Hall PTR, 1998.
[2] A.R. Behzad, et al, “A 5-GHz direct-conversion CMOS transceiver utilizing automatic frequency control for the IEEE 802.11a wireless LAN standard,” IEEE Journal of Solid-State Circuits, vol. 38, no. 12, pp.2209-2220, Dec. 2003.
[3] T. Melly, A.S. Porret, C.C. Enz, and E.A. Vittoz, “An analysis of flicker noise rejection in low-power and low-voltage CMOS mixers,” IEEE Journal of Solid-State Circuits, vol. 36, no. 1, pp.102-109, Jan. 2001.
[4] S. Basu and S.A. Maas, “Design and Performance of a Planar Star Mixer”, IEEE Transactions on Microwave Theory and Techniques, vol. 11, no. 41, pp.2028-2030, Nov. 1993.
[5] E.J. Wilkinson, “An N-way power divider,” IEEE Trans. Microwave Theory Tech., vol. MTT-8, pp. 116-118, Jan. 1960.
[6] J.C. Chiu, C.P. Chang, M.P. Houng, and Y.H. Wang, “A 12-36 GHz PHEMT MMIC Balanced Frequency Tripler,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 1, pp.19-21, Jan. 2006.
[7] K.H. Yi and B. Kang, “Modified Wilkinson power divider for nth harmonic suppression,” IEEE Microw. Wireless Compon. Lett., vol. 13, no. 5, pp. 178–180, May 2003.
[8] D.J. Woo and T.K. Lee, “Suppression of Harmonics in Wilkinson Power Divider Using Dual-Band Rejection by Asymmetric DGS,” IEEE Trans. Microw. Theory Tech., vol. MTT-53, No. 6, pp. 2139–2144, June 2005.
[9] Q. Xue, K.M. Shum, and C.H. Chan, “Novel 1-D microstrip PBG cell,” IEEE Microw. Guided Wave Lett., vol. 10, no. 10, pp. 403–405, Oct. 2000.
[10] K.M. Shum, Q. Xue, and C.H. Chan, “A Novel Microstrip Ring Hybrid. Incorporating a PBG Cell,” IEEE Microw. Wireless Compon. Lett., vol. 11, no. 6, pp. 258–260, June 2001.
[11] K.M. Shum, Q. Xue, and C.H. Chan, “Curved PBG Cell and Its Applications,” IEEE Microwave Conference, vol. 2, pp. 767–770, 2001.
[12] R.E. Collin, Foundations for Microwave Engineering. NewYork: Mc-Graw-Hill, 1966.
[13] B.L. Ooi, “Compact EBG In-Phase Hybrid-Ring Equal Power Divider,” IEEE Trans. Microw. Theory Tech., vol. MTT-53, No. 7, pp. 2329– 2334, July 2005.
[14] C.S. Lin, P.S. Wu, H.Y. Chang, and H. Wang, “A 9–50-GHz Gilbert-Cell Down-Conversion Mixer in 0.13-um CMOS Technology”, IEEE Microwave and Wireless Components Letters, VOL. 16, NO. 5, May 2006.
[15] M.D. Tsai and H. Wang, “A 0.3–25-GHz Ultra-Wideband Mixer Using Commercial 0.18-um CMOS Technology”, IEEE Microwave and Wireless Components Letters, VOL. 14, NO. 11, November 2004.
[16] G. Watanabe, H. Lau, and J. Schoepf, “Integrated mixer design,” in Proceedings of The Second IEEE Asia Pacific Conference on ASICs, pp.171-174, Aug. 2000.
[17] P.J. Sullivan, B.A. Xavier, and W.H. Ku, “Low voltage performance of a microwave CMOS Gilbert cell mixer,” IEEE Journal of Solid-State Circuits, vol. 32, no.7, pp.1151-1155, July 1997.
[18] H.H. Hsieh, K.S. Chung and L.H. Lu, “Ultra-low-voltage mixer and VCO in 0.18um CMOS”, IEEE Radio Frequency integrated Circuits (RFIC) Symposium, pp.167-170, June 2005.
[19] X. Wang, R. Weber, and D. Chen, “ A novel 1.5V CMFB CMOS down-conversion mixer design for IEEE 802.11A”, Circuits and Systems, 2004. Proceedings of the 2004 International Symposium on vol. 4, pp.IV-373-376, 23-26 May 2004.
[20] A. Verma, L. Gao, K.K. O, and J. Lin, ” A K-band down-conversion mixer with 1.4-GHz bandwidth in 0.13um CMOS technology”, IEEE Microwave and Wireless Components Letters, vol.15, no.8, pp.493-495, Aug. 2005.
[21] X. Wang and R. Weber, “A novel low-voltage low-power 5.8 GHz CMOS down-conversion mixer design”, in Proceedings of 2003 Radio and Wireless Conference, pp. 301-304, Aug. 2003.
[22] M. Harada, T. Tsukahara, J. Kodate, A. Yamagishi, and J. Yamada, “2-GHz RF front-end circuits in CMOS/SIMOX operating at an extremely low voltage of 0.5 V,” IEEE Journal of Solid-State Circuits, vol. 35, no. 12, pp.2000-2004, Dec. 2000.
[23] A. Verma, K.K. O, and J. Lin, “A low-power up-conversion CMOS mixer for 22-29-GHz ultra-wideband applications” , IEEE Transaction on Microwave Theory and Technology, VOL. 54, NO. 8, August 2006.
[24] T. Chang and J. Lin, “1-11 GHz Ultra-Wideband Resistive Ring Mixer in 0.18-μm CMOS Technology”, Solid-State Circuits Conference, 2006. ESSCIRC 2006. Proceedings of the 32nd European.
[25] I.C.H. Lai and M. Fujishima, “An Integrated 20-26 GHz CMOS Up-Conversion Mixer with Low Power Consumption”, Microwave Theory and Techniques, VOL 54, Issue 8, pp.3295-3300, August 2006.
[26] A. Madjar, “A Novel General Approach for the Optimum Design of Microwave and Millimeter Wave Subharmonic Mixers”, IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 11, pp.1997-2000, Nov.1996.
[27] H.I. Fujishiro, Y. Ogawa, T. Hamada, and T. Kimura, “SSB MMIC mixer with subharmonic LO and CPW circuits for 38 GHz band applications”, Electronics Letters, vol. 37, no. 7, pp. 435-436, Mar. 2001.
[28] S. Raman, F. Rucky, and G.M. Rebeiz, “A High-Performance W-Band Uniplanar Subharmonic Mixer”, IEEE Transactions on Microwave Theory and Techniques, vol. 45, no. 6, pp.955-962, June 1997.
[29] M.W. Chapman and S. Raman, “A 60GHz Uniplanar MMIC 4X Subharmonic Mixer”, IEEE MTT-S Digest, vol. 1, pp.95-98, May 2001.
[30] K.W. Kobayashi, R. Kasody, A.K. Oki, S. Dow, B. Allen, and D.C. Streit, “K-band double-balanced mixer using GaAs HBT THz Schottky diodes”, IEEE Microwave and Millimeter-Wave Monolithic Circuits Symposium, pp.209-212, May 1994.
[31] H. Morkner, S. Kumar, and M. Vice, “A 18-45 GHz double-balanced mixer with integrated LO amplifier and unique suspended broadside-coupled balun”, IEEE Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, pp.267-270, 2003.
[32] T.N. Ton, G.S. Dow, T.H. Chen, M. Lacon, T.S. Lin, S. Bui, and D. Yang, “An X-band monolithic double double-balanced mixer for high dynamic receiver application”, IEEE Microwave and Millimeter-Wave Monolithic Circuits Symposium, pp.115-118, May 1990.
[33] S. Maas, M. Fong, and M. Tan, “A Broadband Planar Monolithic Ring Mixer”, IEEE Microwave and Millimeter-Wave Monolithic Circuits Symposium, pp.51-54, June 1996.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2010-08-28起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2012-08-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw