進階搜尋


 
系統識別號 U0026-0812200913581789
論文名稱(中文) 應用於超寬頻射頻頻率合成器之混頻器整合可切換式電感負載與壓控振盪器之設計
論文名稱(英文) Mixer Design with the Integration of Switchable Inductive Loads and VCO’s for the UWB RF Synthesizer
校院名稱 成功大學
系所名稱(中) 電機工程學系碩博士班
系所名稱(英) Department of Electrical Engineering
學年度 95
學期 2
出版年 96
研究生(中文) 莊文賢
研究生(英文) Wen-Hsien Chuang
電子信箱 n2694168@mail.ncku.edu.tw
學號 n2694168
學位類別 碩士
語文別 英文
論文頁數 131頁
口試委員 口試委員-湯敬文
指導教授-黃尊禧
口試委員-張名先
口試委員-許恒銘
中文關鍵字 混頻器  切換電感  超寬頻  震盪器 
英文關鍵字 Mixer  Oscillator  UWB  Switchable inductor 
學科別分類
中文摘要 本論文主要著重在應用於超寬頻射頻頻率合成器之混頻器設計。根據新的頻率規畫,我們提出了一個新的射頻頻率合成器架構應用在超寬頻多頻帶正交頻率分頻多工的系統中(UWB MB-OFDM System)。在混頻器設計中,主要著重在其負載的部分,為了有效降低功率的消耗,我們採用LC-tank的方式去取代電阻。由於超寬頻多頻帶涵蓋的頻寬範圍較廣,混頻器必須設計能夠操作在3.1-10.6 GHz的頻率範圍。若只使用單一感值的電感讓阻抗peak在6.5 GHz左右,會導致在較低頻或較高頻的部份會有輸出阻抗太低的現象,因此利用切換式電感架構來實現在寬頻帶負載,藉由MOS開關來切換兩種感值,使阻抗分別peak在5 GHz和8 GHz。可以在較低與較高的頻帶下有效提升輸出阻抗。
在本文中,我們利用本實驗室所提出的一種新式的可切換差動電感結構,它相較於傳統可切換電感面積可節省約50%以上,可以有效減少晶片面積成本。在電感使用上,我們先利用電磁模擬軟體(ADS-Momentum)去模擬切換電感的特性,且分析並找出適合應用在我們的電路上的感值。為了有效的描述此切換電感行為,一個簡單的電感等效電路模型也被提出,此切換式電感等效電路模型之準確性可達10 GHz。整體電路在大訊號模擬結果下,顯示此四相位混頻器可操作在3.1-10.6 GHz。此四相位混頻器整合可切換式電感製作於台積電0.18um 1P6M標準RF CMOS製程。
針對上述所設計的四相位混頻器量測部分。由於高頻(GHz)的四相位訊號源不容易取得。因此,另一個設計的重點是整合震盪器和混頻器,靠著震盪器所提供的震盪訊號提供給混頻器應用,並考量混頻器在10 GHz操作頻率下的操作特性之設計。為了要驗證我們所設計的混頻器可以在10 GHz左右操作,所以挑選可應用於超寬頻多頻帶系統中,讓兩個震盪器分別操作在3,168/4,224 MHz與6,072/ 7,128 MHz,而混頻器接收震盪訊號去進行升頻混頻動作,讓其頻率輸出在10.296 GHz。
本論文主要新穎性如下:我們使用可切換式差動電感來製作可切換式電感性負載,讓混頻器可以操作在3-10 GHz的頻寬中,可應用於新的頻率合成器電路架構。此外,該新型可切換式電感不僅讓混頻器可以操作在超寬頻系統,且讓電路晶片面積消耗得以縮小約50%,成本得以降低。
英文摘要 The paper mainly presents the design of mixer for UWB radio frequency synthesizer application. Base on new frequency plan, we propose a RF frequencysynthesizer for ultra-wide band multiband OFDM (UWB MB-OFDM System) applications. We mainly focus on load in our mixer design. In order to degrade the powerconsumption effectively, LC-tank structure is implemented instead of resistor. Due to UWB MB-OFDM system covers relative large frequency ranges, the mixer must be designed to be able to operate at 3.1 to 10.6 GHz frequency range. For unity inductance, the peak impedance appears at 6.5 GHz which could degrade the output impedance dramatically at high/low frequency bands. From above reasons, we use switchable inductors to realize wideband load. We combine a MOSFET transistor with the differential inductor as switch, which its peak impedance is 5 GHz and 8 GHz receptively. It is effective to improve the output impedance at high/low frequency bands.
In this article, we apply a newly switchable differential inductor. Compare to traditional switch inductor structures, the proposed structure can release
over 50% chip area and cost of chip can also be saved. For our design methods, we simulate the characteristics of this switchable inductor by ADS Momentum and choose the adapt one for our circuit inductance. In order to describe the switchable inductors’ behaviors, a simple equivalent circuit model is presented and this model accurate over 10 GHz. The complete circuit is simulated which shows that quadrature mixer can operate in 3.1 to 10.6 GHz. This
quadrature mixer and differential integration uses TSMC 0.18um 1P6M standard RF CMOS process.
For the measurement of the above-mentioned quadrature mixer design, due to quadrature signal source is hard to obtain, therefore another important point of this design is integration of oscillators and mixer. By using the signal generated by oscillators apply to mixer, we consider the operation features of mixer at 10 GHz for our design. To verify this proposed mixer can operate at 10 GHz. The two oscillators operate at 3,168/4,224 and 6,072/7,128 MHz for UWB system application which mixer receives the signal to up-convert the frequency to 10.296 GHz.
The main creativity of this paper is as following: We use the switchable inductor to implement the switchable inductive loads. Thus, the mixer is able to operate at 3.1 to 10.6 GHz frequency range for new UWB radio frequency synthesizer application. Moreover, by using our proposed switchable inductor, the mixer not only can operate in UWB system, but also low area consumption and chip cost over 50%.
論文目次 Chinese Abstrcat.......................................I
English Abstrcat.......................................III
Acknowlegement.........................................V
List of Tables.........................................VIII
List of Figures........................................IX

Chapter 1 Introduction..................................1
1.1 Background..........................................1
1.2 Motivation..........................................5
1.3 Thesis Organization.................................7

Chapter 2 Mixer.........................................9
2.1 Introduction........................................9
2.2 Mixer Fundamentals..................................9
2.2.1 Nonlinear Effects................................9
2.2.2 Inter-modulation.................................10
2.3 Performance Parameters..............................12
2.3.1 Linearity........................................12
2.3.2 Port-to-Port Isolation...........................15
2.3.3 Conversion Gain..................................16
2.3.4 Noise Figure.....................................16
2.4 Mixer Architectures.................................19
2.4.1 Passive Mixer....................................19
2.4.2 Active Mixer.....................................21
2.4.2.1 Single-balance Mixer..........................22
2.4.2.2 Double-balance Mixer..........................22
2.4.2.3 Comparison between Passive Mixer with Active
Mixer.........................................28

Chapter 3 Oscillator....................................29
3.1 Introduction........................................29
3.2 Oscillator Fundamentals.............................29
3.2.1 Oscillator Theory................................29
3.2.1.1 Positive Feedback.............................30
3.2.1.2 One Port......................................31
3.3 Performance Parameters..............................32
3.3.1 Phase Noise......................................32
3.3.1.1 Effect of Phase Noise in RF Communications....33
3.3.1.2 Time-invariant Model..........................35
3.3.1.3 Time-variant Model............................36
3.3.2 Q of an Oscillator...............................42
3.4 The Basic Oscillator Topologies.....................43
3.4.1 Ring Oscillator..................................44
3.4.2 LC Oscillator....................................45

Chapter 4 Design and Simulation Results.................49
4.1 Design the Quadrature Mixer Using Switchable Inductive
Loads for UWB Frequency Synthesizer.................49
4.1.1 Quadrature Mixer Structure.......................54
4.1.1.1 Switchable Differential Inductor..............55
4.1.1.2 Core Circuit..................................64
4.1.1.3 Buffer Stage..................................64
4.1.1.4 Layout and Photo of the Quadrature Mixer......66
4.1.2 Simulation Results...............................67
4.1.2.1 Transient Response............................67
4.1.2.2 Conversion Gain...............................69
4.1.2.3 Noise Figure..................................73
4.1.2.4 P-1dB Compression Point.......................75
4.1.2.5 Isolation.....................................77
4.1.2.6 Expected Specification........................78
4.1.2.7 The Improved Quadrature Mixer.................79
4.2 Design the Integration of VCO’s and Mixer for UWB
Frequency Synthesizer...............................80
4.2.1 Integration of VCO’s and Mixer Structure........81
4.2.1.1 Core Circuit of VCO’s........................82
4.2.1.2 Core Circuit of Mixer.........................89
4.2.1.3 Layout and Photo of the Integration of VCO’s
and Mixer.....................................90
4.2.2 Simulation Results...............................91
4.2.2.1 Transient Response............................91
4.2.2.2 Tuning Range of VCO’s........................94
4.2.2.3 Phase Noise of VCO’s.........................96
4.2.2.4 Power Spectrum................................100
4.2.2.5 The Relationship between I¬bias and VCO
Performance...................................103
4.2.2.6 The Variation of Voltage Supply...............105
4.2.2.7 Expected Specification....................... 106

Chapter 5 Measurement Results...........................107
5.1 Measurement Results of the Quadrature Mixer Using
Switchable Inductive Loads for UWB Frequency
Synthesizer.........................................107
5.1.1 Measurement Considerations.......................107
5.1.2 DC Measurement...................................108
5.2 Measurement Results of the Integration of VCO’s and
Mixer for UWB Frequency Synthesizer.................109
5.2.1 Measurement Considerations.......................109
5.2.2 Power Spectrum...................................112
5.2.3 Phase Noise of VCO’s............................116
5.2.4 Tuning Range of VCO’s...........................120
5.2.5 Performance......................................121

Chapter 6 Conclusions and Future Work...................123
6.1 Conclusions.........................................123
6.2 Future Work.........................................125

References..............................................127
參考文獻 [1] Lawrence Williams, Daniel Wu, Eldon Staggs, and
Albert Yen, “Ultra- Wideband Radio Design for
Multi-band OFDM 480 Mb/s Wireless USB,”
DesignCon2005, Ansoft Corporation.
[2] MultiBand OFDM Alliance SIG, “Multi-band OFDM
Physical Layer Proposal for IEEE 802.15 Task
Group 3a,” Sep. 14, 2004.
[3] Remco C.H. van de Beek, Domine M. W. Leenaerts,
and Gerard van der Weide, ”A fast-hopping single-
PLL 3-band MB-OFDM UWB synthesizer,” Solid-State
Circuits, IEEE Journal of , Vol.41, Issue 7,
pp.1522- 1529, July 2006.
[4] Jri Lee , “A 3-to-8-GHz fast-hopping frequency
synthesizer in 0.18-/spl mu/m CMOS technology,”
Solid-State Circuits, IEEE Journal of, Vol.41,
Issue 3, pp.566- 573, March 2006.
[5] B. Razavi, T. Aytur, C. Lam, Fei-Ran Yang, Kuang-
Yu Li, Ran-Hong Yan, Han- Chang Kang, Cheng-Chung
Hsu, and Chao-Cheng Lee, “A UWB CMOS
Transceiver,” Solid-State Circuits, IEEE Journal
of, Vol.40, Issue 12, pp.2555- 2562, Dec. 2005.
[6] Seong-Mo Yim and Kenneth K. O., “Demonstration
of a switched resonator concept in a dual-band
monolithic CMOS LC-tuned VCO,” Proceedings of
the IEEE 2001 Custom Integrated Circuit
Conference., pp.205-208, May 2001.
[7] A. Kral, F. Behbahani, and A. A. Abidi, “RF-CMOS
oscillators with switched Tuning,” Proceedings
of the IEEE 1998 Custom Integrated Circuits
Conference, pp. 555-558, May 1998.
[8] A. Fard, T. Johnson, M. Linder, and D. Aberg, “A
comparative study of CMOS LC VCO topologies for
wide-band multi-standard transceivers,” 47th
IEEE International Midwest Symposium on Circuit
and System, Vol.31, pp.III-17~20, 2004.
[9] Zhenbiao Li and Kenneth K. O., “A 1 -V Low Phase
Noise Multi-Band CMOS Voltage Controlled
Oscillator with Switched Inductors and
Capacitors,” IEEE 2004 Radio Frequency
Integrated Circuits Symposium, pp.467-470, 2004.
[10] B. Razavi, “RF Microelectronics,” Englewood
Cliffs, NJ: Prentice-Hall, 1998
[11] M. J. Gingell, “Single sideband modulation using
sequence asymmetric polyphase networks,”
Electrical Commun., Vol.48, pp.21-25, 1973.
[12] Tae Wook Kim, Bonkee Kim, and Kwyro Lee, “Highly
linear receiver front-end adopting MOSFET
transconductance linearization by multiple gated
transistors,” Solid-State Circuits, IEEE Journal
of, Vol.39, Issue 1, pp.223-229, Jan. 2004.
[13] Keng Leong Fong and R. G. Meyer, “Monolithic RF
active mixer design,” Circuits and Systems II:
Analog and Digital Signal Processing, IEEE
Transactions on [see also Circuits and Systems
II: Express Briefs, IEEE Transactions on],
Vol.46, Issue 3, pp.231-239, March 1999.
[14] Keng Leong Fong, C. D. Hull, and R. G. Meyer, “A
class AB monolithic mixer for 900-MHz
applications,” Solid-State Circuits, IEEE
Journal of, Vol.32, Issue 8, pp.1166-1172, Aug.
1997.
[15] Q. Li and J. S. Yuan, “Linearity analysis and
design optimization for 0.18 μm CMOS RF mixer,”
Circuits, Devices and Systems, IEE Proceedings-,
Vol.149, Issue 2, April 2002.
[16] C. D. Hull, Joo Leong Tham, and R. R. Chu, “A
direct-conversion receiver for 900 MHz (ISM band)
spread-spectrum digital cordless telephone,”
Solid-State Circuits, IEEE Journal of, Vol.31,
Issue 12, pp.1955-1963, Dec. 1996.
[17] Keng Leong Fong and R. G. Meyer, “High-frequency
nonlinearity analysis of common-emitter and
differential-pair transconductance stages,”
Solid-State Circuits, IEEE Journal of, Vol.33,
Issue 4, pp.548-555, Apr. 1998.
[18] Hung-Che Wei, Ro-Min Weng, and Kun-Yi Lin, “A
1.5 V high-linearity CMOS mixer for 2.4 GHz
applications,” Circuits and Systems, 2004.
ISCAS'04. Proceedings of the 2004 International
Symposium on, Vol.1, pp.I-561-4, May 2004.
[19] I. Rovira, P. Sivonen, S. Rintamaki, and M.
Honkanen, “Highly linear TX IF-chip for
multicarrier GSM 900 and 1800 base station,”
Circuits and Systems, 2001., ISCAS 2001., The
2001 IEEE International Symposium on, Vol.4,
pp.762-765, May 2001.
[20] P. J. Sulivan, B. A. Xavier, and W. H. Ku, ”Low
voltage performance of a microwave CMOS Gilbert
cell mixer,” Solid-State Circuits, IEEE Journal
of, Vol.32, Issue 7, pp.1151-1155, Jul. 1997.
[21] H. M. Tuncer, F. Udrea, and G. A. J. Amaratunga,
“A 5 GHz low power 0.18/spl mu/m CMOS Gilbert
cell mixer,” Semiconductor Conference, 2004. CAS
2004 Proceedings. 2004 International, Vol.1, pp.-
164, Oct. 2004.
[22] O. Mitrea, C. Popa, A. M. Manolescu, and M.
Glesner, “A linearization technique for radio
frequency CMOS Gilbert-type mixers,”
Electronics, Circuits and Systems, 2003. ICECS
2003. Proceedings of the 2003 10th IEEE
International Conference on, Vol.3, pp.1086-1089,
Dec. 2003.
[23] T. H. Lee, “The Design of CMOS Radio-Frequency
Integrated Circuits,” Cambridge University
Press, 1998.
[24] H. Darabi and A. A. Abidi, “Noise in RF-CMOS
mixers: a simple physical model,” Solid-State
Circuits, IEEE Journal of, Vol.35, Issue 1, pp.15-
25, Jan 2000.
[25] M. T. Terrovitis and R. G. Meyer, “Noise in
current-commutating CMOS mixers,” Solid-State
Circuits, IEEE Journal of, Vol.34, Issue 6 ,
pp.772-783, Jun. 1999.
[26] B. Gilbert, "A Precise Four-Quadrant Multiplier
with Subnanosecond Response," Solid-State
Circuits, IEEE Journal of, Vol.3, Issue 4, pp.365-
373, Dec. 1968.
[27] S. Weiner, D. Neuf, and S. Spohrer, “2 to 8 GHz
double balanced MESFET mixer with +30 dBm input
3rdorder intercept,” Microwave Symposium Digest,
1988., IEEE MTT-S International, Vol.2, pp.1097-
1100, May 1988.
[28] J. Crols and M. S. J. Steyaert, “A 1.5 GHz
highly linear CMOS downconversion mixer,” Solid-
State Circuits, IEEE Journal of, Vol.30, Issue 7,
pp.736-742, Jul. 1995.
[29] C. Yu and J. S. Yuan, “Linearity and power
optimization of a microwave CMOS Gilbert cell
mixer,” Electron Devices for Microwave and
Optoelectronic Applications, 2003, EDMO 2003, The
11th IEEE International Symposium on, pp. 234-
239, Nov. 2003.
[30] Chuanzhao Yu, J. S. Yuan, and Hong Yang, “MOSFET
linearity performance degradation subject to
drain and gate voltage stress,” Device and
Materials Reliability, IEEE Transactions on,
Vol.4, Issue 4, pp.681- 689, Dec. 2004.
[31] J. Park, C.-HO Lee, B.-S. Kim, and J. Laskar,
“Design and Analysis of Low Flicker-Noise CMOS
Mixers for Direct-Conversion Receivers,”
Microwave Theory and Techniques, IEEE
Transactions on, Vol.54, Issue 12, pp.4372-4380,
Dec. 2006.
[32] H. Darabi and J. Chiu, “A Noise Cancellation
Technique in Active RF-CMOS Mixers,” Solid-State
Circuits, IEEE Journal of, Vol.40, Issue 12,
pp.2628-2632, Dec. 2005.
[33] 魏宏哲, “高線性度降頻混頻器設計,” 國立東華大學電
機工程研究所碩士論文, 2003.
[34] B. Razavi, “Design of Analog CMOS Integrated
Circuits,” McGraw-Hill, 2002.
[35] A. Hajimiri and T. H. Lee, “A general theory of
phase noise in electrical oscillators,” Solid-
State Circuits, IEEE Journal of, Vol.33, Issue 2,
pp.179-194, Feb. 1998.
[36] A. Hajimiri and T. H. Lee, “Phase noise in CMOS
differential LC oscillators,” VLSI Circuits,
1998. Digest of Technical Papers. 1998 Symposium
on, pp.48-51, Jun. 1998.
[37] J. Craninckx and M. Steyaert, “Low-noise voltage-
controlled oscillators using enhanced LC-tanks,”
Circuits and Systems II: Analog and Digital
Signal Processing, IEEE Transactions on [see also
Circuits and Systems II: Express Briefs, IEEE
Transactions on], Vol.42, Issue 12, pp.794-804,
Dec.1995.
[38] Guillermo. Gonzalez, “Microwave Transistor
Amplifiers Analysis and Design,” Sec.5.2,
Oscillation Conditions.
[39] 羅日龍, ”使用0.18um CMOS之2GHz低相位雜訊壓控震盪
器,” 國立東華大學電機工程研究所碩士論文, 2003.
[40] D. Leenaerts, R. van de Beek, G. van der Weide,
J. Bergervoet, K. S. Harish, H. Waite, Y. Zhang,
C. Razzell, and R. Roovers,, “A SiGe BiCMOS 1ns
fast hopping frequency synthesizer for UWB
radio,” Solid-State Circuits Conference, 2005.
Digest of Technical Papers. ISSCC. 2005 IEEE
International, Vol.1, pp.202-259, Feb. 2005.
[41] C. Sandner and A. Wiesbauer ,“A 3 GHz to 7 GHz
fast-hopping frequency synthesizer for UWB,” in
Joint Int. Ultra Wideband Systems Workshop/
Ultrawideband Systems and Technologies Conf.,
pp.405-409, May 2004.
[42] Choong-Yul Cha, Eun-Chul Park, Hyun-Su Chae, Chun-
Deok Suh, Jung- Eim Lee, Jeongwook Koh, Hanseung
Lee, and Hoon-Tae Kim, “A fast frequency/mode
switching quadrature SSB mixer/amplifier for the
low power MTG in MB-OFDM UWB radio transceiver,”
Silicon Monolithic Integrated Circuits in RF
Systems, 2006. Digest of Papers. 2006 Topical
Meeting on, pp.18-20, Jan. 2006.
[43] C. Mishra, A. Valdes-Garicia, F. Bahmani, A.
Batra, E. Sanchez-Sinencio, and J. Silva-
Martinez, “Frequency Planning and Synthesizer
Architectures for Multiband OFDM UWB Radios,”
IEEE Trans. on Microwave Theory and Techniques.,
Vol. 53, Issue 12, pp.3744-3756, 2005.
[44] A. Batra et al., “Multi-band OFDM physical layer
proposal,” IEEE, Piscataway, NJ, IEEE 802.15-
03/267r1-TG3a, Jul. 2003
[45] Z. Li and Kenneth K. O, ”A Low-Phase-Noise and
Low-Power Multiband CMOS Voltage-Controlled
Oscillator,” Solid-State Circuits, IEEE Journal
of, Vol.40, Issue 6, pp.1296-1302, June 2005.
[46] S. Li, J. Zohios, J. H Choi, and M. Ismail, "RF
CMOS Mixer Design and Optimization for Wideband
CDMA Application," Mixed-Signal Design, 2000.
SSMSD. 2000 Southwest Symposium on, pp.45-50,
2000.
[47] Q. Huang, F. Piazza, P. Orsatti, and T.
Ohguro, "The Impact of Scaling Down to Deep
Submicron on CMOS RF Circuits," Solid-State
Circuits, IEEE Journal of, Vol.33, Issue 7, July
1998.
[48] F. Stubbe, S. V. Kishore, C. Hull, and V. Della
Torre, "A CMOS RF-Receiver Front - End for 1GHz
Applications," in Proc. of Symposium on VLSI
Circuits, 1998.
[49] B. De Muer, M. Borremans, M. Steyaert, and G. Li
Puma, “A 2-GHz low- phase-noise integrated LC-
VCO set with flicker-noise upconversion
minimization,” Solid-State Circuits, IEEE
Journal of, Vol.35, Issue 7, pp.1034- 1038, Jul.
2000.
[50] A. Jerng and C.G. Sodini, “The impact of device
type and sizing on phase noise mechanisms,”
Solid-State Circuits, IEEE Journal of, Vol.40,
Issue 2, pp.360- 369, Feb. 2005.
[51] Hyunchol Shin, Zhiwei Xu, and M. F. Chang, ”A
1.8-V 6/9-GHz switchable dual-band quadrature LC
VCO in SiGeBiCMOS technology,” Radio Frequency
Integrated Circuits (RFIC) Symposium, 2002 IEEE,
pp.71-74, 2002.
[52] Ting-Ping Liu , “A 6.5 GHz monolithic CMOS
voltage-controlled oscillator,” Solid-State
Circuits Conference, 1999. Digest of Technical
Papers. ISSCC. 1999 IEEE International, pp.404-
405, 1999.
[53] Tzuen-Hsi Huang and Jia-Lun Wang, “New Frequency
Plan and Reconfigurable 6.6 / 7.128 GHz CMOS
Quadrature VCO for MB-OFDM UWB Application,”
Microwave Symposium, 2007. IEEE/MTT-S
International, pp.843-846, June 2007.
[54] Ming-Ching Kuo, Chun-Ming Hsu, Chun-Lin Ko, Tsung-
Hsien Lin, and Yi-Bin Lee, “A CMOS WLAN/GPRS
dual-mode RF front-end receiver,” Radio
Frequency Integrated Circuits (RFIC) Symposium,
2004. Digest of Papers. 2004 IEEE, pp.153- 156,
June 2004.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2008-08-28起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2008-08-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw