進階搜尋


 
系統識別號 U0026-0812200913570064
論文名稱(中文) 卡門和甲基安非他命合併使用對於中樞神經毒性的影響
論文名稱(英文) Mutual enhancement of central neurotoxicity by binge doses of ketamine and methamphetamine
校院名稱 成功大學
系所名稱(中) 生理學研究所
系所名稱(英) Department of Physiology
學年度 95
學期 2
出版年 96
研究生(中文) 柯景傑
研究生(英文) CHING-CHIEH KO
電子信箱 s3694104@mail.ncku.edu.tw
學號 s3694104
學位類別 碩士
語文別 英文
論文頁數 64頁
口試委員 口試委員-莊季瑛
口試委員-郭余民
指導教授-游一龍
中文關鍵字 多巴胺神經  麩胺酸神經  甲基安非他命  K它命  神經損傷 
英文關鍵字 glutamatergic neuron  neurotoxicity  Ketmine  methamphetamine  dopaminergic neuron 
學科別分類
中文摘要 近年來由於勁歌舞廳文化及家庭私人狂歡派對更助長了多重藥物濫用的情況。依序合併使用K它命 (ketamine)和甲基安非他命(methamphetamine)是其中一種多重藥物濫用特殊的組合。K它命是一種 N-甲基天門冬胺酸鹽受器之拮抗劑。研究指出K它命會造成立即的神經細胞計劃性死亡,和隨後的神經元受損。甲基安非他命則會造成多處(特別是紋狀體位置)多巴胺神經末梢的損傷。我在實驗中發現連續給予K它命(50 mg/kg x7)加上甲基安非他命(10 mg/kg x3)注射,會各自造成中樞麩胺酸或多巴胺神經受損。連續的K它命注射不會改變立即的體溫變化,也不影響十二小時後甲基安非他命造成的體溫升高現象。但是我發現在甲基安非他命之前給予高劑量的K它命注射,可以增強甲基安非他命造成多巴胺神經末梢的損傷, 如造成多巴胺和它的代謝物二羥基苯丙胺酸濃度下降, 多巴胺運轉子密度減少和表現較差的平衡感。相反的,K它命並不影響甲基安非他命引起的血清素神經元末梢的毒性。另一方面後處理的甲基安非他命會加強K它命對於麩胺酸神經的傷害,因為海馬回位置之麩胺酸神經內液泡表面麩胺酸運轉子數量在兩種藥物依序高劑量處理後減少為最劇,水迷宮記憶表現也為最差。我進ㄧ步證明在顱內注射谷氨酸受體拮抗劑 (CNQX)可以阻斷K它命增強甲基安非他命對於多巴胺神經的傷害。然而多巴胺D1受體拮抗劑 (SCH23390)可以廢止甲基安非他命增強K它命造成的麩胺酸神經的傷害。因此我認為K它命可以透過活化谷氨酸受體去增強甲基安非他命對於多巴胺神經的傷害,甲基安非他命則是透過活化多巴胺D1受體增強K它命對於麩胺酸神經的傷害。
英文摘要 A survey revealed that club-going young adults were predictive of conjunctive ketamine and methamphetamine (MA) use. Ketamine, an NMDA receptor antagonist was reported to trigger acute neuronal apoptotic death and produces late-onset excitotoxic neurodegeneration. Methamphetamine has been known to produce dopaminergic terminal degenerations in striatum. Cumulative doses of ketamine (50 mg/kg x 7) and MA (10 mg/kg x 3) specifically produced central glutamatergic and dopaminergic neuron deficits, respectively. Acute ketamine injection did not affect basal body temperature or MA-induced hyperthermia. Binge doses of ketamine pretreatment aggravated MA-induced dopaminergic terminal loss, as evidenced by drastic decreases in dopamine, 3,4-dihydroxyphenylacetic acid content levels, dopamine transporter density and poor gait balance performance. In contrast, MA-induced serotonergic depletion was not altered by such ketamine pretreatment. Methamphetamine treatment exacerbated ketamine-induced glutamatergic neuronal damages, as indicated by vesicular glutamate transporter loss in hippocampus and poor memory performance in Morris water maze. We further demonstrated that intraventricular CNQX (AMPA receptor antagonist) infusion abolished ketamine’s potentiation of MA-induced dopamine neurotoxicity, while SCH23390 (D1 receptor antagonist) treatment mitigated MA potentiation of ketamine-induced glutamatergic toxicity. We conclude that binge doses of ketamine potentiate MA-induced dopamine neurotoxicity via AMPA/kainite activation. Conjunctive use of MA aggravates ketamine-induced glutamatergic neurotoxicity via D1 receptor activation.
論文目次 Abstract in Chinese 1
Abstract 2
Acknowledgments 3
Table of Contents 4~6
List of Figures 7~8

Introduction
A. Multi-drug abuse 9
B. Ketamine-induced neurotoxicity 9~10
C. Methamphetamine-induced neurotoxicity 10
D. Ketamine modulates dopamine system 10~11
E. Methamphetamine modulates glutamate system 11
F. NMDA receptor antagonist affects MA-induced dopaminergic 11~12
neurotoxicity

Aim 13
Research Questions 14
Significance 15

4
Content Page

Materials and Methods
A. Animals 16
B. Ketamine and methamphetamine dosing regimens 16
C. Rectal temperature measurement 16
D. DA, DOPAC, 5-HT, and 5-HIAA determination 17
E. Western blot analysis for DAT and vGLUT-1 level 17
F. Immunohistochemistry for vGLUT-1 18
G. Rotarod test 18
H. Morris water maze test 18~19
I. Cannula implantation and intra-ventricular infusion 19


Results
A. Ketamine did not affect methamphetamine-induced hyperthermia 20
B. Ketamine pretreatment enhanced methamphetamine-induced dopamine 20
toxicity
C. Ketamine treatment did not affect methamphetamine-induced serotonin 21
toxicity
D. Binge doses of ketamine produced long-lasting glutamatergic neurotoxicity 21
E. Methamphetamine treatment aggravated ketamine-induced glutamatergic 21
neurotoxicity
F. Intraventricular CNQX injection abolished ketamine potentiation of 22
methamphetamine-induced striatal dopamine neurotoxicity
G. SCH23390 injections diminished methamphetamine’s potentiation of 22
ketamine-induced hippocampal glutamate neurotoxicity
5
Content Page

Discussion 23~27

Conclusion 28

Reference 29~36

Appendix 62~63

About the author 64
參考文獻 Berretta N, Jones RS (1996) Tonic facilitation of glutamate release by presynaptic N-methyl-D-aspartate autoreceptors in the entorhinal cortex. Neurosci 75:339-344.

Bustos G, Abarca J, Forrey MI, Gysling K, Bradberry CW, Roth RH (1992) Regulation excitatory amino acid release by N-methyl-Dasparate receptors in rat striatum: in vivo microdialysis studies. Brain Res 585:105–115.

Cho AK (1990) Ice: a new dosage form of an old drug. Science 249: 63l-634.

Dewar K. M., Rompre P.-P., Stewart J., and Warren R. A. (1997) Excitotoxic lesions of the prefrontal cortex reduce dopamine D1-like receptors in the ventral tegmental area. Eur. J. Pharmacol. 336, 155–158.

Finnegan KT, Taraska T. Effects of glutamate antagonists on methamphetamine and 3,4-methylenedioxymethamphetamine-induced striatal dopamine release in vivo. J Neurochem 1996;66:1949-1958.

Ghoneim MM, Hinrichs JV, Mewaldt SP, Petersen RC (1985) Ketamine: behavioral effects of subanesthetic doses. J Clin Psychopharmacol 5:70 –77.

Gill JR, Stajic M. Ketamine in non-hospital and hospital deaths in New York City. J Forensic Sci. 2000;45:655-658.

29
Hayashi H, Dikkes P, Soriano SG Repeated administration of ketamine may lead to neuronal degeneration in the developing rat brain. Ped Anaes 2002; 12:770-774.

Hondo H, Yonezawa Y, Nakahara T, Nakamura KHM, Mirano M, Uchimura H, Tashiro N (1994) Effects of phencyclidine on dopamine release in the rat prefrontal cortex: an in vivo microdialysis study. Brain Res 633:337–342.

Javitt, D.C. & S.R. Zukin. 1991. Recent advances in the phencyclidine model of schizophrenia. Am. J. Psychiatry 148: 1301-1308

Jedema HP, Moghaddam B (1996) Characterization of excitatory amino acid modulation of dopamine release in the prefrontal cortex of conscious rats. J Neurochem 66:1448 –1453.

Kalivas PW, Duffy P (1995) D1 receptors modulate glutamate transmission in the ventral tegmental area. J Neurosci 15:5379-5388.

Kelly BC, Parsons JT, Wells BE Prevalence and predictors of club drug use among club-going young adults in New York city. J Urban Health. 2006;83:884-895.

Kegeles, L.S. et al., 2000. Modulation of amphetamine-induced striatal dopamine release by ketamine in humans: implications of schizophrenia. Biol. Psychiatry 48: 627-640


30
Knable, M.B.& D.R. Weinberger. 1997. Dopamine, the prefrontal cortex and schizophrenia. J. Psychopharmacol. 11: 123-131

Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers Jr MB, Charney DS (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Arch Gen Psychiatr 51:199 –214.

Lahti AC, Holcomb HH, Medoff DR, Tamminga CA (1995a) Ketamine activates psychosis and alters limbic blood flow in schizophrenia. NeuroReport 6(6):869–872.

Lahti AC, Koffel B, LaPorte D, Tamminga CA (1995b) Subanesthetic doses of ketamine stimulate psychosis in schizophrenia. Neuropsychopharmacology 13:9 –19.

Liao P-C., Kuo Y-M., Hsu H-C., Cherng C.G., Yu L. Local proteins associated with methamphetamine-induced nigrostriatal dopaminergic neurotoxicity. J Neurochem, 2005, 95: 160-168.

Lu X.-Y., Churchill L., and Kalivas P. W. (1997) Expression of D1 receptor mRNA in projections from the forebrain to the ventral tegmental area. Synapse 25, 205–214.

Malhotra AK, Pinals DA, Weingartner H, Sirocco K, Missar CD, Pickar D, Breier A (1996) NMDA receptor function and human cognition: the effects of ketamine in healthy volunteers. Neuropsychopharmacology 14:301–307.


31
Marina E. Wolf and Chang-Jiang Xue Amphetamine-induced glutamate efflux in the rat ventral tegmental area is prevented by MK-801, SCH 23390, and ibotenic acid lesions of the prefrontal cortex. J. Neurochem., Vol. 73, No. 4, 1999

Mark KA , Soghomonian JJ , Yamamoto BK . High-dose methamphetamine acutely activates the striatonigral pathway to increase striatal glutamate and mediate long-term dopamine toxicity. J Neurosci .2004 ; 24 : 11449 - 11456 .

Marshall JF, O’Dell SJ, Weihmuller FB (1993) Dopamine-glutamate interactions in methamphetamine-induced neurotoxicity. J Neural Transm 91:241-254.

Martin I, Lampinen TM, McGhee D. Methamphetamine use among marginalized youth in British Columbia. Can J Public Health. 2006;97:320-324.

Moghaddan B, Adams B, Verma A, daly D (1997) Activation of glutamatergic neurotransmission by ketamine: A novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci 17:2921-2927.

Moghaddam B (1993) Stress preferentially activates extraneuronal levels of excitatory amino acids in the prefrontal cortex: a comparison to hippocampus and basal ganglia. J Neurochem 60:1650 –1657.

N Nishizawa, S Nakao, A Nagata, T Hirose, M Masuzawa and K Shingu The effect of ketamine isomers on both mice behavioral responses and c-Fos expression in the
32
posterior cingulate and retrosplenial cortices. Brain Research 857, 2000, 188-192.

Olney JW.& N.B. Farber. 1995. Glutamate receptor dysfunction and schizophrenia. Arch. Gen. Psychiatry 52: 998-1007

Olney JW. New insights and new issues in developmental neurotoxicology. Neurotoxicology. 2002;23: 659-668.

Olney, JW, Labruyere, J, Wang, G, Wozniak, DF, Price, MT, Sesma, MA NMDA antagonist neurotoxicity: mechanism and prevention. Science 254, 1991, 1515-1518

Oye N, Paulsen O, Maurset A (1992) Effects of ketamine on sensory preception: evidence for a role of N-methyl-D-asparate receptors. J Pharmacol Exp Ther 260:1209 –1213.

Rao T, Kim H, Lehman J, Martin L, Wood P (1989) Differential effects of phencyclidine (PCP) and ketamine on mesocortical and mesostriatal dopamine release in vivo. Life Sci 45:1065–1072.

Sribanditmongkoi P, Chokjamsai M, Thampitak S. methamphetamine overdose and fatality: 2 cases report. J Med Asso Thai 83:1120-1123.

Pu C, Vorhees CV. Protective effects of MK-801 on methamphetamine-induced depletion of dopaminergic and serotonergic terminals and striatal astrocytic response: an immunohistochemical study. Synapse. 1995;19:97-104.
33
Sharp, FR, Jasper, P, Hall, J, Noble, L, Sagar, SM MK-801 and ketamine induce heat shock protein HSP72 in injured neurons in posterior cingulate and retrosplenial cortex. Annals of Neurology 30, 1991, 801-809.

Scallet AC, Schmued LC, Slikker WJr, Grunberg N, Faustino PJ, Davis H, Lester D, Pine PS, Sistare F, Hanig JP Developmental neurotoxicity of ketamine: Morphometric confirmation, exposure parameters, and multiple fluorescent labeling of apoptotic neurons. Toxic Sci 2004; 81:364-370.

Slikker W, Xu Z, Wang C Application of a systems biology approach to developmental neurotoxicology. Reprod Toxicol. 2005 Jan-Feb;19(3):305-19.

Smith DJ, Azzaro AJ, Zaldivar SB, Palmer S, Lee HS (1981) Properties of the optical isomers and metabolites of ketamine on the high affinity transport and catabolism of monoamines. Neuropharmacology 20:391–396.

Sonsalla PK, Nicklas WJ, Heikkila RE. Role for excitatory amino acids in methamphetamine-induced nigrostriatal dopaminergic toxicity Science 1989; 243:398-400.

Stephans S, Yamamoto B. Methamphetamines pretreatment and the vulnerability of the striatum to methamphetamine neurotoxicity. Neuroscience. 1996; 72:593-600

Teng SF, Wu SC, Liu C, Li JH, Chien CS Characteristics and trends of 3,4-methylenedioxymethamphetamine (MDMA) tablets found in Taiwan from 2002
34
to February 2005. Forensic Sci Int. 2006 Sep 12; 161:202-208. Epub 2006

Thomson AM, West DC, Lodge D (1985) An N-methyl-D-asparte receptor-mediated synapse in rat cerebral cortex: a site of action of ketamine Nature 313:479–481.

Verma A, Moghaddam B (1996) The role of excitatory amino acids in prefrontal cortex function as assessed by spatial delayed alternation performance in rats: modulation by dopamine. J Neurosci 16:373–379.

Wedzony K, Klimek V, Golembiowska W (1993) MK-801 elevates the extracellular concentration of dopamine in the rat prefrontal cortex and increases the density of striatal dopamine D1 receptors. Brain Res 622:325–329.

Wise RA, Hoffman DC (1992) Localization of drug reward mechanisms by intracranial injections. Synapse 10:247-263

Wolf ME, Xue C-J (1999) Amphetamine-induced glutamate efflux in the rat ventral tegmental area is prevented by MK-801, SCH 23390, and ibotenic acid lesions of the prefrontal cortex. J Neurochem 73:1529-1538.

Wu LT, Schlenger WE, Galvin DM Concurrent use of methamphetamine, MDMA, LSD, ketamine, GHB, and flunitrazepam among American youths. Drug Alcohol Depend. 2006;84:102-13. Epub 2006, PMID: 16483730


35
Xie T, McCann UD, Kim S, Yuan J, Ricaurte GA Effect of temperature on dopamine transporter function and intracellular accumulation of methamphetamine: implications for methamphetamine-induced dopaminergic neurotoxicity. J Neurosci. 2000;20:7838-45

D-Y Zuo, Y-L Wu, W-X Yao, Y Cao, C-F Wu and M Tanaka Effect of MK-801 and ketamine on hydroxyl radical generation in the posterior cingulate and retrosplenial cortex of free-moving mice, as determined by in vivo microdialysis. Pharmacol Biochem Behav doi:10.1016/j.pbb.2006.05.010
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2008-08-22起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2008-08-22起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw