進階搜尋


 
系統識別號 U0026-0812200913555559
論文名稱(中文) 溪流結構物對生態影響之定量評估
論文名稱(英文) The Quantitative Assessment on Stream Ecosystem Impacted by Stream Structures
校院名稱 成功大學
系所名稱(中) 水利及海洋工程學系碩博士班
系所名稱(英) Department of Hydraulics & Ocean Engineering
學年度 95
學期 2
出版年 96
研究生(中文) 顧玉蓉
研究生(英文) Yuh-Rong Guh
學號 n8889105
學位類別 博士
語文別 中文
論文頁數 241頁
口試委員 口試委員-陳禮仁
口試委員-呂建華
口試委員-梁世雄
口試委員-蔡長泰
指導教授-謝正倫
中文關鍵字 溪流生態  中度干擾假說  河濱植生  防砂壩  堤防  變動範圍評估法  棲地改變指標 
英文關鍵字 Modified Range of Variability Approach (MRVA)  riparian vegetation  Indicators of Habitat Alteration (IHabA)  Stream ecosystems  embankment  check dam  intermediate disturbance hypothesis (IDH) 
學科別分類
中文摘要 傳統水工結構物對溪流生態影響之評估方法,常以結構物設置後的受干擾棲地狀況作為評估目標,然此評估目標係一系列人為及自然干擾作用於溪流生態系統後之結果,對於干擾來源眾多、干擾強度不一、系統關係複雜的溪流生態系而言,此類方法所需時間較長且經費頗高;因此,本方法並不直接評估水工結構物所造成之棲地狀況改變,而是將自然環境中促使溪流生態系統生物多樣性的前端作用力—干擾(disturbance)作為評估目標,並以水工結構物未設置前的自然干擾作為評估基準,藉由定量化計算水工結構物設置前後之自然干擾,探討自然干擾之變化程度。此方法較易取得評估基準,且可直接評估受干擾作用後之溪流系統狀況,不需透過生物調查及建立生物指標,可較直接且有效率的進行水工結構物對溪流生態影響評估。
本文採生態學上的中度干擾假說(intermediate disturbance hypothesis)作為評估干擾變化的理論基礎,此假說在生態學中業經前人檢驗,而廣被接受。依據中度干擾假說,本文以維持溪流生態多樣性應建立符合溪流自然環境適當變動量之概念為主軸,利用實測的水文資料,代入HEC-HMS、HEC-RAS、洪水頻率分析等常用之水利工具,配合河相經驗公式、輸砂經驗公式及河濱植物群落調查等,並修正變動範圍評估法(Range of Variability Approach, RVA),探討構築堤防與防砂壩等二類水工結構物對溪流環境之影響。
本文以未受人為干擾之原有溪流自然狀況為促使溪流維持生物多樣性最高之最佳狀態,此溪流生態系統狀態最穩定;而造成此原有溪流自然狀況之自然干擾(如洪水)即為中度干擾。本文整合洪水頻率分析與河濱植生群落調查結果顯示,就溪流構築堤防而言,堤防設置位址至少需在洪水頻率年100年以外,才能夠維持河濱區域原有干擾頻率與範圍,而有助於健全整體溪流生態。並將此成果實際應用至修正溪流狀況指標法(Index of Stream Condition)中,進行曾文溪流域下游溪流河濱植生生態品質之評估,評估結果顯示,受評估河段之河濱生態品質屬中等等級。
另就溪流構築防砂壩而言,本文藉由蒐集曾文水庫上游6座主要防砂壩的生態與棲地資料,選取大埔防砂壩為分析目標,自行研訂棲地改變指標(Indicator of Habitat Alteration, IHabA)以補RAV中水文改變指標(Indicator of Hydrologic Alteration, IHA)之不足,並進而建立修正變動範圍評估法(Modified Range of Variability Approach, MRVA)。結果顯示引入IHabA可有效量化評估建壩前後棲地變化情況,而構築防砂壩前後之整體改變度(Overall Alteration)隨距壩體距離不同,約介於75%~400%間。且整體改變度在空間上之變化有愈接近壩體改變度愈大之趨勢,此與實際之物理現象相符。
本研究藉由量化自然干擾取代量測溪流生態系統內物理、化學及生物因子的評估方法,可提供具有預測能力、生態與水利精度相當,且同時結合生態學理論與簡易水利計算之替代性水工結構物對溪流生態影響的定量評估方法。
英文摘要 Stream ecosystems are negatively impacted by construction in rivers. Traditional stream ecosystem assessment methods generally assess current habitats and organisms which have been altered by natural and human disturbances. Traditional methods are difficult to identify a suitable reference site to serve as an estimation criterion using traditional assessment methods. Furthermore, habitat conditions and organisms are currently dominated by complex interactions among stream organisms and various past disturbances. Thus, it is difficult to assess the impact of construction on stream ecosystem variation by measuring current habitat and organisms.
The intermediate disturbance hypothesis states that diversity is highest at sites with an intermediate disturbance frequency and is lower at sites that have experienced very high or very low disturbance frequencies. This study used this well-known hypothesis as a theoretical basis for quantitatively evaluating the degree to which stream structures influence ecosystems. This investigation assumed that the natural stream condition without human disturbance is the best condition for promoting stream ecosystem biodiversity. This assessment method used natural stream condition dominated by natural disturbance series as a reference base. This study thus focused on natural disturbance series alteration as a result of stream structures. The central idea of this study is that appropriate or similar nature disturbance series should be retained to maintain stream ecosystem biodiversity. The analytical results indicated that assessing the impact of human disturbances by calculating nature disturbance series is more effective than examining current habitats and organisms.
In general, human disturbances on Taiwanese rivers take the form of embankments and check dams. The main functions of embankments and check dams are flood and sediment-related disaster control respectively. Flood is the most important disturbance and is a controlling factor in riparian plant community dynamics. Distribution and community structure of riparian vegetation vary based on stream hydrological character. This study combined flood frequency analysis with riparian vegetation features to determine the relationship between river top width and vegetation characteristics in terms of river discharge variation frequency. The findings demonstrated that flood frequency determines vegetation life form. Clearly, a flood frequency variation that interferes with river ecology can help promote riparian vegetation diversity. Using daily flow data, empirical stream morphology equation and surveyed riparian vegetation, this work integrated plant and hydrology characteristics to derive a new factor – Riparian Vegetation First Appearing Dimensionless Width (W-values). The W-values were found to vary according to vegetation life forms in the order Warborescent plants> Wshrubs> Wperennial plants > Wannual plants. The riparian vegetation was characterized locally by structures of different plant communities with low similarity coefficients among the sites. Quantity analyses of the riparian vegetation combined with hydrological characters thus may be useful for stream management.
Ecological assessment of streams following dam construction is frequently hindered by a lack of monitoring data, uneven sampling, and restricted target species. In this situation, pre- and post-construction comparative habitat assessment is almost impossible. The Range of Variability Approach (RVA) method was used to assess the degree of hydrologic alteration for each Indicator of Hydrologic Alteration (IHA). However, it is inadequate for assessing habitat alteration by stream structures since RVA only applies to flow discharge records. This study thus used the HEC-HMS and HEC-RAS programs to generate hydraulic series data such as flow discharge, water depth, velocity, water surface width and sediment discharge. A new indicator known as Indicators of Habitat Alteration (IHabA) was established based on such hydraulic data to replace IHA. This revision method is known as the Modify Range of Variability Approach (MRVA). MRVA can be applied to other stream structures which could not change their discharge flow, for example check dams. Combining IHA and IHabA improves the accuracy of assessments of river ecology. The results indicated that overall alteration for IHabA can obviously get closer to the dam body, and the low category should be more suitable for evaluating possible changes resulting from check dam construction.
The indoor assessment method used in this study can provide a time and effort-saving method for evaluating middle-scale reach condition variations resulting from stream structures. This study presented an assessment method for dam construction which does not require ecological investigation data. Simultaneously, the proposed method can provide approximate precision between ecology and hydrology environmental assessment, and forecast habitat alteration.
論文目次 摘要……………………………………….………………………………………I
Abstract……………………………………….……………………………………...III
誌謝…………………………………….………………………………………….IV
目錄……………………………………….………………………………………….V
表目錄……………………………………….……………………………..………VIII
圖目錄……………………………………….……………………………………......X

第一章 緒論…………………………………………..…………………1
1-1 前言……………………………………………..………………...1
1-2 研究動機與目的………………………………………………….2
1-3 研究內容………………………………………………………….4
1-4 本文組織………………………………………………….............5

第二章 前人研究………………………………………………………7
2-1 溪流管理策略之演進…………………………………………….7
2-2 溪流評估方法簡介……………………………………………….8
2-2-1 國外溪流評估方法及應用 ………………….………………..9
2-2-2 國外溪流評估方法比較………………….………………......24
2-2-3 國內溪流評估方法及應用…………………………………...25
2-2-4 溪流評估方法應具備之條件………………………………..27
2-3 中度干擾假說概念應用於溪流評估……………….…………..29
2-3-1 中度干擾假說………………………………………………...30
2-3-2 自然水文變動量與溪流生態生物之關係………………......32
2-4 堤坊對溪流生態之影響及其評估方法………………………...34
2-4-1 堤坊功能與水理特性………………………………………...34
2-4-2 堤坊對溪流生態之影響……………………………………...34
2-4-3 堤坊之評估方法 …………………………………………….42
2-5防砂壩對溪流生態之影響及其評估方法……………………..42
2-5-1 防砂壩功能與水理特性……………………………………..42
2-5-2 防砂壩對溪流生態之影響機制……………………………..43
2-5-3 防砂壩對溪流生態之影響…………………………………..44
2-5-4 防砂壩之評估方法…………………………………………..49
2-6 評估方法建立之基礎……………………………….……….49

第三章 研究試區生態特性分析…………………………….………...53
3-1 研究方法…………………………………………….…………..53
3-2 結果分析…………………………………..…………………….58
3-3 小結………………………………………………..…………….65

第四章 應用洪水頻率與河濱植生評估下游溪流保留寬度….……...66
4-1 基本假設及適用範圍….……………………….……………….66
4-2 研究流程……………….……………………….……………….67
4-3 水文特性分析……………….…………………….…………….69
4-3-1年尺度水文特性分析……………….……………………..…..70
4-3-2日尺度水文特性分析……………….…………………………77
4-4河濱植生調查與分析…………….………………….……….......77
4-4-1調查方法…………….………………………….………….….77
4-4-2相似度(similarity)計算…………….…………….……..….81
4-5結果分析討論…………….….……………………………….......81
4-5-1 河濱植生調查成果…………………………………………….81
4-5-2河濱植生與頻率河寬分析………………………………….....83
4-5-3 河濱植生與基流寬度分析…………………………………….87
4-5-4植物相似度分析…………………………………………….....91
4-6 修正河濱環境品質評估方法與應用 …………….……………93
4-6-1 樣區(site)選定…………………………………………………94
4-6-2河濱區域次指數之計分項目與計分方法…………………….95
4-6-3河濱區域次指數之量化與修正方法………………………….101
4-6-4河濱區域次指數之量化與修正結果………………………….102
4-7小結…………….…………………………….………………....108

第五章 應用修正變動範圍評估法(MRVA)評估防砂壩設立對溪流環境之影響…………………………………………………………111
5-1 基本假設及適用範圍…….……………………………………111
5-2研究流程與方法………………….………………………....…..113
5-3資料推衍方法…………….……………………………………..114
5-3-1現有資料及區域描述…………………………………………114
5-3-2 流量資料推衍………………………………………………116
5-3-3 棲地資料推衍………………………………………………..129
5-4建立修正變動範圍評估法(MRVA)….………………………...144
5-4-1變動範圍評估法(RVA)理論…………………………………144
5-4-2修正變動範圍評估法(MRVA)………………………………148
5-5整體改變度之計算與比較……….……………………………..158
5-5-1水理參數時間序列變化……….………………………….…158
5-5-2整體改變度計算方法探討……….………………………….167
5-5-3各水理參數在空間上之整體改變度變化……….………….168
5-5-4整合參數在空間上之整體改變度變化……….…………….171
5-6小結………………….…………………………………………..172

第六章 結論與建議………….…………………………….…………173
6-1 結論………………….…………………………………………173
6-2 建議………………….…………………………………………174

參考文獻………………….…………………………………………...176
附錄
附錄A 溪流評估方法評估與量測細項表……………………………………附A-1
附錄B 研究區內河濱植物調查資料…………………………………………附B-1
附錄C 研究區內河濱植物調查照片…………………………………………附C-1
附錄D 河濱植物出現位置表…………………………………………………附D-1
附錄E 各樣點植物樣本出現寬度對應頻率年統計表……………………….附E-1

表目錄
表2-1 溪流水質評估的ㄧ般測量參數 9
表2-2 溪流評估方法比較 25
表3-1 溪流水質檢驗方法 55
表3-2 台灣溪流污染指數之污染程度分級法 56
表3-3 溪流底質分類系統 57
表3-4 各防砂壩河床棲地特徵 61
表3-5 魚類歧異度與底質歧異度表 62
表4-1 杉林大橋站洪峰頻率分析結果(單位:cms) 71
表4-2 六龜水位站洪峰頻率分析結果(單位:cms) 71
表4-3 左鎮水位站洪峰頻率分析結果(單位:cms) 72
表4-4 新市水位站洪峰頻率分析結果(單位:cms) 72
表4-5 各樣點河寬-流量之迴歸關係式 73
表4-6 杉林大橋站頻率河寬( )統計表(單位:m)
74
表4-7 六龜水位站頻率河寬( )統計表(單位:m)
75
表4-8 左鎮水位站頻率河寬( )統計表(單位:m)
75
表4-9 新市水位站頻率河寬( )統計表(單位:m)
76
表4-10 各樣點頻率河寬( )統計表(單位:m)
76
表4-11 各斷面之植物生活型物種累計數目 82
表4-12 各種河濱植生首現寬度與頻率年統計表 84
表4-13 各生活型植物首現寬度與洪水頻率表 87
表4-14 研究樣區特徵流量寬度( )表
88
表4-15 各樣區河濱植物生活型與無因次植物首現寬度W 91
表4-16 各斷面河濱植生之相似度係數統計表 92
表4-17 各樣區河濱植生相似度係數統計表 93
表4-18 河濱區域寬度評估比分表 95
表4-19 植生連續性評估比分表 96
表4-20 植生結構完整性評估比分表 97
表4-21 外來種植生覆蓋比例分數表 98
表4-22 本土樹種再生率比分表 98
表4-23 各項指標的研究範圍及比分範圍 100
表4-24 不同干擾狀況與河濱區域寬度比分表 103
表4-25 不同斷面個數paired t test檢定結果 104
表4-26 各案例之統計參數之解釋度統計表 106
表4-27 每一斷面間距200m之河濱區域次指數值(3個斷面) 107
表4-28 河段品質比分(rating)表 107
表5-1 渠道單元參數設定 124
表5-2 子集水區漫地流平面相關參數 124
表5-3 子集水區內主要集水幹渠之參數 125
表5-4 各子集水區之控制雨量站及權重 126
表5-5 突擴突縮能量損失係數表 132
表5-6 曼寧粗糙係數表 137
表5-7 大埔壩粒徑分布表 139
表5-8 水文改變指標(IHA)表 145
表5-9 各IHA對溪流生態系統之影響 149
表5-10 以溪流生態是否受防砂壩影響檢討水文改變指標 151
表5-11 可能可以反應設置防砂壩對溪流生態影響的水文改變指標 155
表5-12 棲地改變指標(IHabA) 157
表5-13 IHA與IHabA對照表 158
表5-14 建壩前後兩時期斷面1水深之棲地改變指標與棲地改變度 159
表5-15 建壩前後兩時期流速之棲地改變指標與棲地改變度 161
表5-16 建壩前後兩時期水面寬之棲地改變指標與棲地改變度 163
表5-17 建壩前後兩時期輸砂量之棲地改變指標與棲地改變度 165

圖目錄

圖2-1 干擾對溪流生態影響示意圖 33
圖2-2 溪流廊道空間範圍示意圖 35
圖2-3 溪流廊道橫斷面圖 37
圖2-4 防砂壩造成棲地變動比較圖 45
圖2-5 溪流生物群聚生態模式圖 51
圖2-6 傳統評估方法與本文評估方法之差異比較圖 52
圖3-1 調查樣點分布圖 54
圖3-2 各測站溪流污染指標月變化 60
圖3-3 魚類歧異度與底質歧異度關係圖 62
圖3-4 魚類相似度關係圖 64
圖4-1 基礎研究流程圖 68
圖4-2 應用研究流程圖 69
圖4-3 研究區域水文站分佈位置與水系圖 78
圖4-4 研究樣區現場照片 79
圖4-5 研究樣區與採樣斷面示意圖 79
圖4-6 河濱植生第一次出現寬度圖 80
圖4-7 不同機率分布之一年生草本植物物種累計數目與洪水頻率關係圖 85
圖4-8 不同機率分布之多年生草植物物種累計數目與洪水頻率關係圖 85
圖4-9 不同機率分布之灌木類植物物種累計數目與洪水頻率關係圖 86
圖4-10 不同機率分布之喬木類植物物種累計數目與洪水頻率關係圖 86
圖4-11 各斷面之一年生草本植物與無因次植物首現寬度W關係圖 88
圖4-12 各斷面之多年生草本植物與無因次植物首現寬度W關係圖 89
圖4-13 各斷面之灌木與無因次植物首現寬度W關係圖 89
圖4-14 各斷面之喬木與無因次植物首現寬度W關係圖 90
圖4-15 各樣區植物生活型與W關係圖 91
圖4-16 調查樣區分布圖 94
圖4-17 河濱植物覆蓋與河岸比例示意圖 96
圖4-18 河濱區域次指數評估流程圖 99
圖4-19 ISC手冊訂定之樣區調查方法示意圖 102
圖4-20 檢定最佳樣區調查長度之調查斷面示意圖 102
圖4-21 不同取樣間距(100m,200m,300m,500m)各樣區河濱區域次指數值之分布狀況 105
圖5-1 研究流程圖 114
圖5-2 壩址位置、現況照片及水系分布圖 115
圖5-3 壩址平面圖 116
圖5-4 有限差分法空間與位置網格示意圖 122
圖5-5 HMS流域模型圖(主流) 123
圖5-6 HMS流域模型圖(支流) 123
圖5-7 HEC-HMS模式率定比較圖 127
圖5-8 建壩前時期(1975年~1988年)主流之模擬流量 127
圖5-9 建壩後時期(1990年~2002年)主流之模擬流量 128
圖5-10 建壩前時期(1975年~1988年)支流之模擬流量 128
圖5-11 建壩後時期(1990年~2002年)支流之模擬流量 128
圖5-12 建壩前後河道縱斷面圖 129
圖5-13 能量方程式示意圖 131
圖5-14 兩斷面間河段長之示意圖 132
圖5-15 動量方程式示意圖 133
圖5-16 RAS溪流系統模型(建壩前) 135
圖5-17 RAS溪流系統模型(建壩後) 136
圖5-18 模式連結示意圖 138
圖5-19 建壩前後水深變化圖(斷面1) 140
圖5-20 建壩前後流速變化圖(斷面1) 141
圖5-21 建壩前後水面寬變化圖(斷面1) 142
圖5-22 建壩前後輸砂量變化圖(斷面1) 143
圖5-23 RVA標的與各值區之定義 146
圖5-24 高低流量定義圖示 146
圖5-25 平均值法與加權平均值法計算之水深整體改變度圖 167
圖5-26 各斷面之水深整體改變度圖 168
圖5-27 各斷面之流速整體改變度圖 169
圖5-28 各斷面之水面寬度整體改變度圖 169
圖5-29 各斷面之輸砂量整體改變度圖 170
圖5-30 整合參數在防砂壩上游之整體改變度變化圖 171
參考文獻 中文:
中央研究院動物研究所(1997),曾文溪流域之魚種組成及魚類群聚之初步研究。台灣魚類資料庫。http://fishdb.sinica.edu.tw/2001new/main1.asp。
方力行、邵廣昭(1989),台灣電力公司新天輪水力發電工程施工期間生態調查研究計畫第一期末報告。
水土保持手冊(2005),行政院農業委員會水土保持局編印。
水利署水利規劃試驗所(2001),全省河川生態補充調查與資料庫建立研究計畫(1/4)北部地區。
水利署水利規劃試驗所(2002),全省河川生態補充調查與資料庫建立研究計畫(2/4)中部地區。
水利署水利規劃試驗所(2003),全省河川生態補充調查與資料庫建立研究計畫(3/4)南部地區。
水利署南區水資源局(1999),曾文水庫集水區本流魚類生態調查及本流防砂壩設置魚道可行性評估。
水利署南區水資源局(2000),曾文水庫、阿公店水庫及牡丹水庫集水區第一期治理調查規劃計畫-曾文水庫部分。
水利署南區水資源局(2001),曾文水庫集水區主流防砂壩淤積調查及清淤計畫。
王如意與易任(1978、1982),應用水文學。國立編譯館出版,茂昌圖書有限公司發行。
王守民(1991),大甲溪口地區植物資源及植群演替趨勢之研究。國立中興大學植物學研究所碩士論文。
王基安(1998),上游河道寬度變化對河相關係之研究。逢甲大學土木及水利工程研究所碩士論文。
古昌杰與汪靜明(1994),河川生態敏感地區劃定架構之研究。逢甲大學規劃與設計學報,1(3):9-26。
朱達仁(2004a),臺北縣雙溪鄉后番仔坑溪應用生態工法整治影響及生態監測評估之研究。第十四屆水利工程研討會,國立交通大學土木工程學系,D-91~ D-98。
朱達仁(2006),溪流複合式指標評估模式之建構。特有生物研究,8(1)︰35-56。
朱達仁、呂宗儒、施君翰與郭一羽(2004b),應用生物整合指標法評估台北縣雙溪鄉后番仔坑溪整治影響之研究。水資源管理2003研討會論文集,pp4-87~4-97。
朱達仁、施君翰、李宗儒(2004c),應用生物整合指標法探討石門水庫上游湳仔溝溪整治影響之研究。九十三年農業工程研討會論文集,pp1270-1279。
朱達仁、施君翰、徐笑情、張睿昇、陳有祺(2004d),以水生昆蟲生物指標法評估石門水庫上游集水區水質之研究。水資源管理2003研討會論文集,pp4-75-4-86。
朱達仁、賴旻佑、施君翰、汪淑慧(2004e),以水生昆蟲指標法評估基隆河汐止段支流生態環境之研究。第二屆營建產業永續發展研討會論文集,ppD-37。
行政院環境保護署環境檢驗所(1990),台灣河川污染生物指標—底棲動物類。
行政院環境保護署(1987),台灣河川水質年報。
吳俊宗(2000), 台灣藻類歧異度問題:河川矽藻為例。海峽兩岸生物多樣性研討會論文集,國立自然科學博物館。pp237-245。
吳俊賢(1993),森林經營的他山之石。台灣林業,29(2):62-67。
吳富春、李國昇(1998),集集共同攔河堰之環境生態基準流量評估,水資源管理研討會,台北。
吳富春、胡通哲、李國昇、李德旺(1998),應用棲地模式估算台灣河川之生態流量,第九屆水利工程研討會,中央大學。
吳富春及王琪芳(2000),流況及底質粒徑之改變對河川物理棲地之影響,第十一屆水利工程研討會,台灣,台灣大學2000年7月5~6日。
呂光洋、汪靜明(1987),武陵農場河域之原產種魚類生態之初步研究。行政院農業委員會。
李元陞(1995),以底棲動物為指標生物評估宜蘭河水質之研究。宜蘭農工學報, 11:149-161。
李明儒、林信輝、于錫亮(2002),應用生物整合指標(IBI)評估溪流生態工法實施效益之可行性。第一屆自然生態工法理論與實務研討會論文集,pp103-115。
李後晶(1997),水棲昆蟲在森林生態系中能量轉換之功能。行政院國家科學委員會專題研究計畫成果報告。
汪靜明(1990),河川魚類棲地生態調查之基本原則與技術。林務局森林溪流淡水魚保育訓練班論文集,pp119-137。
汪靜明(1992),大甲溪魚類棲地改善之生態評估研究。國立彰化師範大學生物學系,台灣電力公司委託。
汪靜明(1993),大甲溪魚類棲地改善之生態評估研究。國立彰化師範大學生物學系,台灣電力公司委託。
周正明(2001),河川生態工法評估程序建立─溪流狀況指數為例。國立臺灣大學土木工程學研究所碩士論文。
林文隆(2002),台灣本土魚類簡介-條紋二鬚鲃。自然保育季刊,40:52-57。
林文隆(2003),台灣特有種魚類-飯島氏銀鮈。自然保育季刊,42:53-57。
林文隆、蔡顯修、吳雪如(2006),水圳水泥化對其間生物數量變動之影響。中華水土保持學報。
林信輝、李明儒、孫明德、黃俊仁(2004),生物整合指標(IBI)之應用探討。中華水土保持學報,35(1):81-96。
林昭遠(1998),集水區植生緩衝帶寬度及配置之研究(II)。中華水土保持學報,29(3):261-272。
林朝欽(2002),火燒對森林植物多樣性之影響。國科會生命科學簡訊,14(9),http://biometrics.sinica.edu.tw/nsc/article/v16_09/article2.php3。
林曜松、楊平世、梁世雄、曹先紹、莊鈴川(1988),櫻花鉤吻鮭生態之研究(一):魚群分布與環境因子關係之研究。行政院農業委員會,生態研究第023號。
段錦浩、連惠邦、葉昭憲(2000),系列防砂壩改善工程對七家灣河床形態之影響研究。國家公園學報,10(1):1-14。
胡通哲、王筱雯、李鴻源、施上粟、蔡慧萍(2005),南勢溪河川廊道棲地改善復育之研究。2005國際生態工法及水利技術研討會論文集,(1):121-134。
唐先柏、李明賢、黃婷璟、顏佩雯、劉薇芝、陳美妃(2003),生物指標系統之建立-以中港溪為例。生態系經營永久樣區理論與實務探討研討會,2003年2月25、26日。
張世倉(1998),烏石坑溪防砂壩對河川生態的影響及其魚道效用之評估。國立海洋大學漁科研究所碩士論文。
張世倉、李德旺、李訓煌、胡通哲(1997),烏石坑溪魚道現況功能初步調查評估。曹先紹編。林務局八十六年溪流環境保育研討會講義。行政院農委會。
張世晃、李培芬、林曜松(1998),福山試驗林哈盆溪台灣鏟頷魚(Varicorhinus barbatulus)之生殖。博物館年刊,41:53-69。
張明雄與林曜松(1999),攔沙壩對水生生物多樣性的影響。1999生物多樣性研討會論文集,pp306-323。
梁世雄(2000),水生昆蟲相關調查及利用其建立河川水質多測項評估系統之研究 – 以高屏溪中上游為例。經濟部水資源局。
梁世雄、洪慶宜、許憲呈、翁榮炫、鄭秀娟(2002),建立二仁溪、將軍溪河川生態指標與流域整治績效評估計畫。行政院環境保護署(EPA-91-G103-02-217)。
梁潤生(1974),平鰭鰍科之分布與適應構造並記載臺灣產平鰭鰍科之一新種。生物與環境專題研討會講稿集,pp141-156。
許嘉恩(1990),桶后溪石濱之生殖生物學研究。國立台灣大學/動物學研究所碩士論文。
許增發(2003),防砂壩對魚類分佈之影響-以曾文水庫集水區主流為例。國立成功大學水利及海洋工程研究所碩士論文。
郭勝豐、陳以容(2002),農用生態水路之規劃研究,農業水利科技研究發展九十年度成果發表討論會。
郭鍾秀與劉忠裕(2002),利用附著性矽藻作為鯉魚潭水庫水質之生物指標之可行性研究。第八屆海峽兩岸環境保護研討會論文集,交通大學,新竹,pp175-180。
陳信雄、陳明杰(1989),森林對防洪與水資源保育效益之初步研究。台大實驗林研究報告,3(1):95-102。
陳振華(2000),溪流綜合環境品質評估模式之建立與應用-以高屏溪為例,國立東華大學自然資源管理研究所碩士論文。
陳富永、徐玲明(2001),常見的野花野草。行政院農業委員會農業藥物毒物試驗所編印。
彭弘光(1986),魚生物學的初步研究。台灣省水產試驗所試驗報告。
彭弘光、劉富光(1991),石魚賓生物學的初步研究,臺灣省水產試驗所試驗報告,50:85-92。
揚持、叶博(1994),不同草原群落植物種多樣性的比较研究。内蒙古大學學報,25(2):209-221。
曾晴賢(1997),櫻花鉤吻鮭族群生態調查和育種場位址評估。內政部營建署雪霸國家公園管理處。
湯宗達(1997),以生態系統完整性為中心之溪流生態品質評估架構。國立中興大學資源管理研究所碩士論文。
黃生、徐堉峰、余澄堉(2000),金門國家公園昆蟲多樣性之研究。金門國家公園管理處及國立台灣師範大學生物學系合作研究報告。
黃國靖(1997),花蓮美崙溪水棲昆蟲生態及生物指標研究。行政院國家科學委員會專題研究報告。
楊平世(1992),台灣河川底棲生物手冊。行政院環保署環境檢驗所。
楊正雄(1997),水溫對櫻花鉤吻鮭的影響。國立清華大學生命科學系碩士班碩士論文。
楊家坦(2001),福建水資源發展的合理限度與發展模式。中國水利2001年第3期。
溫清光(2002),曾文水庫水質調查及改善後計畫。經濟部水利署南區水資源局委託。
溫清光、郭振泰、龍梧生、張穗蘋、李志賢、莊淑滿(2001),曾文水庫水質調查及改善計畫。水利署南區水資源局委託,財團法人成大研究法展基金會執行。
經濟部水利署水利規劃試驗所(2004),曾文溪河系河川情勢調查計畫。黎明工程顧問公司執行。
趙大衛、方力行、張學文、許清玫、劉學煌、劉仲康、劉和義(1992),高屏溪水域生態調查及其污染生物指標之建立。環保署研究報告。
劉一新、高毓斌(1994),林相改良作業對臺灣南部低海拔闊葉林林分組成與結構之影響。林業試驗所研究報告季刊,9(4):317-329。
歐信宏(2000),降雨-逕流模式應用之研究,國立成功大學水利及海洋工程研究所碩士論文。
蔣慕琰、徐玲明、袁秋英、陳富永、蔣永正(2003),台灣外來植物之危害與生態。農業藥物毒物試驗所-小花蔓澤蘭危害與管理研討會專刊,pp97-109。
蕭政宗與吳富春(2004),集集攔河堰最佳引水與河川生態流量之研究。第十四屆水利工程研討會論文集,ppC01-C08。
賴明洲(1999),台灣地帶性植被之區劃與植物區系之分區。1999年生物多樣性研討會論文集,pp349-400,行政院農委會。
賴建盛(1996),防砂壩對櫻花鉤吻鮭物理棲地影響之研究。國立台灣大學地理研究所碩士論文。
戴永禔(1992),台灣櫻花鉤吻鮭之族群生態學研究。台灣大學動物學研究所博士論文。
顏正平、林信輝(1993),保育植物學。國立中興大學編印。
魏信和(1993),流域水質管理模式之發展與應用-非點源污染河川水質之影響探討。國立中央大學環境工程研究所碩士論文。
羅樹孝(1995),水文學辭典。茂昌圖書有限公司出版。
顧玉蓉、許增發、梁世雄、謝正倫(2004),曾文水庫集水區主流防砂壩對魚類分布之影響,2004農業工程研討會,pp.1198-1209。
顧玉蓉、趙偉成、謝正倫(2004),河川水文特性對河濱植生影響之研究。台灣水利,52(3):48-59。
顧玉蓉、趙偉成、謝正倫(2005),河濱植生與河川基流量寬度關係之研究。特有生物研究,7(1):51-60。


日文:
千田 捻(1991),自然的河川計。理工圖書出版。(日文)
中村太土 (1995),河畔域におけゐ森林と河川の相互作用。日本生態學會誌,45:295-300。(日文)
中村太土、百海琢司(1989),河畔林の河川水溫への影響に關すゐ考察。日本林學會誌。(日文)
玉井信行、水野信彥、中村俊六(1993),河川生態環境工學。東京大學出版會。(日文)
玉井信行、奧田重俊、中村俊六(2000),河川生態環境評價法。東京大學出版會。(日文)
石塚和雄(1977),河原と河邊林。石塚和雄編『植物生態學講座1. 群落の分布と環境』,朝昌書店,pp237-242。(日文)
崎尾 均、鈴木和次郎(1997),水邊の森林植生の現狀、構造、機能および砂防工事によゐ影響,砂防學會誌,49(6):40-48。(日文)
森下郁子(2000),自然學研究創刊號。社團法人淡水生物研究所。(日文)
奧田重俊(1992),關東地方の主要河川におけゐ植生護岸の基礎研究。河川美化.綠化調查研究論文集,pp47-70,河川環境管理財團。(日文)
鈴木和次郎(1992),溪畔林の構造.動態と攪亂樣式。農林水產技術會議事務局研究發展課生物機能關係資料,6:57-61。(日文)


英文:
A. Munné, N. Prat, C. Solà, N. Bonada and M. Rieradevall (2003), A Simple Field Method for Assessing the Ecological Quality of Riparian Habitat in Rivers and Streams: QBR Index, Aquatic Conservation: Marine and Freshwater Ecosystems. 13(2):147–163.
Abugov R. (1982), Species Diversity and Phasing of Disturbance. Ecology. 63(2):289–293.
Alexandex G. R., and E. A. Hansen (1986), Sandbed Load in A Brook Trout Stream. North American Journal of Fish Management. 6:9-23.
Alford R. A. and S. J. Richards (1999), Global Amphibian Declines: A Problem in Applied Ecology. Annual Review of Ecology and Systematics. 30:133-165.
Allen J. D. (1995), Stream Ecology: Structure and Function of Running Waters. Chapman and Hall, London.
Anderson J.R. (1993), State of the Rivers Project. Report 1. Development and Validation of the Methodology. Department of Primary Industries, Queensland.
Anderson J.R. (1999), Basic Decision Support System for Management of Urban Streams. Report A: Development of the Classification System for Urban Streams. National River Health Program, Urban Sub Program. LWRRDC Occasional Paper 8/99.
Bain M.B., Finn J. T., Booke H. E. (1985), Quantifying Stream Substrate for Habitat Analysis Studies. North American Journal of Fisheries Management , 5: 499-506.
Barbour M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling (1999), Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C.
Barcelona Field Studies Centre (2000), Riparian quality: QBR index, Barcelona Field Studies Centre, http://geographyfieldwork.com/Riparian%20quality%20QBR%20index.htm.
Bayley P. B. (1991), The Flood Pulse Advantage and the Restoration of River Floodplain Systems, Regulated Rivers: Research and Management, 6:75-86.
Benk A. C., Chaubey I., Ward G. M. & Dunn E. L. (2000), Flood Pulse Dynamics of an Unregulated River Floodplain in the Southeastern U.S. Coastal Plain, Ecology, 81(10):2730-2741.
Biggs B. J. F. and Close M. E. (1989), Periphyton Biomass Dynamics in Gravel Bed Rivers: The Relative Effects of Flows and Nutrients. Freshwater Biology, 22:209-231.
Biggs B.J.F., and Gerbeaux P. (1993), Periphyton Development in Relation to Macro-Scale (Geology) and Micro-Scale (Velocity) Limiters in Two Gravel-Bed Rivers, New Zealand. New Zealand Journal of Marine and Freshwater Research, 27:39–53.
Brady W., D.R. Patton, and J. Paxson (1985), The Development of Southwestern Riparian Gallery Forests. In Riparian Ecosystems and Their Management: Reconciling Conflicting Uses, Tech. Coords. R.R. Johnson Et Al., pp39-43. USDA Forest. Service General Technical Report RM-120, Rocky Mountain Forest and Range Experiment Station, Fort Collins, Colorado.
Brierley G., Fryirs K. and Cohen T. (1996), Development of A Generic Geomorphic Framework to Assess Catchment Character. Part 1. A Geomorphic Approach to Catchment Characterisation. Working Paper 9603, Macquarie University, Graduate School of The Environment.
Brown J. H. (1984), On The Relationship Between Abundance and Distribution of Species. The American Naturalist, 124:255-279.
Brown S. and L. Giese. (1988), Tree Growth Rates and Regeneration of Buttonland Swamp, Southern Illinois. Final Report to Illinois Dept. Conservation, Cache River Basin Study. Department of Forestry, Univ. Illinois, Urbana.
Budd W. W., Cohen P. L., Saunders P. R. and Steiner F. R. (1987), Stream Corridor Management in the Pacific Northwest-Management Strategies. Environmental Management, 11:592-605.
Buhlmann K. A. (1995), Habitat Use, Terrestrial Movements and Conservation of The Turtle Dierochelys Reticularia in Virginia, Journal of Herpetology, 29: 173-181.
Calow P. & Petts G. (1992), The Rivers Handbook - Hydrological and Ecological Principles, Volume 1 Blackwell Scientific Publications, Oxford, UK.
Campos F., A. Fernández F. Gutiérrez-Corchero,F. Martin-Santos and P. Santos (2000), Diet of The Eurasian Kingfisher (Alcedo Atthis) in Northern Spain, Folia zool., 49: 115-121.
Carothers S.W., R.R. Johnson, and S.W. Aitchison (1974), Population Structure and Socialorganization of Southwestern Riparian Birds. American Zoology, 14: 97-108.
Chessman B. C. (1995), Rapid Assessment of Rivers Using Macroinvertebrates: A Procedure Based on Habitat Specific Sampling, Family Level Identification and A Biotic Index. Australian Journal of Ecology, 20: 122 – 129.
Chow V.T. (1973), Open Channel Hydraulics, McGraw Hill.
Coffin D.P., and Lauenroth W.K. (1988), The Effects of Disturbance Size and Frequency on A Shortgrass Plant Community. Ecology, 69(5):1609-1617.
Collins S.L., Glenn S.M. (1997), Intermediate Disturbance and Its Relationship To Within- And Between-Patch Dynamics. NZ J Ecol., 21:103–110.
Collins S.L., Glenn S.M., Gibson D.J. (1995), Experimental Analysis of Intermediate Disturbance and Initial Floristic Composition: Decoupling Cause and Effect. Ecology, 76:486–492.
Connell J. H. (1978), Diversity in tropical Rainforests and Coral reefs. Science, 199: 1302-1310.
Connell J. H. and Slatyer R. O. (1977), Mechanisms of Succession in Natural Communities and Their Role in Community Stability and Organization. American Naturalist, 111: 1119-1144.
Courtemanch D. L. and S. P. Davies (1987), A Coefficient of Community Loss to Assess Detrimental Change in Aquatic Communities. Water Research, 21: 217-222.
Cowx I. G. and R. L. Welcomme (1998), Rehabilitation of Rivers for Fish. Food and Agriculture Organization of The United Nations (FAO).
Cushman RM. (1985), Review of Ecological Effects of Rapidly Varying Flows Downstream of Hydroelectric Facilities. North American Journal of Fisheries Management, 5: 330-339.
Davies N.M., Norris R.H. and Thoms M.C. (2000), Prediction and Assessment of Local Stream Habitat Features Using Large-Scale Catchment Characteristics. Freshwater Biology, 45: 343-369.
Death R.G., Winterbourn M.J. (1995), Diversity Patterns in Stream Benthic Invertebrate Communities: The Influence of Habitat. Ecology, 76:1446–1460.
Dial R., Roughgarden J. (1998), Theory of Marine Communities: The Intermediate Disturbance Hypothesis. Ecology, 79:1412–1424.
Diamond J. M. (1975), Assembly of Species Communities. In M. L Cody and J. Diamond Eds. Ecology and Eevolution of Communities. Cambridge Press. pp343-444.
Diamond J. M. (1988), Factors Controlling Species Diversity: Overview and Synthesis. Annals of Missouri Botanical Garden, 75: 117-129.
Dobzhansky T. (1950), Evolution in the Tropics. American Naturalist, 14:64-81.
Dorcast M. E., J. W. Gibbons and H. G. Dowling (1998), Seminatrix Cope .Black Swamp Snake. Society for the Study of Amphibians and Reptiles.
Downs P. W. and C. R. Thorne (2000), Rehabilitation of A Lowland River: Reconciling Flood Defence with Habitat Diversity and Geomorphological Sustainability, Journal of Environmental Management, 58: 249-268.
Elizabeth M. Strange, Kurt D. Fausch, Alan p. Covich (1999), Sustaining Ecosystem Services in Human-Dominated Watersheds: Biohydrology and Ecosystem Processes in the South Platte River Basin. Environmental Management, 24(1):39–54.
Fayolle S., Cazaubon A., Comte K., and Franquet E., (1998), The Intermediate Disturbance Hypothesis: Application of This Concept to The Response of Epilithion in A Regulated Mediterranean River (Lower-Durance, South Eastern France). Archiv Fuer Hydrobiologie, 143(1): 57-77.
Fischer A. G. (1960), Latitudinal Variations in Organic Diversity. Evolution, 14:64-81.
Fisher S. G. and Sumner, S. T. (1976), Fort River Ecosystem: Productivity of the Periphyton Component. NTIS PB-258-772.
Fjellheim A., Raddum G. G. and Schnell O. A. (1989), Change in Benthic Animal Production of A Weir Basin After Eight Years of Succession, Regul. Riv., 3:183-190.
Fox P.J.A., Naura M. and Scarlett P. (1998), An Account of The Derivation and Testing of A Standard Field Method, River Habitat Survey. Aquatic Conservation: Marine and Freshwater Ecosystems, 8: 455-475.
France R. L. (2002), Handbook of Water Sensitive Planning and Design. Boca Raton, FL: Lewis Publishers.
Francisco Zamora-Arroyo, Pamela L. Nagler, Mark Briggs A, Dean Radtke B, Hugo Rodriquez B, Jaqueline Garcia B, Carlos Valdes, Alfredo Huete, Edward P. Glenn B .(2001), Regeneration of Native Trees in Response to Flood Releases from The United States into the Delta of the Colorado River, Mexico. Journal of Arid Environments, 49: 49-64.
Franklin J.F, (1992), Scientific Basis for New Perspectives .In Forests and Streams. In: RJ. Naiman (Editor). Watershed Managcment. Balancing Sustainability and Environmental Change. Springer-Verlag. New Yark, NY.
Franklin K. L., W. E. Dietrich, and W. J. Trush. (1995), Downstream Ecological effects of Dams. BioScience, 45:183-192.
Fredrickson L.H. (1978), Lowland Hardwood Wetlands: Current Status and Habitat Values for Wildlife. American Water Resources Association, Minneapolis, Minnesota.
Frissell C. A., Liss W. J., Warren C.E. and Hurley M.D. (1986), A Hierarchical Framework for Stream Habitat Classification: Viewing Streams in A Watershed Context. Environmental Management, 10:199-214.
Gorman O. T., and J. R. Karr. (1978), Habitat Structure and Stream Fish Communities. Ecology, 59:507-515.
Guh Y. H., Zhao W. C., Liang S. H. and Shieh C. L. (2005), Relationship between Riparian Vegetation and the Flood Frequency. International Journal of Ecology and Environmental Sciences, 31(1):29-38.
Hacker S. D., Gaines S. D. (1997), Some Implications of Direct Positive Interactions for Community Species Diversity. Ecology, 78:1990–2003.
Hannaford M. J. and Resh V. H. (1995), Variability in Macroinvertebrate Rapid-Bioassessment Surveys and Habitat Assessment in A Northern California Stream. Journal of the North American Benthological Society, 14: 430-439.
Harper D. and Everard M. (1998), Why Should the Habitat-Level Approach Underpin Holistic River Survey Management? Aquatic Conservation: Marine and Freshwater Ecosystems, 8: 395-413.
Harwell M. A. (1998), Science and Environmental Decision Making in South Florida. Ecological Application, 8(3): 580-590.
Heggenes J., A. Brabrand and S. J. Saltveit (1991), Microhabitat Use by Brown Trout, Salmo Trutta L. and Atlantic Salmon, S. Salar L., in A Stream: A Comparative Study of Underwater and River Bank Observations. J. Fish Biol., 38 (2): 259-266.
Heggenes J., Brabrand, Å. & Saltveit, S.J. (1990), Comparison of Three Methods for Studies of Stream Habitat Use by Young Brown Trout and Atlantic Salmon. Journal of Fish Biology, 36:707 –720.
Heneberg P. (2004), Soil Particle Composition of Eurasian Kingsishers(Alcedo Attnis) Nest Sites. Acta Zoologica Academiae Scientiarum Hungaricae, 50(3):185-193.
Hilsenhoff W. L. (1988), Rapid Field Assessment of Organic Pollution with A Family-Level Biotic Index, J. N. Am. Benthol. Soc., 7:65-68.
Hiura T (1995), Gap Formation and Species Diversity in Japanese Beech Forests: A Test of The Intermediate Disturbance Hypothesis on A Geographic Scale. Oecologia, 104:265–271.
Hixon M.A., and Brostoff, W.N. (1983), Damselfish as Keystone Species in Reverse: Intermediate Disturbance and Diversity of Reef Algae. Science, 220(4596):511-513.
Holland M.M., Risser P.G. and Naiman R.J. (eds.) (1991), Ecotones: the Role of Landscape Boundaries in the Management and Restoration of Changing Environments. New York: Chapman and Hall.
Horn H. S. (1974), The Ecology of Secondary Succession. Annual Review of Ecology and Systematics, 5:25-37.
Huston M. (1979), A General Hypothesis of Species Diversity. The American Naturalist, 113(1):81-101.
Huston M.A. (1979), A General Hypothesis of Species Diversity. Am Nat, 113: 81–99.
Huston M.A. (1994), Biological Diversity: The Coexistence of Species on Changing Landscapes. Cambridge University Press, Cambridge, UK.
Hutchinson G. E. (1959), Homage to Santa Rosalia, or Why Are There So Many Kinds of Animals? American Naturalist, 93: 145-159.
Hynes H. B. N. (1970), The Ecology of Running Waters. University of Toronto Press, Toronto, Canada.
Jeffers J.N.R. (1998b), The Statistical Basis of Sampling Strategies for Rivers: An Example Using River Habitat Survey. Aquatic Conservation: Marine and Freshwater Ecosystems, 8: 447-454.
Jeglum J. K. (1975), Classification of Swamp for Forestry Problems. In: Fraser, J. W.; Jeglum, J. K.; Ketcheson, D. E.; [and others], Technical Coordinators. Black Pruce Symposium: Proceedings of A Symposium; 1975 September 23-25; Thunder Bay, ON. Symposium Proceedings 0-P-4. Sault Ste. Marie, ON: Department of the Environment, Canadian Forestry Service, Great Lakes Forest Research Centre: 227-241.
Junk W., Bayley P. B., and Sparks R.E. (1989), The Flood Pulse Concept in River-Floodplain Systems. Proceedings of the International Large River Symposium (LARS). Canadian Special Publication in Fisheries and Aquatic Sciences, 106:110-127.
Karr J. R. and D. R. Dudley (1981), Ecological Perspective on Water Quality Goals . Environmental Management, 5:55-68.
Kwak T. J., and Skelly (1992), Spawing Habit, Behavior, and Morphology as Isolating Mechanisms of the Golden Redhorse, Moxostoma Erythrurum, and the Black Redhorse, M. Duquesnei, Two Syntopic Fishes. Environmental Biology of Fishes 34: 127-137.
Ladson A.R. and White L.J. (1999a), An Index of Stream Condition: Reference Manual. Department of Natural Resources and Environment, Melbourne.
Ladson A.R., White L.J., Doolan J.A., Finlayson B.L., Hart B.T., Lake P.S. and Tilleard J.W. (1999b), Development and Testing of An Index of Stream Condition for Waterway Management in Australia. Freshwater Biology, 41: 453-468.
Leopold L.B., Wolman M.G. and J.P. Miller. (1964), Fluvial Processes in Geomorphology. W. H. Freeman and Company, San Francisco.
Ligon F. K., Dietrich W. E. and Trush W. J. (1995), Downstream Ecological Effects of Dams., Biosciences, 45(3):183-192.
Lisle T.E. (1982), Effects of Aggradation and Degradation on Riffle-Pool Morphology in Natural Gravel Channels, Northwestern California. Water Resources Research 18(6):1643-1651.
Lisle T.E. and Hilton S. (1992), The Volume of Fine Sediment in Pools: An Index of Sediment Supply in Gravel-Bed Streams. Water Resources Bulletin, 28(2): 371-383.
Lobb M. D. III and D. J. Orth (1991), Habitat Use by An Assemblage of Fish in A Large Warmwater Stream. Transactions of the American Fisheries Society, 120: 65-78.
MacArthur R. H. and J. W. MacArthur (1961), On Bird Species Diversity. Ecology, 42: 594-598.
Mason J. L., and S. Machidori (1976), Populations of Sympatric Sculpins, Cottus Alerticus and Cottus Asoer, in Four Adjacent Salmon-Producing Coastal Streams on Vanocounter Islanf . B.C.U.S. Fisheries Bulletin, 74:131-141.
Michael J. H. Jr. (1983), Contribution of Cuttrout in Headwater Stream to the Sea-Run Population. California Fish and Game, 69:68-76.
Milhous R. T., Updike M., and Schneider D. (1990), User's Guide to the Physical Habitat Simulation (PHABSIM)-Version II. Biological Report, U.S. Fish and Wildlife Service.
Mitchell S. (1999), A Simple Model for Estimating Mean Monthly Stream Temperatures after Riparian Canopy Removal. Environmental Management, 24(1): 77-83.
Moog O. (1993), Quantification of Daily Peak Hydropower Effects on Aquatic Fauna and Management to Minimize Environmental Impact. Regulated River, 8:5-14.
Morris L. A., A. V. Mollitor, K. J. Johnson, and A. L. Leaf (1978), Forest Management of Floodplain Sites in The Northeastern United States. In Strategies for Protection and Management of Floodplain Wetlands and Other Riparian Ecosystems, ed. R.R. Johnson, and J.F. McCormick, pp.236-242. USDA Forest Service General Technical Report WO-12. U.S. Department of Agriculture, Forest Service.
Nakamura F., and Swanson F. J. (1994), Distribution of Coarse Woody Debris in a Mountain Stream, Western Cascade Range, Oregon. Can. J. For. Res., 24: 2395–2403.
National Research Council (1992), Restoration of Aquatic Ecosystems: Science, Technology, and Public Policy. National Academy Press, Washington, D.C.
Newson M. D., Harper D. M., Padmore C. L., Kemp J. L. and Vogel B. (1998a), A Cost-Effective Approach for Linking Habitats, Flow Types and Species Requirements. Aquatic Conservation: Marine and Freshwater Ecosystems, 8: 431-446.
Norris R. H. and Thoms M. C. (1999), What Is River Health? Freshwater Biology, 41:197-209.
Novak M. A. and R. W. Bode (1992), Percent model affinity: A New Measure of Macroinvertebrate Community Composition. Journal of the North American Benthological Society, 11 (1): 80-85.
Ohio Environmental Protection Agency (Ohio EPA) (1987), Biological Criteria for The Protection of Aquatic Life: Volumes I-III. Ohio Environmental Protection Agency, Columbus, Ohio.
Osborne, L. L., and D. A. Kovacic (1993), Riparian Vegetated Buffer Strips in Water Quality Restoration and Stream Management. Freshwater Biology, 29:243-258.
Paine R. T. (1966), Food Web Complexity and Species Diversity. American Naturalist, 100:65-75.
Parsons M., Thomas M., Norris R. (2002), Australian River Assessment System: Review of Physical River Assessment Methods, Monitoring River Health Initiative Technical Report Number 21, Environment Australia.
Paul D. K., J. Lyons and J. E. Nelson (1997), Changes in the Habitat and Fish Community of the Milwaukee River, Wisconsin, Following Removal of the Woolen Mills Dam. North American Journal of Fisheries Management, 17:387-400.
Peris S. J. and R. Rodriguez (1996), Some Factor Related to Distribution by Breeding Kingfisher (Alcedo atthis). Ekol. Pol.,44:31-38.
Peris S. J. and R. Rodriguez (1997), A Survey of the Eurasian Kingfishers (Alcedo Atthis) and Its Relationship with Watercourses Quality. Folia zool., 46:33-42.
Peterjohn, W. T. and Correll, D. L (1984), Nutrient Dynamics in an Agricultural Watershed: Observations on the Role of a Riparian Forest. Ecology, 65(5): 1466-1475.
Petts G. E. (1984), Impound Rive. John Wiley & Sons, New York.
Petts GE. (1980), Long-Term Consequences of Upstream Impoundment. Environmental Conservation, 7:325–332.
Petts, G. E. and P. Calow. (1996), The Nature of Rivers. In: G. Petts. et al. (eds.) River Restoration: Selected Extracts from the Rivers Handbook. Blackwell Science Ltd.
Plafkin J. L., Barbour M. T., Porter K. D., Gross S. K. and Hughes R. M. (1989), Rapid bioassessment Protocols for Use in Streams and Rivers: Benthic Macroinvertebrates and Fish. EPA/444/4-89-001. U.S. Environmental Protection Agency, Office of Water, Washington.
Platts W. S., R. L. Nelson, O. Casey, and V. Crispin (1983), Riparian-stream Habitat Conditions on Tabor Creek, Nevada, Under Grazed and Ungrazed Conditions. p.164-174. In: Western Proceedings: 63rd Annual Conference of the Western Association of Fish and Wildlife Agencies.
Post W. and C. A. Seals (2000), Breeding Biology of The Common Moorhen in an Impounded Cattail Marsh, Journal of Field Ornithol, 71(3): 437-442.
Rankin E. T. (1989), The Qualitative Habitat Evaluation Index (QHEI): Rationale, Methods, and Application. Ohio Environmental Protection Agency. Division of Water Quality Planning and Assessment, Ecological Assessment Section, Columbus, Ohio.
Raven P. J., Fox P., Everard M., Holmes N. T. H. and Dawson F. H. (1997), River Habitat Survey: A New System for Classifying Rivers According to Their Habitat Quality. In: Boon P. J. and Howell D.L. (eds.) Freshwater Quality: Defining the Indefinable? The Stationery Office, Edinburgh. pp215-234.
Raven P. J., Holmes N. T. H., Dawson F. H., Fox P. J. A., Everard M., Fozzard I. R. and Rouen K. J. (1998b), River Habitat Quality: The Physical Character of Rivers and Streams in the UK and Isle of Man. River Habitat Survey. Report No. 2. Environment Agency, Bristol, U.K.
Raymond H. L. (1979), Effect of Dams and Impoundrnents on Migrations of Juvenile Chinook Salmon and Steelhead from the Snake River, 1966 to 1975. Transactions of the American fisheries society, 108:505-529.
Resh V. H., Brown A. V., Covich A. P., Gurtz M. E., Li H. W., Minshall G. W., Reice S. R., Sheldon A. L., Wallace J. B., Wissmar R. C. (1988), The Role of Disturbance in Stream Ecology. J. North Am. Benthol. Soc., 7:433–455.
Richards C., and G.. W. Minshall (1992), Spatial and Temporal Trends in Stream Macroinvertebrate Communities: the Influence of Catchment Disturbance. Hydrobiologia, 241:173-184.
Richter B. D., Baumgartner J. V., Braun D. P., and Powell J. (1998), A Spatial Assessment of Hydrologic Alteration within A River Network, Regulated Rivers: Research and Management, 14(4):329-340.
Richter B. D., Baumgartner J. V., Powell J., and Braun D. P. (1996), A Method for Assessing Hydrologic Alteration within Ecosystems. Conservation Biology, 10(4): 1163-1174.
Richter B. D., Baumgartner J. V., Wigington R., and Braun D. P. (1997), How Much Water Does A River Need, Freshwater Biology,.37(1):231-249.
Roberts M. R. and Gilliam F. S. (1995), Patterns and Mechanisms of Plant Diversity in Forested Ecosystems: Implications for Forest Management. Ecological Applications, 5:969-977.
Rood S. B., and J. M. Mahoney (1990), Collapse of Riparian Poplar Forests Downstream from Dams in Western Prairies: Probable Causes and Prospects for Mitigation. Environmental Management, 14:451-464.
Rosenberg D. M. and Resh V. H. (1993), Introduction to Freshwater Biomonitoring and Benthic Macroinvertebrates. In: Rosenberg D. M. and Resh V. H. (eds.) Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman and Hall, New York. pp1-9.
Rosgen D. (1985), A Stream Classification System. In Symposium on Riparian Ecosystems and Their Management: Reconciling Conflicting Uses, April 16-18, Tucson, Arizona.
Shelford V. E. (1911), Ecological Succession. Stream Fishes and the Method of Physiographic Analysis. Biological Bulletin, 21:9-35.
Shiau J. T., and Wu F. C. (2004), Assessment of Hydrologic Alterations Caused by Chi-Chi Diversion Weir in Chou-Shui Creek, Taiwan : Opportunities for Restoring Natural Flow Conditions. River Research and Applications, 20:401-412.
Shieh C. L. , Guh Y. H., Wang S. Q. (2007), The Application of Range of Variability Approach to the Assessment of a Check Dam on Riverine Habitat Alteration. Environmental Geology (SCI),52(3): 427-435.
Shine R. (1991), Australian Sankes: A Natural History. Cornell University Press.
Simons D. B. (1979), River and Canal Morphology. In Modeling of River, W.S. Hesien (eds.), New York:John Wiley & Sons. pp5-1~5-9.
Simpson J. C. and Norris R. H. (2000), Biological Assessment of river Quality : Development of AUSRIVAS Models and Outputs. In: Wright J. F., Sutcliffe D. W. and Furse M. T. (eds.) Assessing the biological Quality of Freshwaters. RIVPACS and Other Techniques. Freshwater Biological Association, pp.125-142.
Smith M. J., W. R. Kay, D. H. D. Edward, P. J. Papas, K. St. J. Richardson, J. C. Simpson, A. M. Pinder, D. J. Cale, P. H. J. Horwitz. J. A. Davis, F. H. Yung, R. H. Norris, and S. A. Halse (1999), AusRivAs: Using Macroinvertebrates to assess Ecological Condition of River in Western Australia. Freshwater Biology, 41: 269-282.
Sousa W. (1979), Experimental Investigations of Disturbance and ecological Succession in A Rocky Intertidal Algal Community. Ecological Monographs, 49: 227-254.
Sousa W. P. (1985), Disturbance and patch Dynamics on rocky Intertidal Shores. In: Pickett S. T. A., White P. S. (eds.) The Ecology of natural Disturbance and patch Dynamics. Academic Press, San Diego. pp.101–124.
Stromberg J.C. (1993), Fremont Cottonwood-Goodding Willow Riparian Forests: A Review of their Ecology, Threats, and Recovery Potential. Journal of the Arizona-Nevada Academy of Science, 26:97-110.
Su H. J. (1985), Studies on the Climate and Vegetation Types of the Natural Forests in Taiwan (III): A Scheme of geographical Climatic Regions. Quarterly Journal of Chinese Forestry, 18(3):33-44.
Swales S. (1989), The Use of Instream Habitat Improvement Methodology in Mitigating the Adverse Effects of River Regulation in Fisheries. Alternatives in Regulated River Management (eds. J.A. Gore & G.E. Petts). CRC Press Inc., Boca Raton, FL, USA. pp185–208.
Swanson F. J., Janda R. J., Dunne T. and Swanston D. N. (eds.) (1982), Sediment Budgets and Routing in Forested Drainage. USDA Forest Service General Tech. Rep. PNW-141.
Takano L. L. and S. M. Haig (2004), Distribution and Abundance of the Mariana Subspecies of the Common Moorth. Waterbirds, 27(2):245-250.
Terborgh J. (1973), On the Notion of favorableness in Plant Ecology. American Naturalist, 107: 481-501.
Teskey R. O., and T. M. Hinckley (1977), Impact of Water Level Changes on Woody Riparian and Wetland Communities, vols. I, II, and III. FWS/ OBS-77/58, -77/59, and -77/60. U.S. Department of Agriculture, Fish and Wildlife Service.
Tett P., Gallegos C., Kelly M. G., Hornberger G.. M. and Cosby B. J. (1978), Relationships among Substrate, Flow, and Benthic Microalgal Pigment Density in the Mechums River, Virginia. Limnology and Oceanography, 23:785-797.
The Federal Interagency Stream Restoration Working Group (2000), Stream Corridor Restoration. http://www.usda.gov/stream_restoration.
The Nature Conservancy (2001), Indicators of Hydrologic Alteration User's Manual, http://conserveonline.org/docs/2000/12/iha_man.pdf.
Thexton E. G. and Poynter M. (1998), A Training Manual to Evaluate Licensed Crown Water Frontages Using Vegetation Assessment, Prepared for the Goulburn-Broken Catchment Management Authority.
Townsend C. R., Scarsbrook M. R., Doledec S. (1997), The Intermediate Disturbance Hypothesis, Refugia, and Biodiversity in Streams. Limnol Oceanogr, 42:938–949.
Triska F. J., Duff J. H. and Avanzino R. J. (1993), Patterns of Hydrological Exchange and Nutrient Transformation in the Hyporheic Zone of a Gravel-bottom Stream: Examining Terrestrial-Aquatic Linkages. Freshwater Biology, 29:259-274.
Turnpenny A. W. H., and R. Williams (1980), Effects of Sedimentation on the Gravels of an Industrial River System. Journal of Fish Biology, 17:681-693.
United States Army Corps of Engineers (USACE) (1991), Hydraulic Design of Flood Control Channels. USACE Headquarters, EM1110-2-1601, Washington, DC.
Vannote R. L., Minshall G.. W., Cummins K. W., Sedell J. R. and Cushing C. E.(1980), The River Continuum Concept. Canadian Journal of Fisheries and Aquatic Sciences, 37:130-137.
Wesche T.A. (1985), Stream Channel Modifications and Reclamation Structures to Enhance Fish Habitat. Chapter 5 in the Restoration of Rivers and Streams, ed. J. A. Gore. Butterworth, Boston.
Wharton C. H., W. M. Kitchens, E. C. Pendleton, and T. W. Sipe (1982), The Ecology of Bottomland Hardwood Swamps of the Southeast: A Community Profile. FWS/OBS-81/37. U.S. Fish and Wildlife Service, Biological Services Program, Washington, DC.
White P. S. and Pickett S. T. A. (1985), Natural Disturbance and Patch Dynamics: An Introduction p.p.3-9. In S.T.A. Pickett and P. S. White Eds. The ecology of natural disturbance and patch dynamics. Academic Press.
Wilkinson D. M. (1999), The Disturbing History of Intermediate Disturbance. Oikos, 84:145–147.
Wiston M. R., C. M. Taylor, and J. Pigg (1991), Upstream Extirpation of Four Minnow Species Due to Damming of a Prairie Stream. Trans. Amer. Fish. Soc, 120:98-105.
Wright J. F., Furse M. T. and Moss D. (1998), River Classification Using Invertebrates: RIVPACS Applications. Aquatic Conservation: Marine and Freshwater Ecosystems, 8:617-631.
Yang C. T. (1973), Incipient Motion and Sediment Transport. ASCE Journal of the Hydraulics Division, 99(7):919-934.
Yang C.T. (1984), Unit Stream Power Equation for Gravel. Journal of Hydraulic Engineering, ASCE, 110(12):1783-1797.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2007-08-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2007-08-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw