進階搜尋


 
系統識別號 U0026-0812200913545053
論文名稱(中文) 混凝劑種類對低濁度原水混凝影響之研究
論文名稱(英文) Effect of Coagulant Type on the Coagulation of Low-Turbidity Source Water
校院名稱 成功大學
系所名稱(中) 環境工程學系碩博士班
系所名稱(英) Department of Environmental Engineering
學年度 95
學期 2
出版年 96
研究生(中文) 劉嘉宏
研究生(英文) Jia-Hong Liou
電子信箱 p5694124@mail.ncku.edu.tw
學號 p5694124
學位類別 碩士
語文別 中文
論文頁數 116頁
口試委員 指導教授-葉宣顯
口試委員-郝晶瑾
口試委員-林財富
中文關鍵字 膠羽密度  碎形維度  硫酸鋁  氯化鐵 
英文關鍵字 floc density  fractal dimension  ferric chloride  aluminum sulfate 
學科別分類
中文摘要 烏山頭淨水場之處理程序為傳統之混凝、沉澱、快砂濾。其原水特性為低濁度(< 10 NTU)及高pH值(約8)。實場採樣分析結果發現,若明礬混凝劑加量隨原水濁度之降低而減少,會導致混凝效果不佳,甚至出現沉澱池出水濁度,反而高於進流水之情形。而該廠常碰到的另一問題為沉澱池傾斜板上方累積一層膠羽,當厚度太高時,可能將膠羽帶出至砂濾池,而影響出水濁度,此時需停止操作,以人工加以清洗,懷疑係因膠羽特性所引起。本研究,乃針對上述實場之現象進行探討,同時在實驗室做進一步之試驗,比較不同混凝劑對烏山頭原水之適用性。
根據實場研究結果,推論上述現象係因廠方以原水濁度之高低為明礬加藥量之指標,故當原水濁度降低時,混凝劑加量亦隨著降低。再加上該原水pH值偏高,在此情況下混凝劑加量與pH值,偏離氫氧化鋁膠羽較佳生成之範圍,致所加入之鋁鹽以單體狀溶解性鋁存在。即使生成膠羽,亦因密度或緻密性偏低,無法在傾斜板沉澱池中順利沉降,反而被水流帶出至傾斜板上端。實場之研究亦顯示膠羽之性質與去除效率,受膠羽池停留時間與沉澱池溢流率有很大之影響。
實驗室試驗比較硫酸鋁和氯化鐵兩種混凝劑之作用,結果發現鐵鹽,所產生之膠羽密度比鋁鹽大,且膠羽之緻密性(碎形維度大)也較高。而烏山頭原水之膠羽平均密度、碎形維度和平均沉降速度均比人工原水小,推測可能由於原水中顆粒性質之不同所導致。而就不同混凝機制而言,不管以鋁鹽或鐵鹽為混凝劑時,以沉澱掃曳機制存在之濁度去除效果較吸附及去穩定佳。就烏山頭原水而言,鐵鹽所需之最佳劑量比鋁鹽低,且在相同劑量時,殘餘濁度也較低。至於以氯化鐵為混凝劑時,處理水可能殘餘色度之問題,發現只要混凝劑加量與pH值控制在適宜氫氧化鐵膠羽生成之區域內,則無真色度之問題。
英文摘要 The treatment process of Wu San Tou Water Works is the conventional coagulation, sedimentation and filtration process. Its raw water is characterized by low turbidity (< 10 NTU) and high pH value (about 8). Alum was used as the coagulant, and its dosage was reduced with the decreasing of the turbidity of the raw water. However, under this operation strategy, field sampling found that sometimes the turbidity of effluent from sedimentation basin was higher that of the influent. Other problem encountered by the plant was the accumulation of sludge mat on the surface of the inclined plate in the sedimentation basin. When the thickness of sludge mat was excessive, the sludge may be carried by the water flow into the following sand filter, and causing premature turbidity breakthrough. As this happened, the operation needs to be interrupted, and the basin cleaned manually. Therefore, it reduced productivity and also was quite a burden to the operators. The research is aimed at solving the above-mentioned problems by both field investigation and lab-scale studies. The latter is mainly to compare the suitability of aluminum and iron salts as coagulants for Wu San Tou raw water.
Based on the results from field investigation, it is realized that the problems encountered by the treatment plant was due to the lower than optimum alum dosage used by the plant, when the raw water turbidity was low. The insufficient alum dosage coupled with high pH value of the raw water prevented the formation of aluminum hydroxide floc. This also means that, under this condition, most of the alum added existed as soluble Al species in the water. Therefore, the coagulation performance were poor.
In the lab-scale studies, the effect of aluminum sulfate and ferric chloride on the coagulation of both the raw water from Wu San Tou and artificial raw water, made up mainly from kaolin clay particles, were investigated. The results show that the floc generated from iron salt have higher density and higher fractal dimension than those from aluminum salt. This means iron floc is heavier and structurally more compact than aluminum floc. Floc from Wu San Tou raw water generally have lower density, fractal dimension and settling velocity than those from artificial raw water. This probably is due to the more complex constituents in the nature raw water, which contains algae cell and NOM, besides inorganic particles. Further, no matter which coagulants were used, those with sweep coagulation mechanism have higher turbidity removal than those with adsorption - destabilization mechanism.
For Wu San Tou raw water, iron salt coagulant required lower dosage than that of aluminum salt. Under same coagulant dosage, the treated water from iron salt also have lower residue turbidity than those from aluminum salt. Further, the residue color problem from iron salt can be avoided, if the dosage and pH value are located in the region appropriate for solid ferric hydroxide formation.
論文目次 中文摘要.................................................Ⅰ
英文摘要.................................................Ⅲ
誌謝.....................................................Ⅴ
目錄.....................................................Ⅶ
圖目錄.................................................ⅩⅠ
表目錄.................................................ⅩⅤ
第一章 前言...............................................1
1-1 研究緣起..............................................1
1-2 研究目的與內容........................................2
第二章 文獻回顧...........................................3
2-1 混凝(coagulation)及膠凝(flocculation).................3
2-1-1 混凝及膠凝之機制....................................3
2-1-2 影響混凝之因素......................................7
2-1-3 鋁鹽之混凝.........................................10
2-1-4 鐵鹽之混凝.........................................14
2-2 膠羽特性.............................................16
2-3 碎形維度(Fractal Dimension)之運用....................19
2-4 影像分析之運用.......................................24
第三章 實場規模試驗......................................27
3-1 實場試驗程序.........................................27
3-2烏山頭淨水場背景介紹及單元操作狀況....................29
3-3 現場採樣點及方法.....................................39
3-4 實場分析方法.........................................41
3-4-1 一般水質分析.......................................41
3-4-1-1 pH值.............................................41
3-4-1-2 濁度.............................................41
3-4-1-3 鹼度.............................................41
3-4-1-4 非揮發溶解性有機碳(Non-purgable dissolved organic carbon, NPDOC)...........................................42
3-4-1-5 UV254吸光值......................................43
3-4-1-6 藻類計數(沉澱管法)...............................43
3-4-2 膠羽特性分析.......................................44
3-4-2-1 膠羽表面電位測定.................................44
3-4-2-2 膠羽大小和顆粒數密度分析.........................46
3-4-2-3 膠羽沉降試驗及膠羽密度之量測.....................48
3-4-2-4 碎形維度之量測...................................51
3-5 實場試驗之結果與討論.................................54
3-5-1 原水水質特性.......................................54
3-5-2 處理流程中膠羽顆粒性質之變化.......................56
3-5-2-1 處理流程中膠羽顆粒數變化.........................56
3-5-2-2 處理流程顆粒粒徑分佈和變化.......................58
3-5-3 膠羽粒徑、膠羽密度和碎形維度之比較.................66
第四章 實驗室規模試驗....................................71
4-1 試驗目的.............................................71
4-2 實驗室試驗程序.......................................73
4-2-1 自然原水瓶杯試驗...................................73
4-2-2 人工原水試驗.......................................73
4-2-2-1 人工原水配置.....................................73
4-2-2-2 人工原水瓶杯試驗.................................75
4-3 實驗室分析方法.......................................77
4-3-1 色度...............................................77
4-3-2 殘餘鋁之分析.......................................77
4-3-3 殘餘鐵之分析.......................................78
4-4 實驗室試驗之結果與討論...............................80
4-4-1 人工原水和烏山頭原水膠羽碎形維度和密度之比較和探討.80
4-4-2 不同pH值和混凝劑量下之濁度去除效果.................86
4-4-3 殘餘鋁和鐵之評估...................................91
4-4-4 殘餘色度之評估.....................................94
4-4-5 氯化鐵為混凝劑時,有無經砂濾之殘餘濁度、色度及殘 餘鐵之評估...............................................98
第五章 結論與建議.......................................101
5-1 結論................................................101
5-2 建議................................................102
參考文獻................................................103
附錄A...................................................111
附錄B...................................................113
圖2-1 混凝作用之機制......................................5
圖2-2 硫酸鋁於不同加藥量及pH值下進行混凝時,膠體去穩定之作用機制..................................................12
圖2-3 不同濁度下之混凝狀況...............................13
圖2-4 氯化鐵於不同加藥量及pH值下進行混凝時,膠體去穩定之作用機制...................................................15
圖2-5 ALT ratio對膠羽有效密度之影響......................18
圖2-6 碎形維度之改變和剪力之關係.........................20
圖2-7 膠羽生成機制和碎形維度之關係.......................21
圖2-8 模擬凝集結構之形式和碎形維度之關係.................23
圖3-1 實場研究架構圖.....................................28
圖3-2 烏山頭淨水廠操作流程圖.............................31
圖3-3 原水pH值...........................................32
圖3-4 原水濁度...........................................32
圖3-5 烏山頭給水廠三期及四期沉澱出水濁度日平均值趨勢圖...37
圖3-6 烏山頭給水廠三期及四期清水濁度日平均值趨勢圖.......37
圖3-7 三期及四期沉澱池出水濁度百分比.....................38
圖3-8 三期及四期清水濁度百分比...........................38
圖3-9 烏山頭淨水場平面設置圖.............................40
圖3-10 膠羽沉降示意圖....................................50
圖3-11 沉降瓶杯細部設計圖................................50
圖3-12 不規則膠羽粒徑量測方式............................51
圖3-13 碎形維度量測示意圖................................52
圖3-14 碎形維度量測流程圖................................53
圖3-15 各處理流程顆粒數之變化............................57
圖3-16 三期各處理單元膠羽粒徑分佈圖 (11月9日)............59
圖3-17 三期膠羽池內膠羽影像(11月9日,50 X )..............59
圖3-18 四期各處理單元膠羽粒徑分佈圖 (11月9日)............60
圖3-19 四期膠羽池內膠羽影像(11月9日,50 X)...............60
圖3-20 三期各處理單元膠羽粒徑分佈圖 (11月30日)...........61
圖3-21 三期膠羽池內膠羽影像(11月30日,50 X)..............61
圖3-22 四期各處理單元膠羽粒徑分佈圖 (11月30日)...........62
圖3-23 四期膠羽池內膠羽影像(11月30日,50 X)..............62
圖3-24 混凝特性之比較....................................64
圖3-25 混凝劑量對處理流程顆粒數和濁度去除之影響 (11月9日)65
圖3-26 混凝劑量對處理流程顆粒數和濁度去除之影響 (11月30 日)......................................................65
圖3-27 各處理流程出水平均粒徑和濁度之關係................67
圖3-28 各處理流程出水顆粒數之比較........................67
圖3-29 膠羽碎形維度 (a)三期 (b)四期......................69
圖4-1 實驗室試驗架構圖...................................72
圖4-2 高嶺土粒徑分佈.....................................75
圖4-3 人工原水配置圖.....................................76
圖4-4 瓶杯試驗圖 (a)烏山頭原水 (b)人工原水...............81
圖4-5 人工原水膠羽碎形維度 (a)鋁鹽 (b)鐵鹽...............82
圖4-6 烏山頭原水碎形維度 (a)鋁鹽 (b)鐵鹽.................83
圖4-7 人工原水膠羽密度...................................85
圖4-8 烏山頭原水膠羽密度.................................85
圖4-9 不同初始pH值下,鋁鹽及鐵鹽瓶杯試驗結果之比較.......87
圖4-10 鋁鹽在不同混凝機制之濁度去除效果..................89
圖4-11 鐵鹽在不同混凝機制之濁度去除效果..................90
圖4-12 不同pH值之殘餘鋁評估 (鋁鹽).......................92
圖4-13 不同pH值之殘餘鐵評估 (鐵鹽).......................93
圖4-14 殘餘濁度、假色度和真色度之關係圖 (鋁鹽)...........95
圖4-15 殘餘濁度、假色度和真色度之關係圖 (鐵鹽)...........96
圖4-16 假色度和殘餘濁度之相關性 (鋁鹽)...................97
圖4-17 假色度和殘餘濁度之相關性 (鐵鹽)...................97
表3-1 流量設計資料.......................................33
表3-2 快混設計資料.......................................33
表3-3 膠羽池設計資料.....................................34
表3-4 沉澱池之設計資料...................................35
表3-5 過濾池設計資料.....................................35
表3-6 濾料之種類及規格...................................36
表3-7 原水水質特性 (95年9月~12月)........................54
表3-8 試驗期間原水藻種及藻數變化.........................55
表3-9 試驗期間三期和四期膠凝池、沉澱池停留時間及溢流率之比較.......................................................56
表3-10 膠羽平均密度(g/cm3)比較...........................68
表4-1 背景水和人工原水之水質特性.........................75
表4-2 烏山頭原水和人工原水水質特性.......................80
表4-3 膠羽平均沉降速度(cm/s)、密度(g/cm3)和碎形維度之關係86
表4-4 有無經砂濾之殘餘鐵、殘餘色度和濁度.................99
參考文獻 Adachi, Y. and Tanaka, Y. (1997) “Settling Velocity of an Aluminium-Kaolinite Floc”, Water Research, 31(3), 449-454.

Amirtharagjah, A. and Mills, S.M. (1982) “Rapid-mix Design for Mechanisms of Alum Coagulation”, Jour. AWWA, 74(4), 210-216.

Amirtharagjah, A. and O'Melia, C. R. (1999) “Coagulation and Flocculation”, Chap 6 in Water Quality and Treatment. 5th Ed., McGraw-Hill, New York.

AWWARF and IWSA (1998) Treatment Process Selection for Particle Removal, edited by J.B. McEwen, American Water Works Association, Denver, Colorado.

Beard, J.D. and Yanaka, T.S. (1977) “A Comparison of Particle Counting and Nephelometry”, Jour.AWWA, 69, 533-538.

Bennett, L.E. and Drikas, M. (1993) “The Evalution of Colour in Natural Water”, Water research, 27(7), 1209-1218.

Bouyer, D., Line A., Cockx, A. and Do-Quang, Z. (2001) “Experimental Analysis of Floc Size Distribution and Hydrodynamics in a Jar-Test”, Transactions of the Institution of Chemical Engineers, 79, 1017-1024.

Bower, C., Washington, C. and Purewal, T.S. (1997) “The Use of Image Analysis to Characterize Aggregates in a Shear Field”, Colloids Surf. A: Physicochem. Engng. Aspects 127, 105-112.

Bushell, G. (2005) “Forward Light Scattering to Characterise Structure of Flocs Composed of Large Partcles”, Chemical Engineering Journal 111, 145-149.

Chakraborti, R.K., Atkinson, J.F. & VanBenschoten, J.E. (2000) “Characterization of Alum Floc by Image Analysis”, Environ.Sci. & Technol, 34(18), 3969-3976.

Chakraborti, R.K., Gardner, K.H., Atkinson, J.F. & Van Benschoten, J.E. (2003) “Change in Fractal Dimension during Aggregation”, Water Research, 37, 873-883.

Cleasby, J.L.,Dharmarajah, A.H, Sindt, G.L. and Baumann, E.R. (1989). Design and Operation Guidelines for Optimization of the High-Rate Filtration Process: Plant Survey Result, Denver, Colo.:AwwaRF and AWWA.

Cleasby, J.L., Sindt, G.L. and Baumann, E.R. (1992). Design and Operation Guidelines for Optimization of the High-Rate Filtration Process ": Plant Demonstration Studies, Denver, Colo.:AwwaRF and AWWA.

Conley, Jr, W.R. (1965) “Integration of the Clarification Process”. Jour.AWWA, 57(10), 1333-1345.

Gregory, J. (2006), Particle in Water : Properties and Process, IWA Publishing, London.

Gregory, J. (1997) “The Density of Particle Aggregates”, Wat. Sci. Tech, 36(4), 1-13.

Gregory J (1993), Stability and Flocculation of Suspensions. Processing of Solid-Liquid Suspensions , Shamlou P.A. ed, 59-92.

Han, M. and Lawler, D.F. (1992) “The (relative) Insignificance of G in Flocculation”, Jour.AWWA, 84(10), 79-91.

Han, M.Y. (2001) “Modeling of DAF: the Effect of Particle and Bubble Characteristics”, Journal of Water Supply: Research and Technology- AQUA, 51(1), 27-34.

Higashitani, K. and Shibata, T. (1987) “Formation of Pellet Flocs from Kaolin Suspension and Their Properties”, J, Chem., Eng, 20, 152-157.

Jian, Q. and Logan, B.E. (1996) “Fractal Dimensions of Aggregates from Shear Devices”, Jour. AWWA, 88(2), 100-113.

Jian, Q. and Logan, B.E. (1991) “Fractal Dimensions of Aggregates Determined from Steady-State Size Distributions”, Environ.Sci. & Technol”, 25, 2031-2038.

Johnson, P.N. and Amirtharajah, A. (1982) “Ferric Chloride and Alum as Single and Dual Coagulants”, Jour. AWWA, 75(5), 232-239.

Kawamura, S. (1991) Integrated Design of Water Treatment Facilities, John Wiley & Sons , New York.

Kevin, H., Thomas L. and Young , C.T. (1998) “The Significance of Shear Stress the Agglomeration Kinetics of Fractal Aggregates”, Water Research, 32(9), 2660-2668.

Kim, T.I. (2004) “Effect of Floc Properties on Sedimentation and Dissolved-air-flotation Processes”, Master Dissertation, Seoul National University.

Kim, S.H., Moon, B.H. and Lee, H.I. (2001) “Effect of pH and Dosage on Pollutant Removal and Floc Structure During Coagulation”, Microchemical Journal, 68, 197-203.

Lagvankar, A.L. and Gemmell, R.S. (1968) “A Size-density Relationship for Flocs”, Jour. AWWA, 60, 1040-1046.

Lawler, D.F., Izurieta, E. and Kao, C. P. (1983) “Change in Particle Size Distribution in Batch Flocculation”, Jour. AWWA, 75, 604-612.
Mooyoung Han, Tschung-il Kim and Jinho Kim (2006) “Application of Image Analysis to Evaluate the Flocculation Process”, Journal of Water Supply: Research and Technology- AQUA. 55(7-8), 453-459.

Mühle, K. (1993) “Floc Stablility in Laminar and Turbulent Flow, in Coagulation and Flocculation”, Bobias, B., (Ed.), Marcel Dekker, New York.

MWH (2005), Water Treatment: Principle and Design, 2nd Ed, John Wiley & Sons, Hoboken, New Jersey.

NIH-Image Manual: http://rbs.info.nih.gov/nih-image/manual/ contents.html.

O'Melia, C.R. (1972) “Coagulation and Flocculation”, Chap 2 in Physicochemical Process for Water Quality Control, edited by W.J. Weber Jr., John Wiley & Sons, 61-109.

Packham, R.F. (1965) “Some Studies of the Coagulation of Dispersed Clays with Hdrolyzing Salts”, Jour. of Colloid Interface Sci, 20 (1), pp. 81.

Persson, A. (1998) “Image Analysis of Shape and Size of Fine Aggregates”, Engng. Geol, 50, 177-186.

Robeck , G.G., Clarke, N.A. , and Dostal, K.A. (1962) “Effectiveness of Water Treatment Process in Virus Removal”, Jour.AWWA , 54(10), 1275-1290.
Sander L. M. (1984) “Theory of Fractal Growth Processes”. Kinetics of Aggregation and Gelation, Family F. and Landau D.Pl. (Ed.), 13-18.
Stumm, W. and O'Melia, C.R. (1968) “Stoichometry of Coagulation”, Jour. AWWA, 60(5), 514-539.

Stumm, W and Morgan, J.J. (1962) “Chemical Aspects of Coagulation”, Jour. AWWA , 54(8), 971-991.

Tate, C.H. and Trussel, R.R. (1978) “The Use of Particle Counting in Developing Plant Design Criteria”, Jour. AWWA, 70, 691-698.

Tambo, N. and Watanabe, Y. (1979) “Physical Characteristics of Floc-Ⅰ:The Floc Density Function and Aluminium Floc”, Water Research, 13, 409-419.

杜方裕 (2006), “各單元之設計資料”, 烏山頭淨水場, 台南.

高肇藩 (1978), “給水工程 (衛生工程‧自來水篇)”, 編著者發行, 台南.

莊典謨 (1990), “水中鋁含量分析方法之研究及在淨水工程上之應用”,碩士論文, 國立成功大學環境工程研究所, 台南.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2007-08-15起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2007-08-15起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw