進階搜尋


 
系統識別號 U0026-0812200913543428
論文名稱(中文) 內模式控制架構下廣義最小變異量控制器之強健設計
論文名稱(英文) Robust Design of Generalized Minimum Variance Controllers in the IMC Structure
校院名稱 成功大學
系所名稱(中) 化學工程學系碩博士班
系所名稱(英) Department of Chemical Engineering
學年度 95
學期 2
出版年 96
研究生(中文) 陳建廷
研究生(英文) Chien-Ting Chen
學號 n3694143
學位類別 碩士
語文別 中文
論文頁數 80頁
口試委員 口試委員-張玨庭
口試委員-凌漢辰
指導教授-黃世宏
中文關鍵字 廣義最小變異量控制  受控自回歸移動平均模型  強健性  內模式控制 
英文關鍵字 IMC  Robustness  CARMA  GMVC 
學科別分類
中文摘要 在工業程序中,廣義最小變異量控制(GMVC)能夠減少隨機擾動的影響,使得程序輸出和目標值之間的變異量達到最小。傳統GMVC的設計缺乏一個系統化的方式來滿足被控程序的特定需求,例如設定目標值改變或確定性負載擾動發生時無法保證消除穩態偏移;在追求最小變異量時無法兼顧強健性的問題。

本論文提出內模式控制(IMC)架構下的改良式GMVC設計方法。在IMC架構下GMVC各個參數的定義與用途變得更為明確,可區分為消除穩態偏移的參數、增加強健性的參數和改善操作性能的參數。吾人據此提出數個系統化的參數設計法,首先指定兩個參數以保證消除穩態偏移,然後在三種強健性指標的限制下藉由調整其餘兩個參數來達到最佳的性能指標。
英文摘要 In industrial processes, generalized minimum variance control (GMVC) can reduce the influence from stochastic disturbances and minimize the variance between the process output and the target value. The conventional design of GMVC lacks a systematic way to satisfy specific requirements on the controlled process. For example, the elimination of the steady-state offset cannot be ensured when the target value changes or a deterministic disturbance occurs; the robustness problem cannot be dealt with in pursuit of the minimum variance.

This thesis proposes an improved GMVC design method in the IMC structure. In the IMC structure, the definition and use of each GMVC design parameter become clearer. These parameters can be distinguished into the one eliminating the steady-state offset, the one increasing robustness, and the one improving performance. We then develop several systematic methods for designing GMVC parameters. First, two parameters are specified to eliminate the steady-state offset. Then, the optimum performance index is achieved by adjusting the rest two parameters under the constraints of three robustness indices.
論文目次 中文摘要
英文摘要
目錄 I
表目錄 III
圖目錄 IV
符號說明 VI

第一章 緒論

1.1 前言 1
1.2 文獻回顧 2
1.3 研究動機與目的 6

第二章 針對隨機擾動的控制器設計

2.1 包含隨機擾動之模型 8
2.2 廣義最小變異量控制理論(GMVC) 13
2.3 GMVC轉換為PID控制器之設計 17
2.4 內模式控制理論(IMC 19

第三章 在IMC架構下廣義最小變異量控制器之強健設計

3.1 廣義最小變異量控制器導入IMC之架構 23
3.2 改良式GMVC控制器設計 25
3.2.1 消除C(z-1)對控制輸出影響之方法 25
3.2.2 消除設定點改變偏移之方法 26
3.2.3 消除負載擾動及設定點改變偏移之方法 27
3.2.4 可調參數之設計 28
3.2.5 設計方法 29
3.3 強健性考量 31

第四章 模擬結果與討論

4.1 連續程序之模擬研究 39
4.2 批次程序之模擬研究 67

第五章 結論與未來工作

5.1 結論 74
5.2 未來工作 75

參考文獻 76
參考文獻 [1] Allidina, A.Y. and Hughes, F.M., “Generalised self-tuning controller with pole assignment”, IEE Proceedings Part D: Control Theory and Applications, 127, 1, 13-18, 1980.

[2] strm, K.J. and Wittenmark, B., “Online self-tuning regulators”,
Automatica, 9, 2, 185-199, 1973.

[3] Bittanti, S. and Piroddi, L., “GMV technique for nonlinear control with neural networks”, IEE Proceedings-Control Theory Application, 141, 2, 57-69, 1994.

[4] Bittanti, S. and Piroddi, L., “Neural implementation of GMV control schemes based on affine input/output models”, IEE Proceedings-Control Theory Application, 144, 6, 521-530, 1997.

[5] Caglayan, N., Karacan, S., Hapoglu, H., and Alpbaz, M., “Application of optimal adaptive control based on generalized minimum variance to a packed distillation column”, Computers and Chemical Engineering, 21, 1, 607-612, 1997.

[6] Cameron, F. and Seborg, D.E., “Self-tuning controller with a PID structure”, International Journal of Control, 38, 2, 401-417, 1983.

[7] Chen, J.h. and Huang, T.C., “Applying neural networks to on-line updated PID controllers for nonlinear process control”, Journal of Process Control, 14, 2, 211-230, 2004.

[8] Chien, I. L. and Fruehauf, P. S., “Consider IMC tuning to improve controller performance”, Chemical Engineering Progress, 86, 10, 33-41, 1990.

[9] Clarke, D.W. and Gawthrop, P.J., “A Self-Tuning Controller,” Proceedings of IEEE, 126, 6, 633-640, 1979.

[10] Clarke, D.W., “Self-tuning control of nonminimum-phase systems” Automatica, 20, 5, 501-517, 1984.

[11] Ertunc, S., Akay, B., Bursali, N., Hapoglu, H., and Alpbaz, M., “ Generalized minimum variance control of growth medium temperature of baker's yeast production”, Transactions of the Institution of Chemical Engineers, 81, 4, 327-335, 2003.

[12] Filatov, N. M., “Improved dual version of the generalized minimum variance controller”, International Journal of Control, 71, 1, 131-143, 1998.

[13] Garcia, C. E. and Morari, M., “Internal model control: 1. a unifying review and some new results”, Industrial & Engineering Chemistry, Process Design and Development, 21, 2, 308-323, 1982.

[14] Gawthrop, P.J. , Jones, R.W., and Sbarbaro, D.G., “Emulator-based control and internal model control: complementary approaches to robust control design”, Automatica, 32, 8, 1223-1227, 1996.

[15] Hussain, A., Zayed, A., and Smith, L., “A New Neural Network and pole-placement based adaptive composite self-tuning controller”, proceedings 5th IEEE international multi-topic Conference (INMIC’2001), Lahore, Pakistan, 267-271, 2001.

[16] Karagz, A. R., Hapoglu, H., and Alpbaz, M., “Generalized minimum variance control of optimal temperature profiles in a polystyrene polymerization reactor”, Chemical Engineering and Processing, 39, 3 253-262, 2000.

[17] Landau, I.D. and Zito, G., Digital Control Systems- Design, Identification and Implementation, Springer: France, 2006.

[18] Lee, Y., Park, S., Lee, M., and Brosilow, C., “PID controller tuning for desired closed-loop responses for SI/SO systems”, AIChE Journal, 44, 1, 106-115, 1998.

[19] Koivo, H.N., “A multivariable self-tuning controller”, Automatica, 16, 4, 351-366, 1980.

[20] Milito, R., Padilla, C. S., Padilla, R. A., and Cadorin, D., “An innovations approach to dual control”, IEEE Transactions on Automatic Control, 27, 1, 132-137, 1982.

[21] Namba, R., Yamamoto, T., and Kaneda, M., “Robust PID controller and its application”, Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 4, 3636-3641, 1997.

[22] Norio, M., Masao, I., Kyoji, H., Wood, R. K., Hirofumi, H., and ituyoshi, O., “Auto-tuning PID controller based on generalized minimum variance control for a PVC reactor,” Journal of Chemical Engineering of Japan, 31, 4, 626-632, 1998.

[23] Ramos, M. A. P., Marquez, E.Q.M., and Busto, R. F. D., “ Generalized minimum variance with pole assignment controller modified for practical applications”, Proceedings of the IEEE International Conference on Control Applications, 2, 1347-1352, 2004.

[24] Rivera, D. E., Morari, M., and Skogestad, S., “Internal model control: 4. PID controller design”, Industrial & Engineering Chemistry, Process Design and Development, 25, 1, 252-265, 1986.

[25] Seborg, D. E., Edgar, T. F., and Mellichamp , D. A., Process Dynamics and Control, John Wiley & Sons: New York, 1989.

[26] Wellstead, P. E., Zanker, P., and Edmunds, J. M., “Pole assignment self-tuning regulator” Proceedings of IEE, 126, 8, 781-787, 1979.

[27] Yamamoto, T., Fujii, K., and Kaneda, M., “Self-tuning temperature control of a polymerizing reactor”, IEEE Conference on Control Applications – Proceedings, 2, Trieste, Italy, 1110-1114, 1998.

[28] Yusof, R., Omatu, S., and Khalid, M., “Application of self-tuning PI (PID) controller to a temperature control system”, IEEE Conference on Control Applications – Proceedings, 2, 1181-1186, 1994.

[29] Zayed, A.S., Petropoulakis, L., and Katebi, M.R., “An explicit multivariable self-tuning pole-placement PID controller”, 12th International Conference on systems Engineering (ICSE’97), Coventry, U.K., 778-785, 1997.

[30] Zayed, A. S., Hussain, A., and Smith, L.S., “A multivariable generalized minimum-variance stochastic self-tuning controller with pole-zero placement”, International Journal of Control and Intelligent Systems, 32, 1, 35-44, 2004.

[31] Zhu, Q., Ma, Z. and Warwick, K., “Neural network enhanced generalized minimum variance self-tuning controller for nonlinear discrete-time systems”, IEE Proceedings: Control Theory and Applications, 146, 4, 319-326, 1999.

[32] Ziegler, J.G. and Nichols, N.B., “Optimum setting for automatic controllers,” Transactions of the ASME, 64, 759-768, 1942.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2008-08-15起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2008-08-15起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw