進階搜尋


 
系統識別號 U0026-0812200913532111
論文名稱(中文) 腦源性神經滋養因子在淨化呼吸法之抗憂鬱功效中所扮演的角色
論文名稱(英文) The Role of Brain-Derived Neurotrophic Factor in the Antidepressant Effects of Sudarshan Kriya Yoga
校院名稱 成功大學
系所名稱(中) 生理學研究所
系所名稱(英) Department of Physiology
學年度 95
學期 2
出版年 96
研究生(中文) 潘迺凌
研究生(英文) Nai-Ling Pan
電子信箱 S3694103@mail.ncku.edu.tw
學號 S3694103
學位類別 碩士
語文別 中文
論文頁數 72頁
口試委員 口試委員-潘偉豐
口試委員-江美治
指導教授-黃阿敏
中文關鍵字 淨化呼吸法  貝氏憂鬱量表  憂鬱症  腦源性神經滋養因子  可體松 
英文關鍵字 Beck Depression Inventory  Sudarshan Kriya Yoga  serum brain-derived neurotrophic factor  depression  cortisol 
學科別分類
中文摘要 憂鬱症在現今是一個普遍且高危險性的疾病。目前臨床上常用的抗憂鬱方式存在著一些限制與許多副作用,因此,發展更新的、更安全的、易被接受且易於採用的抗憂鬱方式是首要之務。近十年來,憂鬱症致病機轉的研究開始重視一個名為腦源性神經滋養因子(Brain-derived neurotrophic factor (BDNF))的分子。在動物模式或者人類的研究中,皆發現提高腦內或血清內的BDNF含量和抗憂鬱的功效有密切的關連。淨化呼吸法(Sudarshan Kriya yoga breathing, SKY)為抗憂鬱的新方法,簡單、自然且幾乎沒有副作用,然而其分子機制未知。本論文假設,淨化呼吸法可以藉由調控血清BDNF含量達到抗憂鬱的功效。我們招募了66名受試者參與研究,其中9名為經過診斷的憂鬱症患者,其餘57名為一般受試者。採用六天淨化呼吸法課程,並且進行三個月追蹤練習。受試者在課程前、課程後、第4、8及12週填寫貝氏憂鬱量表;並在課程前、課程後、第4、8及12週單次團體練習前及練習後接受抽血。結果發現,(1)受試者參與六天淨化呼吸法課程之後憂鬱指數顯著下降,並且在課程結束後12週維持下降的趨勢;(2)六天淨化呼吸法課程後、練習4、8和12週後,受試者平均血清BDNF含量並未顯著上升;唯憂鬱指數大於9的受試者在六天課程後顯著增加;(3)受試者課程前血清BDNF含量和課程後血清BDNF含量變化百分比呈現負相關,表示六天課程顯著調升或調降血清BDNF含量;(4)六天課程調升或調降血清BDNF含量的現象與課程前所有受試者的憂鬱指數呈現正相關,課程前憂鬱指數高者,受到調升;課程前憂鬱指數低者,受到調降;(5)單次SKY團體練習前受試者血清BDNF含量和練習後血清BDNF含量變化百分比也呈現負相關,表示單次SKY團體練習對於血清BDNF也有顯著調整作用;(6)單次練習淨化呼吸法可以增加血清BDNF含量,降低血清可體松含量,兩者在血清中含量呈現負相關;血清BDNF含量增加可維持至少4小時且非日週期所致。本論文的結論是,SKY課程及練習具有顯著抗憂鬱效果,其抗憂鬱功效並非由於其能增加血清BDNF含量,而是與其同時調升或調降血清BDNF含量有關,這樣的調整現象很有可能是淨化呼吸法抗憂鬱功效的分子機制之一。
英文摘要 Depression is a common and dangerous disorder at present. Current antidepressant methods have limitations and side effects. It is in urgent to develop novel, safe, acceptable and feasible antidepressant methods. Brain-derived neurotrophic factor (BDNF) is a key molecule in the neurotrophic hypothesis of depression in the recent decade. Increase of BDNF levels in the brain and serum seems to relate to antidepressive treatements in animal models and human subjects. Sudarshan Kriya yoga (SKY) breathing is a novel and natural antidepressant method with little side effect. The molecular mechanisms, however, are unknown. This study hypothesized that modulation of serum BDNF levels is one of the antidepressant effects of SKY. Four 6-day SKY courses were organized and three months of practices were followed. Fifty-seven normal subjects and nine depressed subjects were recruited. Beck Depression Inventory (BDI) scores were evaluated and blood samples were collected before and after the SKY courses, and at 4th, 8th, and 12th weeks. Results revealed that (1) BDI scores significantly decreased after the 6-day SKY courses, and the decrease maintained for 12 weeks; (2) Increase of serum BDNF levels were not observed in most subjects, only in subjects whose BDI scores were higher than 9 before the course; (3) Percent changes of serum BDNF levels after the courses were negatively correlated with serum BDNF levels before the course, indicating the normalization effects of the SKY courses; (4) Normalization of serum BDNF after the SKY courses is correlated to BDI scores before the course; (5) Normalization was also observed after one episode of the SKY group practice; (6) One episode of SKY group practice increase serum BDNF levels but decrease serum cortisol levels. Increase of serum BDNF levels sustained for at least 4 fours and was not due to the circadian rhythm. It is concluded that the intervention of SKY courses and practices has profound antidepressant effects and the effects are highly correlated with its function in normalization of serum BDNF levels.
論文目次 Abstract…………………………..1
摘要…………………………….2
致謝……………………………..4
目次…………………………..6
表次………………………..8
圖次………………………..8
1 緒論
1.1 憂鬱症的成因………………………………….9
1.2 憂鬱症和BDNF…………………………………12
1.3 BDNF val66met基因多型性和精神疾病的關係…………14
1.4 憂鬱症的治療方法………………………....15
1.5 淨化呼吸法—治療憂鬱症的新方法………….17
1.6 實驗的假設和目標……………………………19
2 材料及方法
2.1 淨化呼吸法課程……………………………21
2.2 六天SKY課程及後續追蹤實驗…………...21
2.3 單次淨化呼吸法實驗…..…………..…22
2.4 受試者……….…..23
2.5 貝氏憂鬱量表…………24
2.6 血液樣品………...24
2.7 血清BDNF含量測定………………..26
2.8 血清可體松含量測定………………..27
2.9 BDNF val66met基因型分析……………….29
2.10 統計分析………………30
3 結果
3.1 六天SKY課程及後續三個月追蹤練習顯著降低貝氏憂鬱指數…………...32
3.2 六天SKY課程後,血清BDNF含量僅在憂鬱指數大於9的受試者顯著增加……...34
3.3 六天SKY課程調整受試者血清BDNF含量…………...35
3.4 六天SKY課程調整血清BDNF含量和課前貝氏憂鬱指數相關…………..37
3.5 單次SKY團體練習調整受試者血清BDNF含量………………...38
3.6 單次SKY練習增加血清BDNF含量但降低可體松含量………………...40
3.7 單次SKY團體練習血清BDNF含量增加持續4小時……………42
4 討論
4.1 SKY課程的抗憂鬱效果…………………...43
4.2 六天SKY課程的抗憂鬱效果與調整血清BDNF含量有關………………...45
4.3 單次SKY練習也有顯著的調整效果…………………...47
4.4 調升或調降血清BDNF含量的意義為何?………………47
4.5 SKY如何調整血清BDNF含量?………………...49
4.6 結論…………………51
5 參考文獻…………………..52
6 自述……………………..72
參考文獻 Altar C, Whitehead RE, Chen R, Wortwein G and Madsen TM. Effects of electroconvulsive seizures and antidepressant drugs on brain-derived neurotrophic factor protein in rat brain. Biol Psychiatry, 54:703-9, 2003.
Amore M, Tagariello P, Laterza C and Savoia EM. Subtypes of depression in dementia. Arch Gerontol Geriatr. 44 Suppl 1:23-33, 2007.
Aydemir O, Deveci A and Taneli F. The effect of chronic antidepressant treatment on serum brain-derived neurotrophic factor levels in depressed patients: a preliminary study. Prog Neuropsychopharmacol Biol Psychiatry, 29:261-5, 2005.
Berthoud HR, Patterson LM and Zheng H. Vagal-enteric interface: vagal activation-induced expression of c-Fos and p-CREB in neurons of the upper gastrointestinal tract and pancreas. Anat Rec, 262:29-40, 2001.
Bocchio-Chiavetto L, Zanardini R, Bortolomasi M, Abate M, Segala M, Giacopuzzi M, Riva MA, Marchina E, Pasqualetti P, Perez J and Gennarelli M. Electroconvulsive therapy (ECT) increases serum brain derived neurotrophic factor (BDNF) in drug resistant depressed patients. Eur Neuropsychopharmacol, 16:620-4, 2006.
Brown RP and Gerbarg RL. Sudarshan Kriya Yogic Breathing in the Treatment of Stress, Anxiety, and Depression: Part I—Neurophysiologic Model. J Altern Complement Med. 11:189-201, 2005a.
Brown RP and Gerbarg RL. Sudarshan Kriya Yogic breathing in the treatment of stress, anxiety, and depression. Part II--clinical applications and guidelines. J Altern Complement Med. 11:711-7, 2005b.
Bueller JA, Aftab M, Sen S, Gomez-Hassan D, Burmeister M, and Zubieta JK. BDNF Val66Met Allele Is Associated with Reduced Hippocampal Volume in Healthy Subjects. Biol psychiatry, 59:812-5, 2006.
Chen B, Dowlatshahi D, MacQueen GM, Wang JF and Young LT. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol psychiatry, 50:260-5, 2001.
Chen ZY, Ieraci A, Teng H, Dall H, Meng CX, Herrera DG, Nykjaer A, Hempstead BL and Lee FS. Sortilin Controls Intracellular Sorting of Brain-Derived Neurotrophic Factor to the Regulated Secretory Pathway. J Neurosci, 65:2156-66, 2005.
Chen ZY, Jing D, Bath KG, Ieraci A, Khan T, Siao CJ, Herrera DG, Toth M, Yang C, McEwen BS, Hempstead BL and Lee FS. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science, 314:140-3, 2006.
Ciammola A, Sassone J, Cannella M, Calza S, Poletti B, Frati L, Squitieri F and Silani V. Low brain-derived neurotrophic factor (BDNF) levels in serum of Huntington's disease patients. Am J Med Genet B Neuropsychiatr Genet, 144: 574-7, 2007.
Cunha ABM, Frey BN, Andreazza AC, Goi JD, Rosa AR, Gonalves CA, Santin A and Kapczinski F. serum brain-derived neurotrophic factor is decreased in bipolar disorder during depressive and manic episodes. Neurosci Lett, 398: 215-9, 2006.
Czh B, Welt T, Fischer AK, Erhardt A, Schmitt W, Mller MB, Toschi N, Fuchs E and Keck ME. Chronic psychosocial stress and concomitant repetitive transcranial magnetic stimulation: effects on stress hormone levels and adult hippocampal neurogenesis. Biol Psychiatry, 52: 1057-65, 2002.
Duman RS and Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry, 59:1116-27, 2006.
Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, Zaitsev E, Gold B, Goldman D, Dean M, Lu B and Weinberger DR. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112: 257-69, 2003.
Fava M and Kendler KS. Major depressive disorder. Neuron, 26:335-41, 2000.
Gervasoni N, Aubry JM, Bondolfi G, Osiek C, Schwald M, Bertschy G and Karege F. Partial normalization of serum brain-derived neurotrophic factor in remitted patients after a major depressive episode. Neuropsychobiology, 51:234-8, 2005.
Gillespie CF and Nemeroff CB. Hypercortisolemia and depression. Psychosom Med, 67: S26-8, 2005.
Gonul AS, Akdeniz F, Taneli F, Donat O, Eker C and Vahip S. Effect of treatment on serum brain-derived neurotrophic factor levels in depressed patients. Eur Arch Psychiatry Clin Neurosci, 255:381-6, 2005.
Hariri AR, Goldberg TE, Mattay VS, Kolachana BS, Callicott JH, Egan MF and Weinberger DR. Brain-Derived Neurotrophic Factor val66met Polymorphism Affects Human Memory-Related Hippocampal Activity and Predicts Memory Performance. J Neurosci, 23:6690–4, 2003.
Heldt SA, Stanek L, Chhatwal JP and Ressler KJ. Hippocampus-specific deletion of BDNF in adult mice impairs spatial memory and extinction of aversive memories. Mol Psychiatry, Epub ahead of print, 2007.
Hofer M, Pagliusi SR, Hohn A, Leibrock J and Barde YA. Regional distribution of brain-derived neurotrophic factor mRNA in the adult mouse brain. EMBO J. 9:2459-64, 1990.
Huang TL, Lee CT and Liu YL. serum brain-derived neurotrophic factor levels in patients with major depression: Effects of antidepressants. J Psychiatr Res, Epub ahead of print, 2007.
Janakiramaiah N, Gangadhar BN, Murthy PJNV, Harish MG, Subbakrishna DK and Vedamurthachar A. Antidepressant efficacy of Sudarshan Kriya yoga (SKY) in melancholia: a randomized comparison with electroconvulsive therapy (ECT)and imipramine. J Affect Disord, 57:255-9, 2000.
Jockers-Scherbl MC, Danker-Hopfe H, Mahlberg R, Selig F, Rentzsch J, Schrer F, Lang UE and Hellweg R. Brain-derived neurotrophic factor serum concentrations are increased in drug-naive schizophrenic patients with chronic cannabis abuse and multiple substance abuse. Neurosci Lett, 371: 79-83, 2004.
Karege F, Perret G, Bondolfi G, Schwald M, Bertschy G and Aubry JM. Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res, 109:143-8, 2002a.
Karege F, Schwald M and Cisse M. Postnatal developmental profile of brain-derived neurotrophic factor in rat brain and platelets. Neurosci Lett, 328:261-4, 2002b.
Karege F, Vaudan G, Schwald M, Perroud N and La Harpe R. Neurotrophin levels in postmortem brains of suicide victims and the effects of antemortem diagnosis and psychotropic drugs. Brain Res Mol Brain Res. 136:29-37, 2005.
Kobayashi K, Shimizu E, Hashimoto K, Mitsumori M, koike K, Okamura N, Koizumi H, Ohgake S, Matsuzawa D, Zhang L, Nakazato M and Iyo M. Serum brain-derived neurotrophic factor (BDNF) levels in patients with panic disorder: As a biological predictor of response to group cognitive behavioral therapy. Prog Neuropsychopharmacol Biol Psychiatry, 29(5):658-63, 2005.
Koizumi H, Hashimoto K, Itoh K, Nakazato M, Shimizu E, Ohgake S, Koike K, Okamura N, Matsushita S, Suzuki K, Murayama M, Higuchi S, and Iyo M. Association Between the Brain-Derived Neurotrophic Factor 196G/A Polymorphism and Eating Disorders. Am J Med Genet B Neuropsychiatr Genet, 127B:125–7, 2004.
Lang UE, Hellweg R, Kalus P, Bajbouj M, Lenzen KP, Sander T, Kunz D and Gallinat J. Association of a functional BDNF polymorphism and anxiety-related personality traits. Psychopharmacology (Berl), 180:95-9, 2004.
Laske C, Stransky E, Leyhe T, Eschweiler GW, Wittorf1 A, Richartz E, Bartels M, Buchkremer G and Schott K. Stage-dependent BDNF serum concentrations in Alzheimer’s disease. J Neural Transm, 113: 1217–24, 2006.
Levinson DF. The genetics of depression: a review. Biol Psychiatry, 60:84-92, 2006.
Machado-Vieira R, Dietrich MO, Leke R, Cereser VH, Zanatto V, Kapczinski F, Souza DO, Portela LV and Gentil V. Decreased plasma brain derived neurotrophic factor levels in unmedicated bipolar patients during manic episode. Biol Psychiatry, 61: 142-4, 2007.
Mackin P, Gallagher P, Watson S, Young AH and Ferrier IN. Changes in brain-derived neurotrophic factor following treatment with mifepristone in bipolar disorder and schizophrenia. Aust N Z J Psychiatry, 41:321-6, 2007.
Marano CM, Phatak P, Vemulapalli UR, Sasan A, Nalbandyan MR, Ramanujam S, Soekadar S, Demosthenous M and Regenold WT. Increased plasma concentration of brain-derived neurotrophic factor with electroconvulsive therapy: a pilot study in patients with major depression. J Clin Psychiatry, 68:512-7, 2007.
Miyazaki K, Naroko N, Sakuta R, Miyahara T, Naruse H, Okado N and Narita M. serum neurotrophin concentrations in autism and mental retardation: a pilot study. Brain Dev, 26: 292-5, 2004.
Monteleone P, Fabrazzo M, Martiadis V, Serritella C, Pannuto M and Maj M. Circulating brain-derived neurotrophic factor is decreased in women with anorexia and bulimia nervosa but not in women with binge-eating disorder: relationships to co-morbid depression, psychopathology and hormonal variables. Psychol Med, 35: 897-905, 2005.
Muller M, Tosci N, Kresse AE, Poat A, Keck ME. Long-term repetitive transcranial magnetic stimulation increases the expression of brain-derived neurotrophic factor and cholecystokinin mRNA, but not neuropeptide tyrosine mRNA in specific areas of rat brain. Neuropsychopharmacology, 23:205-15, 2000.
Murthy PJNV, Gangadhar BN, Janakiramaiah N and Subbakrishna DK. Normalization of P300 amplitude following treatment in Dysthymia. Biol Psychiatry, 42:740-3, 1997.
Murthy PJNV, Janakiramaiah N, Gangadhar BN and Subbakrishna DK. P300 amplitude and antidepressant response to Sudarshan Kriya yoga (SKY). J Affect Disord, 50:45-8, 1998.
Nelson KB, Grether JK, Croen LA, Dambrosia JM, Dickens LL and Jelliffe LL. Neuropeptides and neurotrophins in neonatal blood of children with autism or mental retardation. Ann Neurol,49:597–606, 2001.
Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ and Monteggia LM. Neurobiology of depression. Neuron, 34:13-25, 2002.
Nestler EJ and Berton O. New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci, 7:137-51, 2006.
Neves-Pereira M, Mundo E, Muglia P, King N, Macciardi F and Kennedy JL. The brain-derived neurotrophic factor gene confers susceptibility to bipolar disorder: evidence from a family-based association study. Am. J. Hum. Genet. 71: 651-5, 2002.
Numata S, Ueno S, Iga J, Yamauchi K, Hongwei S, Ohta K, Kinouchi S, Shibuya-Tayoshi S, Tayoshi S, Aono M, Kameoka N, Sumitani S, Tomotake M, Kaneda Y, Taniguchi T, Ishimoto Y, Ohmori T. Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism in schizophrenia is associated with age at onset and symptoms. Neurosci Lett, 401:1-5, 2006.
O’keane V, Dinan TG, Scott L and Corcoran C. Changes in hypothalamic–pituitary–adrenal axis measures after vagus nerve stimulation therapy in chronic depression. Biol Psychiatry, 58:963-8, 2005.
Pan W, Banks WA, Fasold MB, Bluth J and Kastin AJ. Transport of brain-derived neurotrophic factor across the blood–brain barrier. Neuropharmacology, 37:1553-61, 1998.
Pizarro JM, Lumley LA, Medina W, Robison CL, Chang WE, Alagappan A, Bah MJ, Dawood MY, Shah JD, Mark B, Kendall N, Smith MA, Saviolakis GA and Meyerhoff JL. Acute social defeat reduces neurotrophin expression in brain cortical and subcortical areas in mice. Brain Res, 1025: 10-20, 2004.
Ridder S, Chourbaji S, Hellweg R, Urani A, Zacher C, Schmid W, Zink M, Hrtnagl H, Flor H, Henn FA, Schtz G and Gass P. Mice with genetically altered glucocorticoid receptor expression show altered sensitivity for stress-induced depressive reactions. J Neurosci, 25:6243-50, 2005.
Roceri M, Cirulli F, Pessina C, Peretto P, Racagni G and Riva MA. Postnatal repeated maternal deprivation produces age-dependent changes of brain-derived neurotrophic factor expression in selected rat brain regions. Biol psychiatry, 55:708-14, 2004.
Russo-Neustadt A, Beard RC and Cotman CW. Exercise, antidepressant medications, and enhanced brain derived neurotrophic factor expression. Neuropsychopharmacology, 21:679–682, 1999.
Schulte-Herbruggen O, Chourbaji S, Ridder S, Brandwein C, Gass P, Hortnagl H and Hellweg R. Stress-resistant mice overexpressing glucocorticoid receptors display enhanced BDNF in the amygdala and hippocampus with unchanged NGF and serotonergic function. Psychoneuroendocrinology, 31:1266-77, 2006.
Sheline YI, Gado MH and Kraemer HC. Untreated depression and hippocampal volume loss. Am J Psychiatry, 160:1516-8, 2003.
Shimizu E, Hashimoto K, Okamura N, Koike K, Komatsu N, Kumakiri C, Nakazato M, Watanabe H, Shinoda N, Okada S and Iyo M. Alterations of serum Levels of Brain-Derived Neurotrophic Factor (BDNF) in Depressed Patients with or without Antidepressants. Biol psychiatry, 54:70-5, 2003.
Shirayama Y, Chen AC, Nakagawa S, Russell DS and Duman RS. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci, 22:3251-61, 2002.
Sklar P, Gabriel SB, McInnis MG, Bennett P, Lim YM, Tsan G, Schaffner S, Kirov G, Jones I, Owen M, Craddock N, DePaulo JR and Lander ES. Family-based association study of 76 candidate genes in bipolar disorder: BDNF is a potential risk locus. Brain-derived neutrophic factor. Mol Psychiatry, 7:579-93, 2005.
Smith MA, Makino S, Kvetnansky R and Post RM. Stress and glucocorticoids affect the express of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci, 15: 1768-77, 1995.
Vedamurthachar A, Janakiramaiah N, Hegde JM, Shetty TK, Subbakrishna DK, Sureshbabu SV, and Gangadhar BN. Antidepressant efficacy and hormonal effects of Sudarshana Kriya Yoga (SKY) in alcohol dependent individuals. J Affect Disord, 94:249-53, 2006.
Widmaier EP, Raff H and Strang KT. Vander’s human physiology: the mechanisms of body function (10th ed). Americas, New York: McGraw-Hill, 2006.
Zanardini R, Gazzoli A, Ventriglia M, Perez J, Bignotti S, Rossini PM, Gennarelli M and Bocchio-Chiavetto L. Effect of repetitive transcranial magnetic stimulation on serum brain derived neurotrophic factor in drug resistant depressed patients. J Affect Disord, 91:83-6, 2006.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2009-08-08起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2009-08-08起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw