進階搜尋


 
系統識別號 U0026-0812200913524451
論文名稱(中文) 應用生光模式及福衛二號遙測影像研究曾文水庫水質之時空分佈
論文名稱(英文) Application of bio-optical models and FORMOSAT-2 Remote Sensing Imagery to study the temporal and spatial distribution of water quality in Tseng-Wen Reservoir
校院名稱 成功大學
系所名稱(中) 環境工程學系碩博士班
系所名稱(英) Department of Environmental Engineering
學年度 95
學期 2
出版年 96
研究生(中文) 譚子健
研究生(英文) Chi-Kin Tam
電子信箱 p5694115@ccmail.ncku.edu.tw
學號 p5694115
學位類別 碩士
語文別 中文
論文頁數 120頁
口試委員 口試委員-林明德
指導教授-劉正千
口試委員-王驥魁
指導教授-溫清光
中文關鍵字 生光模式  曾文水庫  葉綠素  懸浮固體物  時空分佈  遙測水質  反矩陣法  福爾摩沙衛星二號 
英文關鍵字 temporal and spatial distribution  remote-sensing of water quality  FORMOSA-2  inverse matrix method  bio-optical model  Tseng-Wen Reservoir 
學科別分類
中文摘要 水質監測是水庫狀態認定、飲用水安全預警、污染來源分析、優養化控制規劃及成效評估不可或缺的工作。傳統點狀採樣對於時空分佈明顯不均的水質而言,其代表性令人存疑。
本研究利用現地量測的光譜資訊及影像處理技術,應用於福爾摩沙衛星二號的遙測影像上,並藉此監測水庫內葉綠素a(Chl-a)與懸浮固體物(SS)濃度之時空分佈。根據調查與資料分析,發現水質與現地量測之水面高光譜反射率間有很好的相關性。其中,Chl-a與SS在迴歸式中所得出的判定係數(R2)值分別為0.79及0.87。當迴歸式套用至實際影像後卻呈現誤差放大,其原因主要來自大氣輻射影響及影像拍攝與實測並非完全同步所至。但是,基本上仍可從影像中明確地判識浮游植物與懸浮物濃度在不同月份的差異及其分佈之趨勢。除此之外,本研究採用以生光模式為基礎的半經驗法,利用反矩陣的方式將影像DN值以非線性最佳法的方式反算庫內水質。在推估的過程中,Chl-a的平均絕對值相對誤差為48%,比全經驗法所推估的誤差更少,全經驗所推估的平均絕對值相對誤差為51%;不過以半經驗法推估SS的時候,其平均絕對值相對誤差卻高達112%;經過分析與觀察,研判其誤差的來源除了因影像拍攝時間與現地量測不同所造成之外,在求解的過程中,由於是利用最佳化的方法同時求出三種水質(分別為Chl-a、SS及有色溶解性物質),但各項水質在不同時期所佔之權重皆不同,導致求解的過程中彼此互相影響,造成推估的誤差。
本研究結果顯示應用福衛二號遙測影像推估水庫水質的誤差遠高於實驗室分析之誤差,其推估的絕對濃度值不適於做為水質標準或優養狀態認定之依據,但仍可做為高頻度監測水庫全域水質的平台,反映出水庫在不同時間浮游植物濃度上的差異,以及監控支流排入高濁度溪水後的分佈狀態。
英文摘要 Monitoring the water quality is an essential work for evaluating the reservoir condition, monitoring the drinking water safety, analyzing the contaminant source, and indicating the eutrophicated status. The data collected by the traditional approach of sampling at a few stations on certain dates, however, is limited both in time and space. As a result, such data is not able to provide the temporal and spatial information for the entire water reservoir..
In this study, both the in-situ measurement of spectral reflectance and the technique of image processing are applied to the time series of remote-sensing imagery collected by FORMOSAT-2, with the intention to monitor the temporal and spatial distribution of chlorophyll-a (Chl-a) and suspended sediment (SS). The result shows that a close correlation exists between various parameters of water quality and the in-situ measurement of the hyper-spectral reflectance. The R2 value of the empirical regression model for Chl-a and SS is 0.79 and 0.87, respectively. Therefore, firstly, this research applies the empirical model to analyze the FORMOSAT-2 imagery. The result shows that the relative percentage differences (RPD) of Chl-a and SS are as low as 51% and 33%, respectively. Secondly, based on the technique of non-linear optimization using the inverse matrix method, this research employs a set of bio-optical models to derive the semi-empirical relationship between various parameters of water quality and the surface reflectance derived from FORMOSAT-2 images. In spite of the much longer time required for image processing, the semi-empirical method gives an even lower value of RPD for Chl-a (48%). However, the RPD for SS is run up to 112% in this case. This might be caused by the different level of atmospheric effect on different date. Another possibility is that the FORMOSAT-2 imagery and the in-situ measurement were not collected on the same time. Nevertheless, this research demonstrated that the time series of FORMOSAT-2 images is an ideal source of data for studying the temporal and spatial distribution of the phytoplankton and suspended sediment.
This study concludes that the errors in estimating the water quality of a reservoir from the imagery of FORMOSAT-2 are much larger than the one obtained from the laboratory analysis. Therefore, it is not appropriate to simply use the satellite-derived parameters to infer the water quality or to indicate the status of eutrophication. However, the satellite is still an ideal platform for monitoring the water quality over the entire reservoir. The remote sensing imagery is able to show the spatial and temporal variation of the phytoplankton concentration and the distribution of the turbidity in the reservoir after the inflows from different branches.
論文目次 目錄
摘要 Ι
Abstract ΙΙ
誌謝 ΙV
目錄 V
表目錄 VIII
圖目錄 X
第一章 前言 1-1
1.1 研究緣起 1-1
1.2 研究目的 1-2
1.3 論文架構 1-2
第二章 文獻回顧 2-1
2.1 水庫水質時空變異之探討 2-1
2.2 評估水庫水質之相關研究 2-1
2.3 遙測分析水質之原理 2-5
2.4 遙測技術監測湖庫水質之案例分析 2-8
2.4.1 荷蘭多平台遙測分析湖泊水質案例 2-11
2.4.2 北歐湖泊水色研究計畫 2-14
2.4.3 湖庫光學分類 2-19
2.5衛星特性及評選 2-20
第三章 研究資料取得與處理 3-1
3.1 衛星遙測影像 3-1
3.1.1 福衛摩沙衛星二號 3-1
3.1.2 福衛二號影像取得及篩選 3-4
3.2 地面真實資料 3-7
3.2.1 監測背景 3-8
3.2.2 建立曾文水庫光譜水質資料庫 3-10
3.3 福衛二號影像自動處理系統 3-16
3.3.1 錯位修正 3-17
3.3.2 正射糾正 3-20
3.3.3 大氣校正 3-21
3.3.4 彩色融合 3-27
3.4 小結 3-27
第四章 模式之建置 4-1
4.1 光譜水質模式之率定 4-1
4.1.1 以全經驗法建立曾文水庫光譜水質經驗式 4-1
4.1.2 以半經驗法建立曾文水庫光譜水質經驗式 4-3
4.2 光譜水質模式之驗證 4-10
4.2.1 全經驗光譜水質模式之驗證 4-10
4.2.2 半經驗光譜水質模式之驗證 4-15
第五章 曾文水庫水質時空分佈特性之分析 5-1
5.1 監測背景與特性 5-1
5.2 監測資料 5-5
5.3 監測結果 5-10
5.4 討論 5-28
第六章 結論與建議 6-1
6.1 結論 6-1
6.2 建議 6-3
參考文獻 7-1
附錄A 相對輻射校正前曾文水庫不同時期之衛星影像 8-1
附錄B 相對輻射校正後曾文水庫不同時期之衛星影像 8-5
表目錄
表2.2-1 Carlson單一參數判斷優養化之標準 2-3
表2.2-2 美國環境保護署單一參數判斷優養化之標準 2-3
表2.2-3 OECD單一參數判斷優養化之標準 2-3
表2.2-4 Carlson優養指數法 2-4
表2.4.3-1 CMTVB湖泊光學等級分類表 2-19
表2.4.3-2 陸地水體七種光學水質分類表 2-20
表2.5-1 常見之水色衛星影像規格 2-22
表2.5-2 各種地面觀測衛星之影像規格 2-23
表3.1-1 福衛二號衛星基本資料 3-3
表3.1-2 2006年福衛二號拍攝曾文水庫影像記錄表 3-5
表3.2-1 高光譜輻射儀之基本資料 3-8
表3.2-2 曾文水庫採樣點座標 3-9
表3.2-3 曾文水庫光譜水質資料 3-14
表3.3-1 福衛二號影像各級產品定義 3-17
表4.1-1 純水吸收係數文獻值 4-4
表4.1-2 曾文水庫內生光模式資訊率定結果 4-6
表4.2-1 葉綠素a濃度影像推估值與實測值之相對偏差百分比比對表(全經驗法) 4-12
表4.2-2 懸浮固體物濃度影像推估值與實測值之相對偏差百分比比對表(全經驗法) 4-14
表4.2-3 葉綠素a濃度影像推估值與實測值之相對偏差百分比比對表(半經驗法) 4-16
表4.2-4 懸浮固體物濃度影像推估值與實測值之相對偏差百分比比對表(半經驗法) 4-17
表5.1-1 曾文水庫全區之控制雨量站與其控制面積權重 5-3
表5.2-1 曾文水庫研究區之研究資料 5-5
圖目錄
圖1.3-1 研究架構流程圖 1-3
圖2.3-1 多平台遙測示意圖 2-7
圖2.4-1 case1水體不同葉綠素濃度之理論反射光譜圖 2-9
圖2.4.1-1 以空照及水色衛星影像顯示荷蘭IJssel湖TSM與TCHL濃度分佈之影像 2-12
圖2.4.1-2 以空照及水色衛星影像顯示荷蘭Marken湖TSM濃度分佈之影像 2-13
圖2.4.1-3 以水色衛星影像顯示荷蘭Marken及IJssel湖TSM濃度分佈之時間序列影像 2-13
圖2.4.2-1 北歐30個湖泊CPAR* (m-1)及Cf*(380) (m-1)之分析比對圖 2-15
圖2.4.2-2 北歐30個湖泊葉綠素a (mg m-3)及TSM (g m-3)濃度之分析比對圖 2-15
圖2.4.2-3 曾文水庫光學性水質分佈圖 2-16
圖2.4.2-4 空載及衛星感測儀波段比較圖 2-17
圖2.4.2-5 瑞典Marlaren湖空照水質分佈之影像 2-18
圖2.4.2-6 利用CASI空照(上)及Landsat衛星(下)影像顯示瑞典Erken湖葉綠素濃度之分佈影像 2-18
圖2.5-1 執行各種地球觀測任務之遙測衛星其再訪率與空間解析度上之需求 2-20
圖2.5-2 環境觀測衛星之空間解析度與再訪率之分類圖 2-21
圖3.1-1 福衛二號繞行地球之軌道示意圖 3-2
圖3.1-2 福衛二號取像條帶示意圖 3-4
圖3.2-1 地面量測之高光譜輻射儀 3-8
圖3.2-2 曾文水庫例行水質採樣位置圖 3-9
圖3.2-3 福衛二號之穿透率函數 3-12
圖3.2-5 曾文水庫各測點之水質濃度時間分佈圖 3-13
圖3.3-1 福衛二號取像方式示意圖 3-18
圖3.3-2 福衛二號全色態與多頻譜影像間之不均勻錯位現象示意圖 3-18
圖3.3-3 應用「福衛二號影像自動處理系統」產製正射影像之實例 3-20
圖3.3-4 相對輻射校正過程中搜尋PIFs之水庫區域 3-22
圖3.3-5 應用「福衛二號影像自動處理系統」進行相對輻射校正之實例 3-22
圖3.3-6 相對輻射校正過程中搜尋出之PIFs影像點示意圖 3-23
圖3.3-7 相對輻射校正前後時期之影像值時序變化比對圖(紅色波段) 3-24
圖3.3-8 相對輻射校正前後時期之影像值時序變化比對圖(綠色波段) 3-24
圖3.3-9 相對輻射校正前後時期之影像值時序變化比對圖(藍色波段) 3-24
圖3.3-10 絕對輻射校正後之衛星影像輻射訊號與現地量測之高光譜輻射訊號趨勢比較圖 3-26
圖3.3-11(a) 絕對輻射校正前之影像與輻射訊號趨勢圖 3-26
圖3.3-11(b) 絕對輻射校正後之影像與輻射訊號趨勢圖 3-26
圖3.3-7 應用「福衛二號影像自動處理系統」進行SSIM彩色融合處理之實例 3-27
圖4.1-1 曾文水庫葉綠素a濃度實測值與模擬值比對圖 4-2
圖4.1-2 曾文水庫懸浮物濃度實測值與模擬值比對圖 4-3
圖4.1-3(a) 以半經驗法推估葉綠素a濃度模擬值與實測值之比較(率定階段) 4-7
圖4.1-3(b) 以半經驗法推估懸浮固體物濃度模擬值與實測值之比較(率定階段) 4-7
圖4.1-4(a) 以半經驗法推估葉綠素a濃度模擬值與實測值之比較(驗證階段) 4-8
圖4.1-4(b) 以半經驗法推估懸浮固體物濃度模擬值與實測值之比較(驗證階段) 4-8
圖4.1-5(a) 2006年地面量測反射率與影像轉換反射率比對圖 4-9
圖4.1-5(b) 06/12/12地面量測反射率與影像轉換反射率比對圖 4-9
圖4.1-6 實測之光總吸收量與地面反射率轉換之光總吸收量比對圖 4-10
圖4.1-7(a) 2006年實測之光總吸收量與影像反射率轉換的光總吸收量比對圖 4-10
圖4.1-7(b) 06/12/12實測之光總吸收量與影像反射率轉換之光總吸收量比對圖 4-10
圖4.2-1 葉綠素a濃度實測值與遙測值之分佈比對圖(全經驗法) 4-11
圖4.2-2 懸浮固體物濃度實測值與遙測值之分佈比對圖(全經驗法) 4-13
圖4.2-3 葉綠素a濃度實測值與遙測值之分佈比對圖(半經驗法) 4-15
圖4.2-4 懸浮固體物濃度實測值與遙測值之分佈比對圖(半經驗法) 4-17
圖5.1-1 曾文水庫集水區分屬之行政區 5-1
圖5.2-2 2006年曾文水庫水位分佈圖 5-2
圖5.1-3 曾文水庫集水區水文觀測站位置圖 5-3
圖5.1-4 2006年曾文水庫月平均降雨量分佈圖 5-4
圖5.2-1 曾文水庫時序列福衛二號影像 5-6
圖5.3-1 曾文水庫葉綠素a濃度時序列福衛二號影像(全經驗) 5-11
圖5.3-2 曾文水庫葉綠素a濃度時序列福衛二號影像(半經驗) 5-15
圖5.3-3 曾文水庫懸浮固體物濃度時序列福衛二號影像(全經驗) 5-20
圖5.3-4 曾文水庫懸浮固體物濃度時序列福衛二號影像(半經驗) 5-24
圖6.1-1 ASTER衛星各波段接收光譜感應率曲線圖 6-3
照片3.2-1 現地量測水面反射光譜示意圖 3-10
照片6.2-1 曾文水庫假彩色(false color)高光譜影像 6-5
照片6.2-2 智慧型光譜取像系統(ISIS)及BN2空照機 6-7
參考文獻 Ammenberg, P., Flink, P., Lindell, T., Pierson, D., & Strombeck, N. "Bio-optical modelling combined with remote sensing to assess water quality". International Journal of Remote Sensing, 23(8), 1621-1638, 2002.
Arst, H. "Optical Properties and Remote Sensing of Multicomponental Water Bodies": Springer, 2003.
Austin, R.W. "Optical remote sensing of the oceans: BC (before CZCS) and AC (after CZCS)." Ocean colour: theory and applications in a decade of CZCS experience, V. Barale and P.M. Schlittenhardt, eds., Kluwer Academic, Dordrecht. (pp. 1-15), 1993.
Bari, cacute, Ante, Marasovi, cacute, Ivona, Gac, ccaron, cacute, & Miroslav. "Eutrophication Phenomenon with Special Reference to the Kasstela Bay". Taylor & Francis, (pp. 51 - 68), 1992.
Carlson, R.E. "A Trophic State Index for Lakes". Minneapolis: JSTOR, (pp. 361-369), 1977.
Carlson, R.E., & Simpson, J. "A Coordinator’s Guide to Volunteer Lake Monitoring Methods". 1996.
Chang, C.H., Liu, C.C., & Wen, C.G. "Integrating semianalytical and genetic algorithms to retrieve the constituents of water bodies from remote sensing of ocean color". Optics Express, 15(2), 252-265, 2007.
Chen, H., Wu, F., & Liu, C. "Introduction of ROCSAT-2 Terminal". Taichung,Taiwan, The 23rd Conference on Surveying Theories and Applications, 2004.
Clarke, G.L., Ewing, G.C., & Lorenzen, C.J. "Spectra of Backscattered Light from the Sea Obtained from Aircraft as a Measure of Chlorophyll Concentration". Science, 167(3921), 1119-1121, 1970.
Dekker, A.G., Malthus, T.J., & Hoogenboom, H.J. "The remote sensing of inland water quality." Advances in environmental remote sensing, F. M. Danson and S. E. Plumer, eds., John Wiley & Sons, 123-142, 1995.
Dekker, A.G., Malthus, T.J., Wijnen, M.M., & Seyhan, E. "Remote sensing as a tool for assessing water quality in Loosdrecht lakes". Hydrobiologia, 233(1), 137-159, 1992.
Dillon, P.J., & Rigler, F.H. "The Phosphorus-Chlorophyll Relationship in Lakes". JSTOR, (pp. 767-773), 1974.
Du, Y., Teillet, P.M., & Cihlar, J. "Radiometric normalization of multitemporal high-resolution satellite images with quality control for land cover change detection". Remote Sensing of Environment, 82, 123-134, 2002.
Ewing, G.C. "Oceanography from Space: Proceedings of Conference on the Feasibility of Conducting Oceanographic Explorations from Aircraft, Manned Orbital and Lunar Laboratories," held at Woods Hole, Massachusetts, 24-28 August 1964. 1965.
Gibson, P., & Power, C. "Introductory Remote Sensing: Principles and Practices": New York: Taylor and Francis, 2000.
Gordon, H.R., & Morel, A.Y. "Remote assessment of ocean color for interpretation of satellite visible imagery: A review". New York: Springer-Verlag, Lecture Notes on Coastal and Estuarine Studies, 1983.
Kirk, J.T.O. "Light and Photosynthesis in Aquatic Ecosystems". New York: Cambridge University Press, 1994.
Kuo, J.-T., Hsieh, M.-H., Lung, W.-S., & She, N. "Using artificial neural network for reservoir eutrophication prediction". Ecological Modelling, 200(1-2), 171-177, 2007.
Kutser, T., Herlevi, A., Kallio, K., & Arst, H. "A hyperspectral model for interpretation of passive optical remote sensing data from turbid lakes". The Science of the Total Environment, 268(1-3), 47-58, 2001.
Lee, Z.P., Carder, K.L., & Arnone, R.A. "Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters", 41(27), 5755–5772, 2002.
Liu, C.-C., Liu, J.-G., Lin, C.-W., Wu, A.-M., Liu, S.-H., & Shieh, C.-L. "Image processing of FORMOSAT-2 data for monitoring South Asia tsunami". International Journal of Remote Sensing, 2005.
Liu, C.C. "Processing of FORMOSAT-2 Daily Revisit Imagery for Site Surveillance". Geoscience and Remote Sensing, IEEE Transactions on, 44(11), 3206-3214, 2006.
Liu, C.C., & Miller, R.L. "A spectrum matching method for estimating the inherent optical properties from remote sensing of ocean color". (pp. 141-152), 2003.
Mahtab, A.L., Runquist, D.C., Han, L.H., & Kuzila, M.S. "Estimation of suspended sediment concentration in water using integrated surface reflectance". (pp. 11-15), 1998.
Mobley, C.D. "Light and Water: Radiative Transfer in Natural Waters". New York: Academic Press, 1994.
Moran, M.S., Bryant, R., Thome, K., Nouvellon, W.N.Y., Gonzales-Dugo, M.P., Qi, J., & Clarke, T.R. "A refined empirical line approach for reflectance factor retrieval from Landsat-5 TM and Landsat-7 ETM". Remote Sensing of Environment, 78, 71-82, 2001.
NASA. "ASTER Instrument Characteristics", National Aeronautics and Space Administration (NASA)
http://asterweb.jpl.nasa.gov/content/01_mission/
03_instrument/01_Characteristics/vnirchart.htm, 1999.
Ostlund, C., Flink, P., Strombeck, N., Pierson, D., & Lindell, T. "Mapping of the water quality of Lake Erken, Sweden, from Imaging Spectrometry and Landsat Thematic Mapper". The Science of the Total Environment, 268(1-3), 139-154, 2001.
Reinart, A., Paavel, B., Pierson, D., & Strombeck, N. "Inherent and apparent optical properties of Lake Peipsi, Estonia". Boreal Environment Research, 9(5), 429-445, 2004.
Robinson, I.S. Satellite Oceanography: "An Introduction for Oceanographers and Remote-sensing Scientists": John Wiley & Sons, Chichester., 1995.
S. Pegau, J.R.V. Zanefeld, B.G. Mitchell, J.L. Mueller, M. Kahru, J. Wieland, & M. Stramska. "Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, Volume IV: Inherent Optical Properties: Instruments, Characterizations, Field Measurements and Data Analysis Protocols". J.L. Mueller, G.S. Fargion & C.R. McClain (Eds.). Greenbelt, Maryland: National Aeronautics and Space Administration (NASA), 2003.
Sakamoto, M. "Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth". Arch Hydrobiol, (pp. 1-28), 1966.
Strombeck, N., & Pierson, D.C. "The effects of variability in the inherent optical properties on estimations of chlorophyll a by remote sensing in Swedish freshwaters". The Science of the Total Environment, 268(1-3), 123-137, 2001.
Vincent, R.K., Qin, X., McKay, R.M.L., Miner, J., Czajkowski, K., Savino, J., & Bridgeman, T. "Phycocyanin detection from LANDSAT TM data for mapping cyanobacterial blooms in Lake Erie". Remote Sensing of Environment, 89(3), 381-392, 2004.
Vos, R.J., Hakvoort, J.H.M., Jordans, R.W.J., & Ibelings, B.W. "Multiplatform optical monitoring of eutrophication in temporally and spatially variable lakes". The Science of the Total Environment, 312(1-3), 221-243, 2003.
Wu, A.M., Lee, Y.Y., Kuo, P., & Kao, R. " ROCSAT-2 imaging planning and scheduling". Taipei, Taiwan, The first Taipei international conference on digital earth, 2003.
Zakova, Z., Berankova, D., Kockova, E., & Kriz, P. "Influence of diffuse pollution on the eutrophication and water quality of reservoirs in the Morava river basin". Wat. Sci. Tech., 28(3), 79-90, 1993.
王奕軒. "自來水中木頭味物質β-cyclocitral之來源及去除之研究". 國立成功大學環境工程學研究所碩士論文, 2006.
何宗儒. "簡介衛星海洋遙測". 國立海洋科技博物館籌備處簡訊20期, 2002.
吳昀昭, 田慶久, 金震宇, 張宗貴, & 惠鳳鳴. "ETM+資料絕對反射率反演方法分析". 遙感信息, 2, 9-12, 2004.
吳教安. "福衛摩沙衛星二號遙測影像應用於河川砂石資源開採區域判釋". 國立成功大學碩士論文, 2006.
吳啟南, 蕭國鑫, 廖子毅, 陳大科, & 李元炎. "遙測技術應用於水污染管制之研究(I)". 工業技術研究院能源與資源研究所, 新竹., 1998.
吳啟南, 蕭國鑫, 廖子毅, 陳大科, & 李元炎. "遙測技術應用於水污染管制之研究(II)". 工業技術研究院能源與資源研究所, 新竹, 1999.
李祚泳, & 張輝軍. "我國若干湖泊水庫的營養狀態指數TSIc 及其與各參數的關係". 環境科學學報, 13(004), 391-397, 1993.
周凱慧, 劉霞, 李化民, & 邢先雙. "黃前水庫水質監測及變化規律研究". Journal of Soil and Water Conservation (水土保持學報), 18(4), 150-153, 2004.
邱紹維, & 蔡龍珆. "應用修正後之灰關聯分析於翡翠水庫優養化之綜合評估". 第十三屆水利工程研討會論文集, 2002.
郭祥亭. "水庫水源簡易水質指標之可行性研究". 國立臺灣大學環境工程學研究所 碩士論文, 1988.
舒金華. "我國主要湖泊富營養化程度的評價". 海洋與湖沼, 24(006), 616-620, 1993.
舒金華, & 黃文鈺. "中國湖泊營養類型的分類研究". 湖泊科學, 8(003), 193-200, 1996.
黃慶祥. "水庫水質與光學性質模式之建立及其應用". 國立成功大學環境工程學研究所碩士論文, 2006.
溫清光, 高銘木, 張穗蘋, 李志賢, & 賴雪端. "以藻類去除水體氮磷技術評估及調查計畫". 行政院環保署, 2007.
溫清光, & 郭振泰. "曾文水庫水質調查及改善後計畫". 經濟部水利署南區水資源局, 2003.
經濟部水利署. "衛星遙測於河川區域監測管理之應用-以濁水溪及高屏溪為例". 經濟部水利署95年度委託專業服務計畫, 2006.
經濟部水利署水利防災中心. "曾文水庫站況調查報告", http://gweb.wra.gov.tw/wrweb/, 2006.
經濟部水利署南區水資源局. "曾文水庫八十九年淤積測量報告". 經濟部水利署南區水資源局, 2001.
雷祖強, 葉惠中, & 鄭克聲. "應用衛星遙測及地理統計模擬於水庫營養評估". 地理統計在農業和環境科學之應用研討會論文集, 113-144, 2001.
劉良明. "衛星海洋遙感導論": 武漢大學出版社, 2005.
駱尚廉, & 蔡淑芬. "水庫優養化專家系統初探—水質評估". 中國環境工程學刊, 2(1), 33-41, 1992.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2007-08-10起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2007-08-10起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw