進階搜尋


 
系統識別號 U0026-0812200913470300
論文名稱(中文) 不同離子性之混合自我聚集性單分子層的表面性質與血小板吸附之研究
論文名稱(英文) Surface characterization and platelet adhesion studies of mixed self-assembled monolayer prepared with different ionic terminal functionalities
校院名稱 成功大學
系所名稱(中) 化學工程學系碩博士班
系所名稱(英) Department of Chemical Engineering
學年度 95
學期 2
出版年 96
研究生(中文) 莊文喜
研究生(英文) Wen-Hsi Chuang
電子信箱 n3887107@mail.ncku.edu.tw
學號 N3887107
學位類別 博士
語文別 中文
論文頁數 142頁
口試委員 指導教授-林睿哲
口試委員-陳炳宏
口試委員-陳志勇
口試委員-李玉郎
口試委員-徐善慧
口試委員-王振乾
中文關鍵字 等電點  血小板吸附  界達電位  混合之自我聚集性單分子層  接觸角滴定 
英文關鍵字 Contact angle  Streaming potential  Mixed self-assembled monolayers  Platelet adhesion  Isoelectrical point  Zeta potential  Contact angle titration 
學科別分類
中文摘要 在這研究中是利用由長碳鏈之(11-Mercaptodecyl)ammonium chloride (HS(CH2)11NH2)與 11-Mercaptoundecanoic acid (HS(CH2)10COOH)硫醇所製備的雙成分混合之自我聚集性單分子層的表面模式,來研究表面與生物環境之間的互相影響,在這研究中單分子層的製備是以特殊方法進行,其主要是在配置的硫醇溶液中額外添加3%(v/v)之三乙基胺之硫醇溶液及以含有10%(v/v)醋酸與1%鹽酸之酸性乙醇溶液進行混合之自我聚集性單分子層的表面清洗。在胺基與羧酸基兩成份硫醇混合的自我聚集性單分子層(NH2 / COOH mixed SAM)其接觸角值是在單一成份羧酸基單分子層(-COOH SAM)與單一成份胺基單分子層(-NH2 SAM)的接觸角值之間(溶液中胺基所占分率為XNH2, solution=0.2除外)從ESCA分析中知道,利用特殊方法進行的製備程序將可減少在單一成份胺基單分子層上的氧化硫,且以1%鹽酸之酸性乙醇溶液進行胺基單分子層的表面清洗將可有效降低未鍵結硫醇的比率而獲得高品質單分子層,另外胺基與羧酸基兩成份混合的單分子層的表面為富胺基表面( Amine rich )。
在這研究將以接觸角滴定與流場電位(Streaming potential)來研究胺基與羧酸基兩成份混合的單分子層表面pK值、界達電位及等電點等表面酸鹼性質與表面電荷之重要參數,在單一成份胺基單分子層與羧酸基單分子層在經由接觸角滴定分析後發現因為SAM表面之pK1/2值分別是低於與高於在溶液中之胺基與羧酸基化合物之pKa值,此原因是這些官能基在SAM表面上會有貧乏溶合(Poor solvation)現象造成,另外胺基與羧酸基兩成份混合的單分子層在鹼性環境下,其接觸角值是與兩個相關之化學組成參數是有極佳之關連性。由流場電位所決定混合的單分子層之等電點是與其表面陰離子官能基(-COO-)與陽離子官能基(-NH3+)的組成有關連的。
在血小板吸附實驗中發現正電荷-胺基單分子層其血小板吸附量要少於負電荷羧酸基單分子層,在表面胺基之分率((X-NH2, surface)為0.51 或 0.57時展現最少的血小板吸附密度,然而在界達電位研究中混合的單分子層在生物環境pH=7.4下是出現負的界達電位值,因此血小板吸附牽連到如表面化學組成(XNH2,surface)或表間面淨電荷密度等因素,其在減低血小板吸附與活化上應該也扮演重要角色。
英文摘要 The mixed self-assembled monolayers (SAM) prepared from long chain alkanethiols, HS(CH2)11NH2 and HS(CH2)10COOH, on gold are employed as the model surface for investigating the interactions between the biological environment and synthetic surface. A distinctive SAM preparation scheme was utilized in this investigation. The triethylamine was added to the alkanethiol solution during SAM formation and then followed by additional rinsing of SAM with 10% CH3COOH or 1% HCl ethanolic solution. The contact angle values of NH2/COOH mixed SAMs were of between those of the pure SAMs except that prepared with solution mole fraction of amine-terminated alkanethiol at 0.2. X-ray photoelectron spectroscopy (XPS) analysis has indicated that these two distinctive SAM preparation procedures had both resulted in a reduction in oxidized sulfur species on pure –NH2 terminated SAM. However, the procedure utilizing 1% HCl ethanolic washing solution was more effective in reducing the unbound thiol fraction and to form a pure –NH2 SAM with better quality. XPS analysis has also revealed that the surface of NH2/COOH mixed SAMs was “amine-rich”.
Important parameters describing the interfacial charge and acid-base interactions, including various surface pK values (e.g. pKa, pK1/2), zeta potential, and isoelectrical point, of mixed SAM’s surface were studies by contact angle titration and streaming potential measurement. The contact angle titration results indicated the pK1/2 values for the –COOH and –NH2 groups on the pure SAMs were higher and lower, respectively, than their counterparts in bulk solution. This might be due to the poor solvation for the interface of SAMs as compared with aqueous solution. In addition, the contact angle values of the mixed SAMs were better correlated with the parameters representing the relative surface chemical composition (i.e. N/C for the –NH2 and O-C=O/C for the –COOH functional groups) if the basic probing liquid was used. Streaming potential measurement has shown the isoelectrical point of the mixed SAM was related to the relative surface composition of anionic (-COO-) and cationic (-NH3+) functional groups.
In vitro platelet adhesion assay has shown the amount of adherent platelets on pure positive charged –NH2 terminated SAM is less than that on anionic –COOH terminated counterpart in both acidic ethanolic washing schemes. Moreover, the lowest platelet adhesion density was noted on the mixed SAM surfaces with surface amine mole fraction at 0.51 and 0.57. Therefore, the mixed SAMs studied here have presented negative zeta potential at the physiological condition, pH=7.4. This implicated other factors, such as the surface chemical composition XNH2, surface or likely the interfacial net charge density, should also play some important roles in reducing the platelet adhesion and activation on SAM surface.
論文目次 中文摘要..................................................................................................................... I
Abstract....................................................................................................................III
誌謝....... ....................................................................................................................VI
目錄……................................................................................................................VIII
表目錄…................................................................................................................XIII
圖目錄…................................................................................................................XIV
符號說明................................................................................................................XXI
第一章 緒論 1
1-1 生醫材料簡介 1
1-2自我聚集性單分子層(Self-Assembled Monolayers, SAMs) 3
1-3金屬基材對SAMs排列之影響 8
1-4 溶劑對於自我聚集單分子層的影響 (Solvent effect) 9
1-5雙成份混合的自我聚集性單分子層(Binary component Mixed Self-Assembled Monolayers) 12
1-6 凝血機制之探討 15
1-6-1 血液的組成 15
1-6-2 血小板之構造 17
1-6-3 血小板之機能(Platelet Functions) 19
1-6-4 凝血機制的探討 22
第二章 文獻回顧 32
2-1 帶負電性官能基表面對血液相容性之影響 32
2-2 帶兩性離子官能基表面對血液相容性之影響 34
2-3 研究動機與目的 36
第三章 實驗方法 38
3-1 實驗藥品與儀器 38
3-2 實驗步驟 45
3-2-1 長碳鏈胺基硫醇之合成 45
3-2-2 黃金基材(Gold substrate)的製備 48
3-2-3自我聚集性單分子層(Self-Assembled Monolayers)的製備 49
3-2-4 接觸角之量測 50
3-2-5化學分析電子光譜儀: Electron Spectroscopy for Chemical Analysis or X-ray Photoelectron Spectroscopy (簡稱ESCA 或 XPS) 之測試分析 51
3-2-6 界達電位(Zeta potential)之測試 52
3-2-7血小板吸附性質之測試 54
第四章 離子性官能基之自我聚集單分子層(SAMs)其表面化學組成與性質之研究 60
4-1胺基(-NH2)烷基硫醇與羧酸基(-COOH)烷基硫醇雙成分混合之自我聚集性單分子層之化學分析電子光譜儀(ESCA)分析 63
4-1-1 改進式胺基(-NH2)烷基硫醇之自我聚集性單分子層之成長製備程序 63
4-1-2 單一成分之胺基(-NH2)烷基硫醇之自我聚集性單分子層之ESCA分析 65
4-1-3 單一成分之羧酸基(-COOH)烷基硫醇雙之自我聚集性單分子層之ESCA分析 67
4-1-4 胺基(-NH2)烷基硫醇與羧酸基(-COOH)烷基硫醇雙成分混合之自我聚集性單分子層之ESCA分析 68
4.2胺基(-NH2)烷基硫醇與羧酸基(-COOH)烷基硫醇雙成分混合之自我聚集性單分子層之接觸角(Contact angle)分析 81
第五章 離子性官能基之自我聚集單分子層(SAMs)之接觸角滴定(Contact angle titration)之研究 84
5-1 單一成分之胺基(-NH2)烷基硫醇之自我聚集性單分子層之接觸角滴定(Contact angle titration)分析 86
5-2 單一成分之羧酸基(-COOH)烷基硫醇之自我聚集性單分子層之接觸角滴定(Contact angle titration)分析 88
5-3 胺基(-NH2)烷基硫醇與羧酸基(-COOH)烷基硫醇雙成分混合之自我聚集性單分子層之接觸角滴定(Contact angle titration)分析 89
第六章 離子性官能基之自我聚集單分子層(SAMs)之界達電位(Zeta potential)之研究 95
6-1 電解質溶液之pH值改變的方向對界達電位值的影響 98
6-2 單一成分之羧酸基(-COOH)烷基硫醇之自我聚集性單分子層之界達電位分析 99
6-3 單一成分之胺基(-NH2)烷基硫醇之自我聚集性單分子層之界達電位分析 100
6-4 胺基(-NH2)烷基硫醇與羧酸基(-COOH)烷基硫醇雙成分混合之自我聚集性單分子層之界達電位分析 101
6-5 胺基(-NH2)烷基硫醇與羧酸基(-COOH)烷基硫醇雙成分混合之自我聚集性單分子層之表面電荷密度(Surface charge density)分析 102
第七章 離子性官能基之自我聚集單分子層(SAMs)之血液相容性的探討 112
第八章 結論 121
參考文獻 123
著作 141
自述 142
參考文獻 1. Rouhi AM. Contemporary Biomaterials, Understanding surfaces is key to the design of clinically useful materials. Chemical and Engineering News, 51-59. (1999)
2. Missirlis YF, and Lemm W. Protein adsorption tests for polymer surfaces. In Modern Aspects of Protein Adsorption on Biomaterials, 73-79, Netherlands. (1999)
3. Cooper SL, Young BR, and Lelah MD. The Physics and chemistry of protein-surface interactions. Interaction of Blood with Natural and Artificial Surfaces, E. W., ED., Marcel Deker, New York, 1. (1981)
4. Ulman A. An Introduction to ultrathin organic films from Langmuir-blodgett to self-assembly. Academic Press, INC. (1991)
5. Nuzzo RG and Allara DL. Adsorption of bifunctional organic disulfides on gold Surfaces. J. Am. Chem. Soc. 1983; 105: 4481-4483.
6. Nuzzo RG, Dubois LH, and Allara DL. Fundamental studies of microscopic wetting on organic surfaces. 1. Formation and structural characterization of a self-consistent series of polyfunctional organic monolayers. J. Am. Chem. Soc. 1990; 112: 558-569.
7. Bain CD, Troughton EB, TaoY-T, Evall J, Whitesides GM, and Nuzzo RG. Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J. Am. Chem. Soc. 1989; 111: 321-335.
8. Bain CD, Evall J, Whitesides GM. Formation of monolayers by the coadsorption of thiols on gold: Variation in the head group, tail group, and solvent. J. Am. Chem. Soc. 1989; 111: 7155-7164.
9. Laibinis PE, Whitesides GM, Allara DL, Tao YT, Parikh AN, and Nuzzo RG. Comparison of the structures and wetting properties of self-assembled monolayers on n-alkanethiols on the coinage metal surfaces, Cu, Ag, Au. J. Am. Chem. Soc. 1991; 113: 7152-7167.
10. Dubois LH, Zegarski BR, and Nuzzo RG. Fundamental studies of microscopic wetting on organic surfaces. 2. Interaction of secondary adsorbates with chemically textured organic monolayers. J. Am. Chem. Soc. 1990; 112: 570-579.
11. Poirier GE. Coverage-Dependent Phases and Phase Stability of Decanethiol on Au(111). Langmuir 1999; 15: 1167-1175.
12. Himmelhaus M, Gauss I, Buck M, Eisert F, Wöll C, and Grunze M. Adsorption of docosanethiol from solution on polycrystalline silver surfaces: An XPS and NEXAFS study. J. Electron. Spectrsc. Relat. Phenom. 1998; 92: 139-149.
13. Samant MG, Brown CA, Gordon JG. Stucture of an ordered self-assembled monolayer of docosyl mercaptan on gold (111) by surface x-ray diffraction. Langmuir 1991; 17: 437-439.
14. M. Lindblad, M. Lestelius, A. Johansson, P. Tengvall, and P. Thomsen, “Cell and soft tissue interactions with methyl- and hydroxyl-terminated alkanethiols on gold surfaces”, Biomaterials, 18, 1059-1068. (1997)
15. Prime KL and Whitesides GM. Adsorption of proteins onto surfaces contain end-attached oligo(ethylene oxide): A model system using self-assembled monolayers. J. Am. Chem. Soc. 1993; 115: 10714-10721.
16. Prime KL and Whitesides GM. Self-assembled organic monolayers: model systems for studying adsorption of proteins at surfaces. Science 1991; 252: 1164-1167.
17. Troughton EB, Bain CD, Whitesides GM, and Nuzzo RG. Monolayer films prepared by the spontaneous self-assembly of symmetrical and unsymmetrical dialkyl sulfides from solution onto gold substrates: Structure, properties, and reactivity of constituent functional groups. Langmuir 1988; 4: 365-385.
18. Ulman A. Formation and structure of self-assembled monolayers. Chem. Rev. 1996; 96: 1533-1554.]
19. Bain CD, Biebuyck HA, and Whitesides GM. Comparison of self-assembled monolayers on gold: Coadsorption of thiols and disulfides. Langmuir 1989; 5: 723-727.
20. Yamada R, Sakai H, and Uosaki K. Solvent effect on the structure of the self-assembled monolayer of alkanethiol. Chemistry Letters 1999; 667-668.
21. Umemura K, Fujita K, IshidaT, Hara M, Sasabe H and Knoll W. Solvent effect on domain formation of 4-Mercaptopyridine self-assembled monolayers on Au(111) substrate by scanning tunneling microscopy. Japanese Journal of Applied Physics 1998; 37: 3620-3625.
22. Dannenberger O, Wolff JJ, and Buck M. Solvent dependence of the self-assembly process of an endgroup-modified alkanethiol. Langmuir 1998; 14: 4679-4682.
23. Anderson MR, Mark N. Evaniak MN, and Minhui Zhang M. Influence of solvent on the interfacial structure of self-assembled alkanethiol monolayers. Langmuir 1996; 12: 2327-2331.
24. Lahiri J, Isaacs L, Grzybowski B, Carbeck JD, and Whitesides GM. Biospecific binding of carbonic anhydrase to mixed SAMs presenting benzenesulfonamide ligands: A model system for studying lateral steric effects. Langmuir 1999;15: 7186-7198.
25. Guiomar AJ, Guthrie JT and Evans SD. Use of mixed self-assembled monolayers in a study of the effect of the microenviroment on immobilized glucose oxidase. Langmuir 1999; 15: 1198-1207.
26. Cotton C, Glidle A, Beamson G and Cooper JM. Dynamics of the formation of mixed alkanethiol monolayers: applications in structuring biointerfacial arrangements. Langmuir 1998; 14: 5139-5146.
27. Robert C, Chen CS, Mrksich M, Martichonok V, Ingber DE and Whitesides GM. Using mixed self-assembled monolayers presenting RGD and (EG)3OH groups to characterize long-term attachment of bovine capillary endothelial cells to surfaces. Journal of the American Chemical Society 1998; 120: 6548-6555.
28. Chen S, Li L, Boozer CL, and Jiang S. Controlled chemical and structural properties of mixed self-assembled monolayers by coadsorption of symmetric and asymmetric disulfides on Au(111). J. Phys. Chem. B 2001; 105: 2975-2980.
29. Schonherr H, Ringsdorf H, Jaschke M, Butt HJ, Bamberg E, Allinson H and Evans SD. Self-assembled monolayers of symmetrical and mixed alkyl fluoroalkyl disulfides on gold. 2. Investigation of thermal stability and phase separation. Langmuir 1996; 12: 3898-3904.
30. Bain CD, Troughton EB, Tao YT, Evall J, Whitesides GM, Nuzzo RG. Formation of monolayer film by the spontaneous assembly of organic thiols from solution onto gold. Journal of the American Chemical Society 1989; 111: 321-335.
31. Ishida T, Yamamoto S, Mizutani W, Motomatsu M, Tokumoto H, Hokari H, Azehara H, and Fujihiral M. Evidence for cleavage of disulfides in the self-assembled monolayer on Au(111). Langmuir 1997; 13: 3261-3265.
32. Lin Y, Marzolin C, Terfort A and Whitesides GM. Formation and reaction of interchain carboxylic anhydride groups on self assembled monolayers on gold. Langmuir 1997; 13: 6704-6712.
33. Imabayashi S, Gon N, Sasaki T, Hobara D and Kakiuchi T. Effect of nanometer scale phase separation on wetting of binary self assembled thiol monolayers on Au(111). Langmuir 1998; 14: 2348-2351.
34. Kumar A, Biebuyck HA and Whitesides GM. Patterning self assembled monolayers: Applications in materials science. Langmuir 1994; 10: 1498-1511.
35. 何敏夫 編著,”血液學”,合記出版社,(1993)
36. Ko TM, Lin J-C, Cooper SL. Surface characterization and platelet adhesion studies of plasma-sulphonated polyethylene. Biomaterials 1993; 14: 657-664.
37. Kent M. Van De Graaff, Stuart Ira Fox, “Circulatory system: Blood”, concepts of human anatomy and physiology, Chap 20, 531-542.
38. Srinivasan S, Burrowes CB, Lucas T, Bauer SB, and Sawyer PN. Effect of varing electrolyte concentration on in vitro streaming potentials across canine aortae and carotid arteries. J.Biomed. Mater. Res. 1967; 1:355.
39. Han DK, Park KD, Ahn KD, eong SY, and Kim YH. Preparation and surface characterization of PEO-grafted and heparin-immobilized polyurethanes. Journal of Biomedical Materials Research: Applied Biomaterials 1989; 23: 87-104.
40. Han KD, Jeong SY, and Kim YH. Evaluation of blood compatibility of PEO-grafted and heparin-immobilized polyurethane. Journal of Biomedical Materials Research: Applied Biomaterials 1989; 23: 211-228.
41. Okkema AZ, Visser SA, CooperSL. Physical and blood-contacting properties of polyurethane based on a sulfonic acid-containing diol chain extender. Journal of Biomedical Materials Research 1991; 25: 1371-1395.
42. Grasel TG, Cooper SL. Properties and biological interactions of polyurethane anionomers: Effect of sulfonate incorporation. Journal of Biomedical Materials Research 1989; 23: 311-338.
43. Lee JH, Khang G, Lee JW, Lee HB. Platelet adhesion on to chargeable functional group gradient surface. J. Biome. Mater. Res. 1998; 40: 180-186.
44. Okkema AZ, and Cooper SL. Effect of Carboxylate and/or sulfonate ion incorporation on the physical and blood-contacting properties of a polyetherurethane. Biomaterials 1991; 12: 668-676.
45. McAuslan BR, and Johnson G. Cell Responses to Biomaterials I: Adhesion and growth of vascular endothelial cell on poly(hydroxyethylmethacrylate) following surface modification by hydrolytic etching. J. Biome. Mater. Res. 1987; 21: 921-935.
46. Santerr JP, Hove P, Vanderkamp NH, and JBrash JL. Effect of sulfonation of segmented polyurethanes on the transient adsorption of fibrigen from plasma: Possible correlation with anticoagulant behavior. J. Biome. Mater. Res. 1992; 26: 39-57.
47. 蔡孟諺, “含亞磷酸酯與亞磷酸官能基的自我聚集性單分子層之合成、表面分析與血小板吸附之研究”, 國立成功大學化工所碩士論文, 民國88年。
48. MLestelius M, Liedberg B, and Tengvall P. In vitro plasma protein adsorption on ω-functionalized alkanethiolate self-assembled monolayers. Langmuir 1997; 13: 5900-5908.
49. Bennett JS. The platelet-fibrinogen interaction. In: J. N. George, A. T. Nurden, D. R. Philips, editors, platelet membrane glycoprotein, New York, USA: Plenum Press, 193-214. (1985)
50. Malmsten M. Protein adsorption at phospholipid surfaces. J. Colloid Interface Sci. 1995; 172: 106.
51. Ong S, Cal S-J, Bernal C, Rhee D, Qiu X, Pidgeon C. Phospholipid immobilization on solid surfaces. Anal. Chem. 1994; 66: 782.
52. Plant AL, GueguetchkeriM, W. Yap W. Supported phospholipids/ alkanethiol biomimetic membranes: insulating properties. Biophys. J. 1994; 67: 1126.
53. Lelah MD, Pierce JA, Lambrecht LK, and Cooper SL. Polyether-urethane ionomers: surface property / ex vivo blood compatibility relationships. J. Colloid Interface Sci.1985; 104: 422.
54. Ishihara K, Aragaki R, Ueda T, Watenabe A, and Nakabayashi N. Reduced thrombogenicity of polymers having phospholipid polar groups. J. Biomed. Mater. Res. 1990; 24: 1069.
55. Ishihara K, Fukumoto K, Miyazaki H, and Nakabayashi N. Improvement of hemocompatibility on a cellulose dialysis membrane with a novel biomedical polymer having a phospholipid polar group. Artif. Org. 1994; 18: 559.
56. Li Y-J, Bahulekar R, Chen T-M, Wang Y-F, Kodama M, and Nakaya T. The effect of alkyl chain length of amphiphilic phospholipid polyurethanes on haemocompatibilities. Macromol. Chem. Phys. 1996; 197: 2827.
57. Chung YC, Chiu YH, Wu YW, Tao YT. Self-assembled biomimetic monolayers using phospholipids containing disulfides. Biomaterials 2005; 26: 2313-2324.
58. Lee Y-L, Chen C-Y. Surface wettability and platelet adhesion studies on Langmuir-Blodgett films. Applied Surface Science 2003; 207: 51-62.
59. Courtney JM, Lamba NMK, Sundaram S, and Forbes CD. Biomaterials for blood-contacting applications. Biomaterials 1994; 15: 737.
60. Holmlin RE, Chen X, Chapman RG, Takayama S, Whitesides GM. Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir 2001; 17: 2841-2850.
61. Ostuni E, Chapman RG, Liang MN, Meluleni G, Pier G, Ingber DE, and Whitesides GM. Self-assembled monolayers that resist the adsorption of proteins and the adhesion of bacterial and mammalian cells. Langmuir 2001; 17: 6336.
62. Andrade-JD, “Surface and Interfacial Aspects of Biomedical Polymers, Volume 1 Surface Chemistry and Physics”, Plenum press, New York, (1985)
63. Wang H, Chen S, Li L, and Jiang S. Improved method for the preparation of carboxylic acid and amine terminated self-assembled monolayers of alkanethiolates. Langmuir, 2005; 21: 2633-2636.
64. Castner DG, Hinds K, Grainger DW. X-ray photoelectron spectroscopy sulfur 2p study of organic thiol and disulfide binding interactions with gold surfaces. Langmuir 1996; 12: 5083-5086.
65. Sahoo RR, Patnaik A. Binding of fullerene C60 to gold surface functionalized by self-assembled monolayers of 8-amino-1-octane thiol: a structure elucidation. Journal of Colloid and Interface Science, 2003; 268: 43-49.
66. Stranick-SJ, Parikh-AN, Tao-YT, Allara-DL and Weiss-PS, “Phase separation of mixed-composition self-assembled monolayers into nanometer scale molecular domains”, The Journal of Physical Chemistry, 98, 7636-7646, (1994)
67. Folkers JP, Laibinis PE, Whitesides GM. Self-assembled monolayers of alkanethiols on gold: Comparisons of monolayers containing mixtures of short- and long- chain constituents with CH3 and CH2OH terminal groups. Langmuir 1992; 8: 1330-1341.
68. Martins MCL, Ratner BD, Barbosa MA. Protein adsorption on mixtures of hydroxyl- and methyl- terminated alkanethiols self-assembled monolayers. Journal Of Biomedical Materials Research Part A 2003; 67A: 158-171.
69. Pérez-Luna VH, O’Brien MJ, Opperman KA, Hampton PD, López GP, Klumb LA, Stayton PS. Molecular recognition between genetically engineered streptavidin and surface-bound biotin. Journal of the American Chemical Society 1999; 121: 6469-6478.
70. Chen SF, Li LY, Boozer CL. Controlled chemical and structural properties of mixed self-assembled monolayers by coadsorption of symmetric and asymmetric disulfides on Au(111). Journal of Physical Chemistry B 2001; 105: 2975-2980.
71. Bain CD, Evall J, Whitesides GM. Formation of monolayers by the coadsorption of thiols on gold: variation in the head group, tail group, and solvent. Journal of the American Chemical Society 1989; 111: 7155-7164.
72. Allara DL. Critical issues in applications of self-assembled monolayers. Biosensors and Bioelectronics 1995; 10: 771-783.
73. Bain CD, Whitesides GM. A study by contact angle of the acid-base behavior of monolayers containing omega-mercaptocarboxylic acids adsorbed on gold: an example of reactive spreading. Langmuir, 1989; 5: 1370-1378.
74. Creager SE, Clarke J. Contact-angle titrations of mixed ω-mercaptoalkanoic acid/alkanethiol monolayers on gold. Reactive vs. nonreactive spreading, and chain length effects on surface pKa values. Langmuir, 1994; 10: 3675-3683.
75. Smith DA, Wallwork ML, Zhang J, Kirkham J, Robinson C, Marsh A, Wong M. The effect of electrolyte concentration on the chemical force titration behavior of ω-functionalized SAMs: Evidence for the formation of strong ionic hydrogen bonds. The Journal of Physical Chemistry B, 2000; 104: 8862-8870.
76. He H-X, Huang W, Zhang H, Li QG, Li SFY, Liu ZF. Demonstration of high-resolution capability of chemical force titration via study of acid/base properties of a patterned self-assembled monolayer. Langmuir, 2000; 16: 517-521.
77. Schweiss R, Werner C, Knoll W. Impedance spectroscopy studies of interfacial acid-base reactions of self-assembled monolayers. Journal of Electroanalytical Chemistry, 2003; 540: 145-151.
78. Lee TR, Carey RI, Biebuyck HA, Whitesides GM. The wetting of monolayer films exposing ionizable acids and bases. Langmuir, 1994; 10: 741-749.
79. CRC Handbook of Chemistry and Physics, 73rd ed.; Lide DR, Ed.; CRC Press: Boca Raton, FL, 1992.
80. Vezenov DV, Noy A, Rozsnyai LF, Lieber CM. Force titrations and ionization state sensitive imaging of functional groups in aqueous solutions by chemical force microscopy. Journal of the American Chemical Society, 1997; 119: 2006-2015.
81. Ciesbers M, Kleijn JM, Stuart MAC. Interactions between acid- and base- functionalized surfaces. Journal of Colloid and Interface Science, 2002; 252: 138-148.
82. Zhang H, He H-X, Wang J, Mu T, Liu Z-F. Force titration of amino group-terminated self-assembled monolayers using chemical force microscopy. Applied Physics A: Materials Science & Processing. 1998; A 66: S269-S271.
83. Zhang H, He H-X, Mu T, Liu Z-F. Force titration of amino group-terminated self-assembled monolayers of 4-aminothiophenol on gold using chemical force microscopy. Thin Solid Film 1998; 327-329: 778-780.
84. Zhu M, Schneider M, Papastavrou G., Akari S, and Mohwald H. Controlling the adsorption of single poly(styrene sulfonate) sodium on NH3+-modified gold surfaces on a molecular scale. Langmuir, 2001; 17: 6471-6476.
85. Zhao J, Luo L, Yang X, Wang E, Dong S. Determination of surface pKa of SAM using an electrochemical titration method. Electroanalysis, 1999; 11: 1108-1111.
86. Kakiuchi T, Iida M, Imabaayashi S, Niki K. Double-layer-capacitance titration of self-assembled monolayers of ω-functionalized alkanethiols on Au(111) surface. Langmuir, 2000; 16: 5397-5401.
87. Elimelech M, Chen WH, and Waypa JJ. Measuring the zeta (electrokinetic) potential of reverse osmosis membranes by a streaming potential analyzer. Demhation 1994; 95: 269-266.
88. Kershner RJ, Bullard JW, Cima MJ. Zeta potential orientation dependence of sapphire substrates. Langmuir 2004; 20: 4101-4108.
89. Burns DB, Zydney AL. Buffer effects on the zeta potential of ultrafiltration membranes. Journal of Membrane Science, 2000; 172: 39–48.
90. Schweiss R, Welzel PB, Werner C, Knoll W. Dissociation of surface functional groups and preferential adsorption of ions on self-assembled monolayers assessed by streaming potential and streaming current measurements. Langmuir 2001; 17: 4304-4311.
91. Kreuzer HJ, Wang RLC, Grunze M. Hydroxide ion adsorption on self-assembled monolayers. Journal of the American Chemical Society, 2003; 125: 8384-8389.

92. Cai K, Frant M, Bossert J, Hildebrand G, Liefeith K, Jandt KD. Surface functionalized titanium thin films: zeta-potential, protein adsorption and cell proliferation. Colloids and Surface B 2006; 50: 1–8.
93. Schweiss R, Welzel PB, Werner C, Knoll W. Interfacial charge of organic thin films characterized by streaming potential and streaming current measurements. Colloids and Surface A 2001; 195: 97–102.
94. Jimbo T, Higa M, Minoura N, Tanioka A. Surface characterization of poly(acrylonitrile) membranes graft-polymerized with ionic monomers as revealed by ζ potential measurement. Macromolecules 1998; 31: 1277-1284.
95. Jimbo T, Tanioka A, Minoura N. Characterization of an amphoteric-charged layer grafted to the pore surface of a porous membrane. Langmuir 1998; 14: 7112-7118.
96. Healy TW, White LR. Ionizable surface group models of aqueous interfaces. Advances in Colloid and Interface Science 1978; 9: 303-345.
97. Schweiss R, Pleul D, Simon F, Janke A, Welzel PB, Voit B, Knoll W, Werner C. Electrokinetic potentials of binary self-assembled monolayers on gold: acid-base reactions and double layer structure. The Journal of Physical Chemistry B 2004; 108: 2910-2917.
98. Kane V, Mulvaney P. Double-layer interactions between self-assembled monolayers of ω-mercaptoundecanoic acid on gold surfaces. Langmuir 1998; 14: 3303-3311.
99. Strong L, Whitesides GM. Structures of self-assembled monolayer films of organosulfur compounds adsorbed on gold single crystals: electron diffraction studies. Langmuir 1988; 4: 546-558.
100. kkoli E, Zukoski CF. Surface forces between hydrophilic self-assembled monolayers in aqueous electrolytes. Langmuir 2000; 16: 6029-6036.
101. Hoffman AS. Blood-biomaterial interactions: an overview. In: Cooper SL, Peppas NA, editors. Biomaterials: interfacial phenomena and applications. Washington, D.C. USA: American Chemical Society 199; 1982. p 3-8
102. Lin J-C and Chuang W-H. Synthesis, surface characterization and platelet reactivity evaluation for the self-assembled monolayer of alkanethiol with sulfonic acid functionality. Journal of Biomedical Materials Research, 2000; 51: 413-423.

103. Tsai M-Y, Lin J-C. Surface characterization and platelet adhesion studies of self-assembled monolayer with phosphonate ester and phosphonic acid functionalities. Journal of Biomedical Materials Research, 2001; 55: 554-565.
104. Lestelius M, Liedberg B, Tengvall P. In vitro plasma protein adsorption on -functionalized alkanethiolate self-assembled monolayers. Langmuir 1997; 13: 5900-5908
105. Faucheux N, Schweiss R, Lützow K, Werner C, Groth T. Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies. Biomaterials 2004; 25: 2721–2730.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-07-25起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-07-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw