進階搜尋


 
系統識別號 U0026-0812200913465180
論文名稱(中文) 硫酸孕烯醇酮及雌二醇對辣椒素誘發雄性大白鼠產生熱痛過敏現象及急性痛之調節作用的機制
論文名稱(英文) Mechanisms Underlying the Effects of Pregnenolone Sulfate and 17β-Estradiol on Capsaicin-Induced Thermal Hyperalgesia and Nocifensive Responses in Male Rats
校院名稱 成功大學
系所名稱(中) 生理學研究所
系所名稱(英) Department of Physiology
學年度 95
學期 2
出版年 96
研究生(中文) 陳兆偉
研究生(英文) Chao-wei Chen
學號 s3693102
學位類別 碩士
語文別 英文
論文頁數 61頁
口試委員 召集委員-游一龍
口試委員-黃阿敏
指導教授-吳豐森
中文關鍵字 磷酸激酶C  硫酸孕烯醇酮  雌二醇  辣椒素受體  磷酸激酶A  急性痛覺反應  辣椒素  熱痛過敏現象  去磷酸酶 
英文關鍵字 PKC  Nocifensive responses  PKA  Calcineurin  Pregnenolone sulfate  Thermal hyperalgesia  Capsaicin  Capsaicin receptor  17β-Estradiol 
學科別分類
中文摘要 辣椒素受體主要表現在感覺神經細胞上,其在痛覺的傳遞及發炎反應所產生的熱痛過敏現象中扮演重要的角色。我們實驗室先前的研究發現,硫酸孕烯醇酮 (PS) 可抑制雄性大白鼠背根神經節細胞膜上的辣椒素受體所媒介的電流反應及急性痛覺反應,而雌性類固醇雌二醇 (E2) 則對辣椒素受體所媒介的此二種反應,具有增強的作用。但是PS和E2對辣椒素誘發大白鼠產生的熱痛過敏現象是否也具有調節作用,目前則依然不甚清楚。因此在本研究中,我們利用藥理學的方法和動物痛覺行為的測試技術,探討PS及E2對辣椒素誘發雄性大白鼠產生熱痛過敏現象及急性痛覺反應的調節作用及其機制。我們的結果顯示,於腳掌注射PS 可抑制辣椒素所誘發的熱痛過敏現象,且其抑制作用呈現劑量依賴效應。單獨給予PS不會改變大白鼠對熱痛的敏感度,顯示PS的抑制作用並非透過增加大白鼠對熱痛的閾值所導致。此外,PS的抑制作用不會受到去磷酸酶的抑制劑FK506所阻斷,表示PS並非透過活化去磷酸酶來達到其抑制作用。於腳掌內注射E2可以增加辣椒素所誘發的熱痛過敏現象。此外,同時給予E2及低於閾值劑量的辣椒素則會產生熱痛過敏現象,表示E2可降低誘發熱痛過敏象所需辣椒素劑量的閾值。但如同時給予17α-E2及低於閾值劑量的辣椒素則不會產生熱痛過敏現像,顯示E2的作用具有立體結構的專一性。單獨注射E2並不會改變大白鼠對熱痛的敏感度。給予辣椒素受體的抑制劑,可以阻斷同時給予E2和低於閾值劑量之辣椒素所誘發的熱痛過敏現象,表示其誘發的熱痛過敏現象是經由辣椒素受體媒介的。此外,給予磷酸激酶C或磷酸激酶A的抑制劑可阻斷由同時給予E2和低於閾值劑量的辣椒素所誘發的熱痛過敏現象,顯示磷酸激酶C和磷酸激酶A有參與E2和辣椒素對熱痛過敏現象的協同作用上。相反地,磷酸激酶C或磷酸激酶A的抑制劑則無法阻斷E2對辣椒素所誘發急性痛覺反應的促進作用。綜合上述結果可知,PS並非經由活化去磷酸酶來抑制辣椒素所誘發的熱痛過敏現象,而磷酸激酶C和磷酸激酶A則有參與E2降低誘發熱痛過敏現象所需的辣椒素閾值,但並不參與E2對辣椒素所誘發急性痛覺反應的增強作用。
英文摘要 The capsaicin receptor is expressed predominantly by sensory neurons and has been implicated in nociception and inflammatory thermal hyperalgesia. Previous studies from our laboratory have shown that the neurosteroid pregnenolone sulfate (PS) inhibits, but the female sex steroid 17β-estradiol (E2) potentiates, both the capsaicin receptor-mediated current in male rat dorsal root ganglion neurons and the capsaicin receptor-mediated nocifensive response in male rats. However, it is unclear whether PS and E2 also have modulatory effects on capsaicin-induced thermal hyperalegsia. In the present study, we used pharmacological methods and nociceptive behavioral tests to characterize the effects of PS and E2 on capsaicin-induced heat hypersensitivity and nocifensive responses in male rats in vivo. Our results revealed that intraplantar injection of PS dose-dependently attenuated capsaicin-induced thermal hyperalgesia. PS alone had no effect on heat sensitivity, indicating that the effect of PS on capsaicin-induced thermal hyperalgesia was not due to an increase in nociceptive threshold. Moreover, inhibition by PS of capsaicin-induced thermal hyperalgesia was not reduced by FK506, a selective calcineurin inhibitor, suggesting that the effect of PS was not mediated by calcineurin. Furthermore, intraplantar injection of E2 potentiated capsaicin-induced thermal hyperalgesia in male rats. In addition, co-injection of E2 but not 17α-estradiol with a subthreshold dose of capsaicin induced thermal hyperalgesia, indicating that the reduction by E2 of the capsaicin threshold for thermal hyperalgesia was stereospecific. E2 alone did not alter the heat sensitivity. Administration of capsazepine, a capsaicin receptor antagonist, blocked thermal hyperalgesia induced by co-injection of subthreshold doses of E2 and capsaicin, suggesting that thermal hyperalgesia was mediated by the capsaicin receptor. Furthermore, pretreatment of a protein kinase C (PKC) or a PKA inhibitor completely inhibited the synergistic effect of co-injected capsaicin and E2 on thermal hyperalgesia, arguing strongly for the involvement of PKC and PKA. In contrast, administration of PKC or PKA inhibitor did not block the potentiating effect of E2 on capsaicin-induced nocifensive responses. In conclusion, these data demonstrate that PS inhibits capsaicin-induced heat hypersensitivity via a calcineurin-independent mechanism, and that PKC and PKA are involved in the reduction by E2 of the capsaicin threshold for thermal hyperalgesia but not in the potentiating effect of E2 on capsaicin-induced nocifensive responses.
論文目次 Table of Contents…………………………………………………………Ⅱ
List of Figures………………………………………………………Ⅳ
Abstract in Chinese…………………………………………………1
Abstract…………………………………………………………………3
Introduction……………………………………………………………5
Capsaicin, TRPV1, nociception, and thermal hyperalgesia…5
Modulation by neurosteroids of amino acid transmitter receptor-mediated responses……………………………6
Modulation by neurosteroids of TRPV1-mediated currents, nocifensive responses, and thermal hyperalgesia……………7
Rationale and specific aims of this study……………………9
Materials and Methods………………………………………………10
Animals………………………………………………………………10
Plantar test………………………………………………………10
Capsaicin test.……………………………………………………11
Drugs and Chemicals………………………………………………11
Statistical analysis……………………………………………12
Experiment design……………………………………………………12
Results………………………………………………………15
PS dose-dependently inhibits capsaicin-induced thermal hyperalgesia…………15
PS does not act through calcineurin to inhibit capsaicin-induced thermal hyperalgesia……………………16
FK506 potentiates the capsaicin-induced nocifensive response……………16
E2 potentiates capsaicin-induced thermal hyperalgesia ………………………17
E2 stereospecifically reduces the capsaicin threshold for thermal hyperalgesia………………………………………………17
TRPV1 mediates thermal hyperalgesia induced by co-injection of subthreshold doses of capsaicin and E2………18
PKC and PKA are involved in the synergistic effects of co-injected capsaicin and E2 on thermal hyperalgesia…………19
E2 potentiates the capsaicin-induced nocifensive response through a PKC- and PKA-independent mechanism………………19
Discussion……………………………………………………………21
PS attenuates capsaicin-induced thermal hyperalgesia……21
E2 potantiates capsaicin-induced thermal hyperalgesia and reduces the capsaicin threshold for thermal hyperalgesia…………23
TRPV1 mediates thermal hyperalgesia induced by co-injection of subthreshold doses of capsaicin and E2………25
Mechanisms underlying potentiation by E2 of capsaicin-induced thermal hyperalgesia and nocifensive responses…25
A proposed model for E2 enhancing effect on capsaicin-induced nociception and thermal hyperalgesia………………29
Conclusion…………………………………………………………29
References………………………………………………………46
About the Author…………………………………………………61



List of Figures
Figure 1. Time course of normalized PWLs to a noxious radiant heat stimulus before and after i.pl. injection of vehicle, capsaicin, capsaicin plus PS, or PS in male rats……………………………………………………………………31

Figure 2. PS inhibits capsaicin-induced thermal hyperalgesia in a dose-dependent manner at 15 min after drug injection…………………………………………………32

Figure 3. PS does not act through calcineurin to inhibit capsaicin-induced thermal hyperalgesia………………………33

Figure 4. Pretreatment of FK506 does not block the inhibitory effect of PS on capsaicin-induced thermal hyperalgesia at 15 min after injection of capsaicin plus PS……………………………………………………………………34

Figure 5. Pretreatment of FK506 enhances the capsaicin-induced nocifensive response in male rats……………………………………………………………………35

Figure 6. E2 potentiates capsaicin-induced thermal hyperalgesia…………………36

Figure 7. Comparison of PWL differences among groups of rats injected with capsaicin, capsaicin plus E2, and E2 at 15, 30, 60, and 120 min after drug injection……………37

Figure 8. E2 stereospecifically reduces the capsaicin threshold for thermal hyperalgesia……………………………38

Figure 9. Comparison of PWL differences among groups of rats injected with capsaicin, capsaicin plus E2, and capsaicin plus 17-E2 at 15, 30, 60, and 120 min after drug injection………………………………………………………39

Figure 10. TRPV1 mediates thermal hyperalgesia induced by co-injection of subthreshold doses of capsaicin and E2…………………………………………………40

Figure 11. Comparison of PWL differences among groups of rats preinjected with vehicle or capsazepine, followed by injection of E2, capsaicin, or capsaicin plus E2 at 15, 30, 60, and 120 min after the second injection……………41

Figure 12. PKC and PKA are involved in the synergistic effects of co-injected capsaicin and E2 on thermal hyperalgesia…………………………………………42

Figure 13. Comparison of the PWL differences among groups of rats preinjected with vehicle, Bis I, or H89, followed by injection of capsaicin plus E2 at 15, 30, 60, and 120 min after drug injection…………………………………………43

Figure 14. E2 potentiates the capsaicin-induced nocifensive response through a PKC- and PKA-independent mechanism ……………………………………………………44

Figure 15. A proposed model for E2 enhancing effect on capsaicin-induced nociception and thermal hyperalgesia……………………………………………………45
參考文獻 Acs, G., Palkovitts, M. and Blumberg, P. (1994) Comparison of [3H]resiniferatoxin binding by the vanilloid (capsaicin) receptor in dorsal root ganglia, spinal cord, dorsal vagal complex, sciatic and vagal nerve and urinary bladder of the rat. Life Sci. 55:1017-1026.

Amadesi, S., Cottrell, G.S., Divino, L., Chapman, K., Grady, E.F., Bautista, F., Karanjia, R., Barajas-Lopez, C., Vanner, S., Vergnolle, N. and Bunnett, N.W. (2006) Protease-activated receptor 2 sensitizes TRPV1 by protein kinase C- and A-dependent mechanisms in rats and mice. J. Physiol. 575:555-571.

Amadesi, S., Nie, J., Vergnolle, N., Cottrell, G.S., Grady, E.F., Trevisani, M., Manni, C., Geppetti, P., McRoberts, J.A., Ennes, H., Davis, J.B., Mayer, E.A. and Bunnett, N.W. (2004) Protease-activated receptor 2 sensitizes the capsaicin receptor transient receptor potential vanilloid receptor 1 to induce hyperalgesia. J. Neurosci. 24:4300-4312.

Aman, R. and Maggi, C.A. (1991) Ruthenium red as a capsaicin antagonist. Life Sci. 55:1017-1026.

Barrett, A.C., Smith, R.S. and Picker, M.J. (2003) Capsaicin-induced hyperalgesia and μ-opioid-induced antihyperalgesia in male and female fischer 344 rats. J. Pharmacol. Exp. Ther. 307:237-245.

Baulieu, E.E. (1996) Dehydroepiandrosterone (DHEA): A fountain of youth? J. Clin. Endicriol. Metab. 81:3147-3151.

Baulieu, E.E. and Robel, P. (1996) Dehydroepiandrosterone and Dehydroepiandrosterone sulfate as neuroactive neurosteroids. J. Endocrinol. 150:S221-239.

Bhave, G., Hu, H.J., Gluoner, K.S., Zhu, W., Wang, H., Brasier, D.J., Oxford, G.S. and Gereau, R.W. 4th (2003) Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). Proc. Natl. Acad. Sci. USA 100:12480-12485.

Bhave, G., Zhu, W., Wang, H., Brasier, D.J., Oxford, G.S. and Gereau R.W. 4th (2002) cAMP-dependent protein kinase regulates desensitization of the capsaicin receptor (VR1) by direct phosphorylation. Neuron 35:721-731.

Berkley, K.J. (1997) Sex differences in pain. Behav. Brain Sci. 20:371-380.

Bevan, S., Hothi, S., Hughes, G., James, I.F., Rang, H.P., Shah, K., Walpole, C.S. and Yeats, J.C. (1992) Capsazepine: a competitive antagonist of the sensory neurons excitant capsaicin. Br. J. Pharmacol. 107:544-552.

Bevan, S. and Szolcsanyi, J. (1990) Sensory neuron-specific actions of capsaicin: mechanisms and applications. Trends Pharmacol. Sci. 11:330-333.

Caterina, M.J., Schumacher, M.A., Tominaga, A., Rosen, T.A., Levine, J.D. and Julius, D. (1997) The capsaicin receptor: a heat-activate ion channel in the pain pathway. Nature 23:617-624.

Caterina, M.J., Leffler, A., Malmberg, A.B., Martin, W.J., Trafton, J., Petersen-Zeitz, K.R., Koltzenburg, M., Basbaum, A.I. and Julius, D. (2000) Impaied nociception and pain sensation in mice lacking the capsaicin receptor. Science 288:306-313.

Chen, S.-C., Chang, T.-J. and Wu, F.-S. (2004) Competitive inhibition of the capsaicin receptor-mediated current by dehydroepiandrosterone in rat dorsal root ganglion neurons. J. Pharmacol. Exp. Ther. 311:529-536.

Chen, S.-C., Liu, B.-C., Chen, C.-W. and Wu, F.-S. (2006) Intradermal pregnenolone sulfate attenuates capsaicin-induced nociception in rats. Biochem. Biophys. Res. Commun. 329:626-633.

Chen, S.-C. and Wu, F.-S. (2004) Mechanism underlying inhibition of the capsaicin receptor-mediated current by pregnenolone sulfate in rat dorsal root ganglion neurons. Brain Res. 1027:196-200.

Corpéchot, C., Leclerc, P., Baulieu, E.-E. and Brazeau, P. (1985) Neurosteroids:regulatory mechanisms in malt rat brain during heterosexual exposure. Steroids 45:229-234.

Corpéchot, C., Robel, P., Axelson, M., Sjovall, J. and Baulieu, E.-E. (1981) Characterization and measurement of dehydroepiandrosterone sulfate in rat brain. Proc. Natl. Acad. Sci. USA 78:4704-4707.

Corpéchot, C., Synguelakis, M., Talha, S., Axelson, M., Sjovall, J., Vihko, R., Baulieu, E.-E. and Robel, P. (1983) Pregnenolone and its sulfate ester in the rat brain. Brain Res. 270:119-125.

Cunha, F.Q., Teixera, M.M. and Ferreira, S.H. (1999) Pharmaclogical modulation of secondary mediator systems cyclic-AMP and cyclic-GMP on inflammatory hyperalgesia. Br. J. Pharmacol. 127:671-678.

Dai, Y., Iwata, K., Fukuoka, T., Kondo, E., Tokunaga, A., Yamanaka, H., Tachibana, T., Liu, Y. and Noguchi, K. (2002) Phosphorylation of extracellular signal-regulated kinase in primary afferent neurons by noxious stimuli and its involvement in peripheral sensitization. J. Neurosci. 22:7737-7745.

Davis, J.B., Gray, J., Gunthorpe, M.J., Hatcher, J.P., Davey, P.T., Overend, P., Harries, M.H., Latcham, J., Clapham, C., Atkinson, K., Hughes, S.A., Rance, K., Grau, E., Harper, A.J., Pugh, P.L., Rogers, D.C., Bingham, S., Randall, A. and Sheardown, S.A. (2000) Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405:183-187.

Debonnel, G., Bergeron, R. and Montigny, C. (1996) Potentiation by dehydroepiandrosterone of neuronal response to N-methy-D-aspartate in the CA3 region of the rat dorsal hippocampus: An effect mediated via sigma receptors. J. Endocri. 150:S33-S42.

Docherty, R.J., Yeats, J.C., Bevan, S. and Boddeke, H. W. (1996) Inhibition of calcineurin inhibits the desensitization of capsaicin-evoked currents in cultured dorsal root gangion neurons from adult rats. Pflugers Arch 431:828-837.

Docherty. R.J., Yeats, J.C. and Piper, A.S. (1997) Capsazepine block of voltage-activated calcium channels in adult rat dorsal root ganglion neurones in culture. Br. J. Pharmacol. 121:1461-1467.

Evrard, H.C. (2006) Estrogen synthesis in the spinal dorsal horn: a new central mechanism for the hormonal regulation of pain. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291:291-299.

Evrard, H.C. and Balthazart, J. (2003) Aromatase (estrogen synthase) activity in the dorsal horn of the spinal cord: functional implications. Ann. N Y Acad. Sci. 1007:263-271.

Evrard, H.C. and Balthazart, J. (2004) Rapid regulation of pain by estrogens synthesized in spinal dorsal horn neurons. J. Neurosci. 24:7225-7229.

Filligim, R.B. and Ness, T.J. (2000) Sex-related hormone influences on pain and analgesic responses. Neurosci. Biobehav. Rev. 24:485-501.

Frot, W., Feine, J.S. and Busunell, M.C. (2004) Sex difference in pain perception and anxiety: a psychophysical study with topical capsaicin. Pain 108:230-236.

Gazerani, P., Anderson, O.K. and Arendt-Nielsen, L. (2005) A human experimental capsaicin model for trigeminal sensitization. Gender-specific differences. Pain 118:155-163.

Geisler, J. (2003) Breast cancer tissue estrogens and their manipulation with aromatase inhibitors and inactivators. J. Steroid. Biochem. Mol. Biol. 86:245-253.

Gilchrist, H.D., Allard, B.L. and Simone, D.A. (1996) Enhanced withdrawal responses to heat and mechanical stimuli following intraplantar injection of capsaicin in rats. Pain 67:179-188.

Giles, B.E. and Walker, J.S. (2000) Sex differences in pain and analgesia. Pain Reviews 7:181-193.

Gill, C.H., Randall, A., Bates, S.A., Hill, K., Owen, D., Larkman, P.M., Cairns, W., Yusaf, S.P., Murdock, P.R., Strijbos, P.J.L.M., Powell, A.J., Benham, C.D. and Davies, C.H. (2004) Characterization of the human HCN1 channel and its inhibition by capsazepine. Br. J. Pharmacol. 143:411-421.

Green, B.G. and Shaffer, G.S. (1993) The sensory response to capsaicin during repeated topical exposures: differential effects of itching and pungency. Pain 53:323-334.

Gu, Q., Kwong, K. and Lee, L.-Y. (2003) Ca2+ transient evoked by chemical stimulation is enhanced by PGE2 in vagal sensory neurons: role of cAMP/PKA signaling pathway. J. Neurophysiol. 89:1985-1993.

Gu, Q. and Moss, R.L. (1996) 17β-Estradiol potentiates kainite-induced currents via activation of the cAMP cascade. J. Neurosci. 16:3620-3629.

Hargreaves, K., Dubner, R., Brown, F., Flores, C. and Joris, J. (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32:77-88.

Heyman, I. and Rang, H.P. (1985) Depolarizing responses to capsaicin in a subpopulation of rat dorsal root ganglion cells. Neurosci. Lett. 56:69-75.

Holzer, P. (1988) Local effector functions of capsaicin-sensitive sensory nerve endings: involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides. Neuroscience 24:739-768.

Holzer, P. (1991) Capsaicin: cellular targets, mechanisms of action, and selectivity for thin sensory neurons. Pharmacol. Rev. 43:144-201.

Holzer, P. and Maggi, C.A. (1998) Dissociation of dorsal root ganglion neurons into afferent and efferent-like neurons. Neuroscience 86:389-398.

Hu, Z.Y., Bourreau, E., Jung-Testas, I., Robel, P. and Baulieu, E.-E. (1987) Neurosteriods: oligodendrocyte mitochondria convert cholesterol to pregnenelone. Proc. Natl. Acad. Sci. USA 84:8215-8219.

Huang, S.M., Bisogno, T., Trevisani, M., Al-Hayani, A., De Petrocellis, L., Fezza, F., Tognetto, M., Petros, T.J., Krey, J.F., Chu, C.J., Miller, J.D., Davies, S.N., Geppetti, P., Walker, J.M. and Di Marzo, V. (2002) An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc. Natl. Acad. Sci. USA 99:8400-8405.

Hucho, T.B., Dina, O.A., Kuhn, J. and Levine, J.D. (2006) Estrogen controls PKCε-dependent mechanical hyperalgesia through direct action on nociceptive neurons. Eur. J. Neurosci. 24:527-534.

Hwang, S.W., Cho, K., Kwak, J., Lee, S.Y., Kang, C.J., Jung, J., Cho, S., Min, K.H., Suh, Y.G., Kim, D. and Oh, U. (2000) Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc. Natl. Acad. Sci. USA 97:6155-6160.

Jeske, N.A., Patwardhan, A.M., Gamper, N., Price, T.J., Akopian, A.N. and Hargreaves, K.M. (2006) Cannabinoid WIN 55, 212-2 regulates TRPV1 phosphorylation in sensory neurons. J. Biol. Chem. 281:32879-32890.

Ji, R.R., Samad, T.A., Jin, X.N., Schmoll, R. and Woolf, C.J. (2002) p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron 36:57-68.

Julius, D. and Basbaum, A.I. (2001) Molecular mechanisms of nociception. Nature 413:203-210.

Jung, J., Shin, J.S., Lee, S.Y., Hwang, S.W., Koo, J., Cho, H. and Oh, U. (2004) Phosphorylation of vanilloid receptor 1 by Ca2+/calmodulin-dependent kinase II regulates its vanilloid binding. J. Biol. Chem. 279:7048-7054.

Kamat, A., Hinshelwood, M.M., Murry, B.A. and Mendelson, C.R. (2002) Trends Endocrinol. Metab. 13:122-128.

Kelly, M.J. and Levin, E.R. (2001) Rapid actions of plasma membrane estrogen receptors. Trends Endocrinol. Metab.12:152-156.

Kelly, M.J. and Wagner, E.J. (1999) Estrogen modulation of G-protein-coupled receptors. Trends Endocrinol. Metab.10:369-377.

Krueger, K.E. and Papadopoulos, V. (1990) Peripheral-type benzodiazepine receptors mediated translocation of cholesterol from outer to inter mitochondrial membranes in adrenocortical cells. J. Biol. Chem. 265:15015-15022.

Lacor, P., Gandofo, P., Tonon, M.C., Brault, E., Dalibert, I., Schumacher, M., Benavides, J. and Ferzaz, B. (1999) Regulation of expression of peripheral benzodiazepine receptors and their endogenous ligands during rat sciatic nerve degeneration: a role for PBR in neurosteroidogenesis. Brain Res. 815:70-80.

Lopshire, J.C. and Nicol, G.D. (1998) The cAMP transduction cascade mediates the prostaglandin E2 enhancement of the capsaicin-elicited current in rat sensory neurons: whole-cell and single-channel studies. J. Neurosci. 18:6081-6092.

Lu, Y.-C. (2006) Sex differences in capsaicin-induced nocifensive responses and thermal hyperalgesia in rats. Master’s Degree Thesis. National Cheng Kung University.

Lundberg, J.M. (1993) Capsaicin-sensitive sensory nerves in the airways-implications for protective reflexes and disease. In: Capsaicin in the study of pain (Wood, J.N., ed) pp219-237, Academic, London.

Maggi, C.A. (1995) Tachykinins and calcitonin gene-related peptide (CGRP) as cotransmitters released from peripheral endings of sensory nerves. Prog. Neurobiol. 45:1-98.

Majewska, M.D., Harrison, N.L., Schwartz, R.D., Barker, J.L. and Paul, S.M. (1986) Steroid hormone metabolites are barbiturate-like modulators of the GABA receptors. Science 232:1004-1007.

Majewska, M.D. and Schwartz, R.D. (1987) Pregnenolone sufate: an endogenous antagonist of the gamma-aminobutyric acid receptor complex in brain? Brain Res. 404:355-360.

Mannella, D. and Brinton, R.D. (2006) Estrogen receptor protein interaction with phosphatidylinositol 3-kinase leads to activation of phosphorylated Akt and extracellular signal-regulated kinase 1/2 in the same population of cortical neurons: a unified mechanism of estrogen action. J. Neurosci. 26:9439-9447.

Marchand, F., Perretti, M. and McMahon, S.B. (2005) Role of the immune system in chronic pain. Nat. Rev. Neurosci. 6:521-532.

McEwen, B.S. (1991) Non-genomic and genomic effects of steroids on neuronal activity. Trends Pharmacal. Sci. 12:141-147.
Moriarty, K., Kim, K.H. and Bender, J.R. (2006) Minireview: Estrogen receptor-mediated rapid signaling. Endocrinology 147:5557-5563.

Oh, U., Hwang, S.W. and Kim, D. (1996) Capsaicin activates a nonselective cation channel in cultured neonatal rat dorsal root ganglion neurons. J. Neurosci. 16:1659-1667.

Park-Chung, M., Wu, F.-S. and Farb, D.H. (1994) 3a-hydroxy-sb-pregnan-20-one sulfate: a negative modulator of the NMDA-induced current in cultured neoruns. Mol. Pharmacol. 46:146-150.

Patwardhan, A.M., Jeske, N.A., Price, T.J., Gamper, N., Akopian, A.N. and Hargreaves, K. M. (2006) The cannabinoid WIN 55,212-2 inhibits transient receptor potential vanilloid 1 (TRPV1) and evokes peripheral antihyperalgesia via capcineurin. Proc. Natl. Acad. Sci. USA. 103:11393-11398.

Planells-Cases, R., Garcia-Sanz, N., Morenilla-Palao, Cruz. and Ferrer-Montiel, A. (2005) Funtional aspects and mechanisms of TRPV1 involvement in neurogenic inflammation that leads to thermal hyperalgesia. Eur. J. Physiol. 451:151-159.

Qiu, J., Bosch, M.A., Tobias, S.C., Grandy, D.K., Scanlan, T.S., Ronnekleiv, O.K. and Kelly, M.J. (2003) Rapid signaling of estrogen in hypothalamic neurons involves a novel G-protein-coupled estrogen receptor that activates protein kinase C. J. Neurosci. 23:9529-9540.

Rebas, E., Lachowicz., A. and Lachowicz, L. (1995) Estradiol and pregnenolone sulfate could modulate PMA-stimulated and Ca2+/calmodulin dependent symaptosomal membrane protein phosphorylation from rat brain in vivo. Biochem. Biophys. Res. Commun. 207:606-612.

Richardson, J.D. and Vasko, M.R. (2002) Cellular mechanisms of neurogenic inflammation. J. Pharmacol. Exp. Ther. 302:839-845.

Rossi, R. and Johansson, O. (1998) Cutaneous innervation and the role of neuronal peptides in cutaneous inflammation: a minireview. Eur. J. Dermatol. 8:299-306.

Sasano, H., Uzuki, M., Sawai, T., Nagura, H., Mastunaga, G. and Kashimono, O. (1997) Aromatase in bone tissue. J. Bone Miner. Res. 12:1416-1423.

Seabrook, G.R., Sutton, K.G., Jarolimek, W., Hollingworth, G.J., Teague, S., Webb, J., Clark, N., Boyce, S., Kerby, J., Ali, Z., Chou, M., Middleton, R., Kaczorowski, G. and Jones, A.B. (2002) Functional properties of the high-affinity TRPV1 (VR1) vanilloid receptor antagonist (4-hydroxy-5-iodo-3-methoxyphenylacetate ester) iodo-resiniferatoxin. J. Pharmacol. Exp. Ther. 303:1052-1060.

Simoncini, T. and Genazzani, A.R. (2003) Non-genomic actions of sex steroid hormones. Eur. J. Endocrinol. 148:281-292.

Simpson, E.R. (2003) Sources of estrogen and their importance. J. Steroid Biochem. Mol. Biol. 86:225-230.

Simpson, E.R., Clyne, C., Rubin, G., Boon, W.C., Robertson, K., Britt, K., Speed, C. and Jonse, M. (2002) Aromatse-a brief over view. Annu. Rev. Physiol. 64:93-127.

Simpson, E.R. and Davis, S.R. (2001) Minireview: Aromatase and the regulation of estrogen biosynthesis-some new perspectives. Endocrinology 142:4589-4594.

Sudiura, T., Tominaga, M., Katsuya, H. and Mizumura, K. (2002) Bradykinin lowers the threshold temperature for heat activation of vanilloid receptor 1. J. Neurophysiol. 88:544-548.

Sweitzer, S.M., Peters, M.C., Ma, J.Y., Kerr, I., Mangadu, R., Chakravarty, S., Dugar, S., Medicherla, S., Protter, A.A. and Yeomans, D.C. (2004) Peripheral and central p38 MAPK mediates capsaicin-induced hyperalgesia. Pain 111:278-285.

Szallasi, A. (1994) The vanilloid (capsaicin) receptor: receptor types and species differences. Gen. Pharmacal. 25:223-243.

Szallasi, A. and Blumberg, P.M. (1999) Vanilloid (capsaicin) receptors and mechanisms. Pharmacol. Rev. 51:159-211.

Szolcsanyi, J. (1990) Capsaicin, irritation and desensitization, in Chemical Senses (Green, B.G., Mason, J.R. and Kare, M.R. eds) pp 141-168, Dekker, New York.

Taleghany, N., Sarajari, S., DonCarlos, L.L., Gollapudi, L. and Oblinger, M.M. (1999) Differential expression of estrogen receptor alpha and beta in rat dorsal root ganglion neurons. J. Neurosci. Res. 57:603-615.

Tang, H.-B., Inoue, A., Oshita, K. And Nakata, Y. (2004) Sensitization of vanilloid receptor 1 induced by bradykinin via the activation of second messenger signaling cascades in rat primary afferent neurons. Eur. J. Pharmacol. 498:37-43.

Tominaga, M., Caterina, M.J., Malmberg, A.B., Rosen, T.A., Gilbert, H., Skinner, K., Raumman, B.E., Basbaum, A.I. and Julius, D. (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21:531-543.

Vellani, V., Colucci, M., Lattanzi, R., Giannini, E., Negri, L., Melchiorri, P. and McNaughton, P. (2006) Sensitization of transient receptor potential vanilloid 1 by the prokineticin receptor agonist Bv8. J. Neorusci. 26:5109-5116.

White, D.M. (1997) Release of substance P from peripheral sensory nerve terminals. J. Peripher. Nerv. Syst. 2:191-201.

Wu, F.-S., Gibbs, T.T. and Farb, D.H. (1990) Inverse modulation of γ-aminobutyric acid- and glycine-induced currents by progesterone. Mol. Pharmacol. 37:597-602.

Wu, F.-S., Gibbs, T.T. and Farb, D.H. (1991) Pregnenolone sulfate: a positive allosteric modulator at the N-methyl-D-aspartate receptor. Mol. Pharmacol. 40:333-336.

Wu, F.-S. and Chen, S.-C. (1997) Mechanism underlying the effect of pregnenolone sufate on the kinate-induced current in cultured chick spinal cord neurons. Neurosci. Lett. 222:79-82.

Wu, F.-S., Chen, S.-C. and Tsai, J.-J. (1997) Competitive inhibition of the glycine-induced current by pregnenolone sulfate in cultured chick spinal cord neurons. Brain Res. 750:318-320.

Zhuang, Z.-Y., Xu, H., Clapham, D.E. and Ji, R.R. (2004) Phosphatidylinositol 3-kinase activates ERK in primary sensory neurons and mediates inflammatory heat hyperalgesia through TRPV1 sensitization. J. Neurosci. 24:8300-8309.

Zygmunt, P.M., Petersson, J., Andersson, D.A., Chung, H., Sorgard, M., Di Marzo, V., Julius, D. and Hogestatt, E.D. (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400:452-457.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2008-07-25起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2008-07-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw