進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0812200913463658
論文名稱(中文) 探討凝血脢調節素在發炎反應下調控蛋白質合成之機制
論文名稱(英文) To study the regulation mechanism of thrombomodulin protein synthesis under inflammation
校院名稱 成功大學
系所名稱(中) 藥理學研究所
系所名稱(英) Department of Pharmacology
學年度 95
學期 2
出版年 96
研究生(中文) 葉秋宏
研究生(英文) Chiu-hung Yeh
學號 s2694401
學位類別 碩士
語文別 中文
論文頁數 99頁
口試委員 指導教授-張文昌
口試委員-呂增宏
指導教授-曾大千
中文關鍵字 凝血脢調節素  發炎反應 
英文關鍵字 inflammation  thrombomodulin 
學科別分類
中文摘要 凝血脢調節素(TM)為重要的抗凝血因子,在心血管疾病(例如:血栓、動脈粥狀硬化和心肌梗塞等…)的病程中,TM也扮演一個重要的角色。過去文獻對於TM 的mRNA轉譯成蛋白質過程的調控是未知的,本實驗發現TM mRNA的五端未轉譯區(5’UTR)其第36到160核甘酸的位置具有internal ribosome entry site ( IRES)的結構與活性。此外我們也發現RNA結合蛋白HuR會與TM mRNA 5’UTR結合進而影響TM IRES的活性,利用reporter assay的實驗方式分析,我們發現持續大量表現HuR蛋白質會抑制TM IRES的活性,相反地利用siRNA專一性抑制HuR蛋白質的表現則增加IRES的活性。同時我們也發現到HuR蛋白質表現增加會抑制內生性TM蛋白質的表現、反之亦然。過去文獻也報導在發炎反應下TM的蛋白質表現量會下降,我們發現在細胞處理促發炎激素(proinflammatory cytokine) TNFα或IL-1β皆會抑制TM IRES的活性,在RNA-IP(immunoprecipitation)的實驗結果中,我們證實HuR與內生性TM mRNA的作用增加而降低TM IRES的活性。綜合以上的結果我們發現HuR對於TM蛋白質表現扮演負向調控的角色,其中HuR參與TM IRES的活性調控上具有重要性的影響。
英文摘要 Thrombomodulin (TM), an important anticoagulant factor, is also involved in the development of cardiovascular diseases, such as thrombosis, arteriosclerosis, and myocardial infarction. Translational regulation of TM protein expression was unknown. In this report, we demonstrated that the 5’UTR of TM mRNA contains an internal ribosome entry site (IRES) spanned at nt. 36 to nt. 160. Searching for possible regulators of IRES activity, we have identified the RNA binding protein HuR interacted with the 5’UTR of TM. Using reporter assay analysis, we found overexpression of HuR protein inhibited TM IRES activity, whereas knockdown the HuR protein expression by SiRNA reversed this effect. Although this phenomenon was found that the expression level of HuR regulated the TM protein expression in vivo. It has been reported that TM protein expression was decreased under inflammatory condition. We observed TM IRES activity was decreased under IL-1 treatment. And the association of HuR with TM IRES or endogenous TM mRNA was elevated by RNA-IP assay. All together, our data suggest that HuR was negative regulator in TM protein expression, and IRES play a crucial role in HuR mediated down-regulation TM protein expression.
論文目次 中文摘要 I
英文摘要 II
致謝 III
目錄 IV
圖目錄 VI
附錄 VII
縮寫指引 VIII
第一章 緒論 1
第一節 mRNA的轉譯機制 2
第二節 AREs在發炎反應下對轉譯活性的調控 4
第三節 Thrombomodulin(TM)介紹 5
第四節 HuR蛋白質的介紹 9
第五節 研究動機 10
第二章 實驗材料與方法 12
實驗材料 ………………………………………………………………..12
實驗方法 ………………………………………………………………..18

第三章 實驗結果 39
第一節 Thrombomodulin mRNA 5’UTR在TNF-α抑制TM蛋白質表現中扮演重要的角色 39
第二節 TM 5’UTR具有internal ribosome entry site(IRES) 40
第三節 參與在TM IRES活性的ITAFs(IRES trans-activate factors) 42
第四節 HuR、PCBP1與PTB在TM 5’UTR轉譯活性中的角色 43
第五節 HuR抑制TM IRES的活性需要RRM1、RRM2與RRM3 44
第六節 HuR蛋白質會影響TM蛋白質的表現 44
第七節 在發炎反應下會促進HuR與TM 5’UTR作用而抑制TM IRES的活性 45
第八節 在大鼠敗血症的實驗下HuR與TM mRNA之關係 46
第四章 討論 47
第五章 參考文獻 51
參考文獻 Abdelmohsen K, Pullmann R, Lal A, Kim HH, Galban S, Yang X, Blethrow JD, Walker M, Shubert J, Gillespie DA, Furneaux H and Gorospe M. Phosphorylation of HuR by Chk2 regulates SIRT1 expression. Mol Cell. 2007; 25: 543-57

Anderson P and Kedersha N. RNA granules. J. Cell Biol. 2006; 172: 803-8.

Andersson K. and Sundler R. Posttranscriptional regulation of TNFα expression via eukaryotic initiation factor 4E (eIF4E) phosphorylation in mouse macrophages. Cytokine 2006; 33: 52–57

Andrew GB, Renaud G, Mathew AV, and Gregory JG. Assessing IRES activity in the HIF-1α and other cellular 5′ UTRs RNA. Nucleic Acid Res. 2006; 12: 1074–1083

Boffa MC, Jackman RW, Peyri N, Boffa JF and George B. Thrombomodulin in the central nervous system. Nouv. Rev. Fr. Hematol. 1991; 33: 423–9.

Bollig F, Winzen R, Gaestel M, Kostka S, Resch K and Holtmann H. Affinity purification of ARE-binding proteins identifies polyA-binding protein 1 as a potential substrate in MK2-induced mRNA stabilization. Biochem. Biophys. Res. Commun. 2003; 301: 665–670

Bourin MC, Lundgren-Akerlund E, Lindahl U. Isolation and characterization of the glycosaminoglycan component of rabbit thrombomodulin proteoglycan. J. Biol. Chem. 1990; 265: 15424–31.

Bourin MC, Boffa MC, Bjork I and Lindahl U. Functional domains of rabbit thrombomodulin. Proc. Natl. Acad. Sci. 1986; 83: 5924–8.


Brennan CM and Steitz JA. HuR and mRNA stability. Cell. Mol. Life Sci. 2001; 58: 266–277

Buxad´e M, Parra JL, Rousseau S, Shpiro N, Marquez R, Morrice N, Bain J, Espel E and Proud CG. The Mnks are novel components in the control of TNFα biosynthesis and phosphorylate and regulate hnRNP A1. Immunity 2005; 23: 177–189

Campos AR, Grossman D and White K. Mutant alleles at the locus elav in Drosophila melanogaster lead to nervous system defects. A developmental-genetic analysis. J. Neurogenet. 1985; 2: 197–218

Cho S, Kim JH, Back SH and Jang SK. Polypyrimidine tract-binding protein enhances the internal ribosomal entry site-dependent translation of p27Kip1 mRNA and modulates transition from G1 to S phase. Mol Cell Biol. 2005; 25: 1283-97.

Chrestensen CA, Schroeder MJ, Shabanowitz J, Hunt DF, Pelo JW, Worthington MT and Sturgill TW. MAPKAP kinase 2 phosphorylates tristetraprolin on in vivo sites including Ser178, a site required for 14-3-3 binding. J. Biol. Chem. 2004; 279: 10176–10184

Christian S, Ahorn H, Koehler A, Eisenhaber F, Rodi HP, Garin-Chesa P, Park JE, Rettig WJ and Lenter MC. Molecular cloning and characterization of endosialin, a C-type lectin-like cell surface receptor of tumor endothelium. J. Biol. Chem. 2001; 276: 7408–14.

Conway EM, Pollefeyt S, Collen D and Steiner-Mosonyi M. The amino terminal lectin-like domain of thrombomodulin is required for constitutive endocytosis. Blood 1997; 89: 652–61.

Conway EM, Van deWouwer M, Pollefeyt S, Jurk K, Van Aken H, De Vriese A, Weitz JI, Weiler H, Hellings PW, Schaeffer P, Herbert JM, Collen D and Theilmeier G. The lectin-like domain of thrombomodulin confers protection from neutrophil-mediated tissue damage by suppressing adhesion molecule expression via nuclear factor kappaB and mitogen-activated protein kinase pathways. J. Exp. Med. 2002; 196: 565–77.

Dean YD, McGreal EP, Akatsu H and Gasque P. Molecular and cellular properties of the rat AA4 antigen, a C-type lectin-like receptor with structural homology to thrombomodulin. J. Biol. Chem. 2000; 275: 34382–92.

Dittman WA and Majerus PW. Structure and function of thrombomodulin: a natural anticoagulant. Blood 1990; 75: 329–36.

Dumitru CD, Ceci JD, Tsatsanis C, Kontoyiannis D, Stamatakis K and Lin JH. TNF-alpha induction by LPS is regulated posttranscriptionally via a Tpl2/ERK-dependent pathway. Cell 2000; 103: 1071–83.

Esmon CT. Introduction: are natural anticoagulant candidates for modulating the inflammatory response to endotoxin? Blood 2000; 95: 1113–6.

Esmon CT. New mechanisms for vascular control of inflammation mediated by natural anticoagulant proteins. J. Exp. Med. 2002; 196: 561–4.

Evans JR, Mitchell SA, Spriggs KA, Ostrowski J, Bomsztyk K, Ostarek D and Willis AE. Members of the poly (rC) binding protein family stimulate the activity of the c-myc internal ribosome entry segment in vitro and in vivo. Oncogene 2003; 22: 8012–8020.

Fan XC, Myer VE and Steitz JA. AU-rich elements target small nuclear RNAs as well as mRNAs for rapid degradation. Genes Dev. 1997; 11: 2557–2568

Fan XC and Steitz JA. Overexpression of HuR, a nuclear-cytoplasmic shuttling protein, increases the in vivo stability of ARE-containing mRNAs. EMBO J. 1998; 17: 3448–3460

Fernandez J, Yaman I, Mishra R, Merrick WC, Snider MD, Lamers WH and Harzoglou M. Internal ribosome entry site-mediated translation of a mammalian mRNA is regulated by amino acid availability. J. Biol. Chem. 2001; 276: 12285–12291.

Gavin SW, Kirsten SD and Nicola KG. Regulation of mRNA translation by 5’- and 3’-UTR-binding factors. TRENDS Biochem. Sci. 2003; 28: 4

Gingras AC, Raught B and Sonenberg N. EIF4 initiation factors: Effectors of mRNArecruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 1999; 68: 913-63

Grey ST, Tsuchida A, Hau H, Orthner CL, Salem HH and Hancock WW. Selective inhibitory effects of the anticoagulant activated protein C on the responses of human mononuclear phagocytes to LPS, IFN-gamma, or phorbol ester. J. Immunol. 1994; 153: 3664–72.

Grey ST and Hancock WW. A physiologic anti-inflammatory pathway based on thrombomodulin expression and generation of activated protein C by human mononuclear phagocytes. J. Immunol. 1996; 156: 2256–63.

Gross JD, Moerke NJ, Von Der Haar T, Lugovskoy AA, Sachs AB, Mccarthy JE and Wagner G. Ribosome loading onto the mRNA cap is driven by conformational coupling between eIF4G and eIF4E. Cell 2003; 115: 739-50

Hamatake M, Ishida T, Mitsudomi T, Akazawa K and Sugimachi K. Prognostic value and clinicopathological correlation of thrombomodulin in squamous cell carcinoma of the human lung. Clin. Cancer Res. 1996; 2: 763–6.

Han J, Brown T and Beutler B. Endotoxin-responsive sequences control cachectin/tumor necrosis factor biosynthesis at the translational level. J. Exp. Med. 1990; 171: 465–75.

Hentze MW. EIF4G: A multipurpose ribosome adapter? Science 1997; 275: 500-1

Herbert JM, Savi P, Laplace MC, Dumas A and Dol F. Chelerythrine, a selective protein kinase C inhibitor, counteracts pyrogen-induced expression of tissue factor without effect on thrombomodulin down-regulation in endothelial cells. Thromb. Res. 1993; 71: 487-93.

Hershey JWB and Merrick WC. Pathway and mechanism of initiation of protein synthesis. Cold Spring Harbor Laboratory Press. 2000; 33-88.

Hirokawa K and Aoki N. Up-regulation of thrombomodulin by activation of histamine H1-receptors in human umbilical-vein endothelial cells in vitro. Biochem J. 1991; 276: 739-43.

Hitti E, Iakovleva T, Brook M, Deppenmeier S, Gruber AD, Radzioch D, Clark AR, Blackshear PJ, Kotlyarov A and Gaestel M. Mitogen-activated protein kinase-activated protein kinase 2 regulates tumor necrosis factor mRNA stability and translation mainly by altering tristetraprolin expression, stability, and binding to adenine/uridine-rich element. Mol. Cell. Biol. 2006; 26, 2399–2407

Holcik M, Gordon BW and Korneluk RG. The internal ribosome entry site-mediated translation of antiapoptotic protein XIAP is modulated by the heterogeneous nuclear ribonucleoproteins C1 and C2. Mol. Cell Biol. 2003; 23: 280–288.

Horie S, Ishii H, Matsumoto F, Kusano M, Kizaki K, Matsuda J and Kazama M. Acceleration of thrombomodulin gene transcription by retinoic acid: retinoic acid receptors and Sp1 regulate the promoter activity through interactions with two different sequences in the 5'-flanking region of human gene. J Biol Chem. 2001; 276: 2440-50.


Hosaka Y, Higuchi T, Tsumagari M and Ishii H. Inhibition of invasion and experimental metastasis of murine melanoma cells by human soluble thrombomodulin. Cancer Lett. 2000; 161: 231–40.

Ishii H, Salem HH, Bell CE, Laposata EA and Majerus PW. Thrombomodulin, an endothelial anticoagulant protein, is absent from the
human brain. Blood 1986; 67: 362–5.

Ishii H, Tezuka T, Ishikawa H, Takada K, Oida K, Horie S. Oxidized phospholipids in oxidized low-density lipoprotein down-regulate thrombomodulin transcription in vascular endothelial cells through a decrease in the binding of RARbeta-RXRalpha heterodimers and Sp1 and Sp3 to their binding sequences in the TM promoter. Blood. 2003; 101: 4765-74.

Jacob C, Lee SK and Strassmann G. Mutational analysis of TNF-alpha
gene reveals a regulatory role for the 3’-untranslated region in the genetic predisposition to lupus-like autoimmune disease. J. Immunol. 1996; 156: 3043–50.

Johansson L, Jansson JH, Boman K, Nilsson TK, Stegmayr B and Hallmans G. Prospective study on soluble thrombomodulin and von Willebrand factor and the risk of ischemic and hemorrhagic stroke. Thromb. Haemost. 2002; 87: 211–7.

Joyce DE, Gelbert L, Ciaccia A, DeHoff B and Grinnell BW. Gene expression profile of antithrombotic protein C defines new mechanisms modulating inflammation and apoptosis. J. Biol. Chem. 2001; 276: 11199–203.

Juan M, Samuel M and Ju¨ rg Ba¨ hler. Post-transcriptional control of gene expression: a genome-wide perspective. Trends Biochem. Sci. 2005; 30: 506-514

Katsanou V, Papadaki O, Milatos S, Blackshear PJ, Anderson P, Kollias G and Kontoyiannis DL. HuR as a negative posttranscriptional modulator in inflammation. Mol Cell. 2005; 19: 777-89.



Kawai T, Lal A, Yang X, Galban S, Mamczarz KM, and Gorospe M. Translational Control of Cytochrome c by RNA-Binding Proteins TIA-1 and HuR. Mol. Cell. Bio. 2006; 10: 3295–3307

Kedersha N and Anderson P. Stress granules: sites of mRNA triage that regulate mRNA stability and translatability. Biochem. Soc. Trans. 2002; 30: 963-9.

Kim YK, Hahm B and Jang SK. Polypyrimidine tract-binding protein inhibits translation of bip mRNA. J. Mol. Biol. 2000; 304: 119–133.

Kontoyiannis D, Pasparakis M, Pizarro TT, Cominelli F and Kollias G. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity 1999; 10: 387–98.

Kullmann M, Göpfert U, Siewe B, and Hengst L. ELAV/Hu proteins inhibit p27 translation via an IRES element in the p27 5'UTR Genes Dev. 2002; 16: 3087-3099

Kume M, Hayashi T, Yuasa H, Tanaka H, Nishioka J, Ido M, Gabazza EC, Kawarada Y and Suzuki K. Bacterial lipopolysaccharide decreases thrombomodulin expression in the sinusoidal endothelial cells of rats -- a possible mechanism of intrasinusoidal microthrombus formation and liver dysfunction. J. Hepatol. 2003; 38: 9-17.

Kruys V, Wathelet M, Poupart P, Contreras R, Fiers W and Content J. The 3’untranslated region of the human interferon-beta mRNA has an inhibitory effect on translation. Proc. Natl. Acad. Sci. 1987; 84: 6030–4.

Kruys V, Marinx O, Shaw G, Deschamps J and Huez G. Translational blockade imposed by cytokine-derived UA-rich sequences. Science 1989; 245: 852–5.


Leandersson K, Riesbeck K and Andersson T. Wnt-5a mRNA translation is suppressed by the Elav-like protein HuR in human breast epithelial cells. Nucleic Acids Res. 2006; 34: 3988–3999

Li H, Park S, Kilburn B, Jelinek MA, Henschen-Edman A, Aswad DW, Stallcup MR and Laird-Offringa IA. Lipopolysaccharide-induced methylation of HuR, an mRNA-stabilizing protein, by CARM1. Coactivator-associated arginine methyltransferase. J. Biol. Chem. 2002; 277: 44623-30.

Light DR, Glaser CB, Betts M, Blasko E, Campbell E, Clarke JH, McCaman M, McLean K, Nagashima M, Parkinson JF, Rumennik G, Young T and Morser J. The interaction of thrombomodulin with Calcium. Eur. J. Biochem. 1999; 262: 522–33.

Ma WJ, Chung S and Furneaux H. The Elav-like proteins bind to AU-rich elements and to the poly(A) tail of mRNA. Nucleic Acids Res. 1997; 25: 3564–3569

Matsushita Y, Yoshiie K, Imamura Y, Ogawa H, Imamura H, Takao S, Yonezawa S, Aikou T, Maruyama I and Sato E. A subcloned human esophageal squamous cell carcinoma cell line with low thrombomodulin expression showed increased invasiveness compared with a high thrombomodulin-expressing clone – thrombomodulin as a possible candidate for an adhesion molecule of squamous cell carcinoma. Cancer Lett. 1998; 127: 195–201.

Martin B, Mark S, Yi WK, Tiffany LH, Keith AS, Helen CD, Xiaoli Q, Peter S, and Willis AE. Polypyrimidine Tract Binding Protein Regulates IRES-Mediated Gene Expression during Apoptosis. Mol. Cell 2006; 23: 401–412.

Maruyama I, Bell CE and Majerus PW. Thrombomodulin is found on endothelium of arteries, veins, capillaries, and lymphatics, and on syncytiotrophoblast of human placenta. J. Cell Biol. 1985; 101: 363–71.

Michael Zuker. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003; 31: 13

Minich WB, Balasta ML, Goss DJ and Rhoads RE. Chromatographic resolution of in vivo phosphorylated and nonphosphorylated eukaryotic translation initiation factor eIF-4E: increased cap affinity of the phosphorylated form. Proc. Natl. Acad. Sci. 1994; 91: 7668–7672

Mitchell SA, Brown EC, Coldwell MJ, Jackson RJ and Willis AE. Protein factor requirements of the Apaf-1 internal ribosome entry segment: roles of polypyrimidine tract binding protein and upstream of N-ras. Mol. Cell. Biol. 2001; 21: 3364–3374.

Myer VE, Fan XC and Steitz JA. Identification of HuR as a protein implicated in AUUUA-mediated mRNA decay. EMBO J. 1997; 16: 2130–2139

Navarro A, Frevel M, Gamero AM, Williams BR, Feldman G and Larner AC. Thrombomodulin RNA Is Destabilized Through Its 3’-Untranslated Element in Cells Exposed to IFN-gamma J. Interferon Cytokine Res. 2003; 23: 723-8.

Neininger A, Kontoyiannis D, Kotlyarov A, Winzen R, Eckert R and Volk HD. MK2 targets AU-rich elements and regulates biosynthesis of tumor necrosis factor and interleukin-6 independently at different post-transcriptional levels. J. Biol. Chem. 2002; 277: 3065–8.

Ogawa H, Yonezawa S, Maruyama I, Matsushita Y, Tezuka Y, Toyoyama H, Yanagi M, Matsumoto H, Nishijima H, Shimotakahara T, Aikou T and Sato E. Expression of thrombomodulin in squamous cell carcinoma of the lung: its relationship to lymph node metastasis and prognosis of the patients. Cancer Lett. 2000; 149: 95–103.

Paludan SR, Ellermann-Eriksen S, Kruys V and Mogensen SC. Expression of TNF-alpha by Herpes Simplex Virus-infected macrophages is regulated by a dual mechanism: transcriptional regulation by NF-κB and activating transcription factor 2/Jun and translational regulation through the AU-rich region of the 3’untranslated region. J. Immunol. 2001; 167: 2202–8.

Petersen TE. The amino-terminal domain of thrombomodulin and pancreatic stone protein are homologous with lectins. FEBS Lett. 1988; 231: 51–3.

Peng SS, Chen CY, Xu N and Shyu AB. RNA stabilization by the AU-rich element binding protein, HuR, an ELAV protein. EMBO J. 1998; 17: 3461–3470

Pestova TV, Kolupaeva VG, Lomakin IB, Pilipenko EV, Shatsky IN, Agol VI and Hellen CU. Molecular mechanisms of translation initiation in eukaryotes. Proc. Natl. Acad. Sci. 2001; 98: 7029-36

Pestova TV, Borukhov SI and Hellen CU. Eukaryotic ribosomes require initiation factors 1 and 1A to locate initiation codons. Nature 1998; 394: 854-9

Piecyk M, Wax S, Beck AR, Kedersha N, Gupta M, Maritim B, Chen S, Gueydan C, Kruys V, Streuli M and Anderson P. TIA-1 is a translational silencer that selectively regulates the expression of TNF-alpha. EMBO J. 2000; 19: 4154-63

Pickering BM, Mitchell SA, Evans JR, and Willis AE. Polypyrimidine tract binding protein and poly r(C) binding protein 1 interact with the BAG-1 IRES and stimulate its activity in vitro and in vivo. Nucleic Acids Res. 2003; 31: 639–646.


Pindon A, Hantai D, Jandrot-Perrus M and Festoff BW. Novel expression and localization of active thrombomodulin on the surface of mouse brain astrocytes. Glia. 1997; 19: 259–68.

Pindon A, Berry M and Hantai D. Thrombomodulin as a new marker of lesion-induced astrogliosis: involvement of thrombin through the G protein-coupled protease- activated receptor-1. J Neurosci. 2000; 20: 2543–50.
Prevot D, Darlix JL and Ohlmann T. Conducting the initiation of protein synthesis: The role of eIF4G. Biol. Cell 2003; 95: 141-56

Pyronnet S, Pradayrol L and Sonenberg N. A cell cycle-dependent internal ribosome entry site. Mol. Cell 2000; 5: 607–616.

Raught B, GRINGRAS AC and Sonenberg N. Regulation of ribosomal recruitment in eukaryotes. Cold Spring Harbor Laboratory Press. 2000; 245-293.

Riewald M, Petrovan RJ, Donner A, Mueller BM and Ruf W. Activation of endothelial cell protease activated receptor 1 by the protein C pathway. Science 2002; 296: 1880–2.

Rofers GW JR, Komar AA and Merrick WC. EIF4A: The godfather of the DEAD box helicases. Prog. Nucleic Acid Res. Mol. Biol. 2002; 72: 307-31

Rousseau S, Morrice N, Peggie M, Campbell DG, Gaestel M and Cohen P. Inhibition of SAPK2a/p38 prevents hnRNP A0 phosphorylation by MAPKAP-K2 and its interaction with cytokine mRNAs. EMBO J. 2002; 21, 6505–6514

Sampoli Benitez BA, Hunter MJ, Meininger DP and Komives EA. Structure of the fifth EGF-like domain of thrombomodulin: An EGF-like domain with a novel disulfide-bonding pattern. J. Mol. Biol. 1997; 273: 913–26.

Schepens B, Tinton SA, Bruynooghe Y, Beyaert R and Cornelis S. The polypyrimidine tract-binding protein stimulates HIF-1alpha IRES-mediated translation during hypoxia. Nucleic Acids Res. 2005; 33: 6884-94.

Scheper GC and Proud CG. Does phosphorylation of the cap-binding protein eIF4E play a role in translation initiation? Eur. J. Biochem. 2002; 269: 5350–5359
Shibata M, Kumar SR, Amar A, Fernandez JA, Hofman F, Griffin JH and Zlokovic BV. Anti-inflammatory, antithrombotic, and neuroprotective effects of activated protein C in a murine model of focal ischemic stroke. Circulation 2001; 103: 1799–805.

Sigrid C., Sandrine AT, Bert S, Yanik and Rudi B. UNR translation can be driven by an IRES element that is negatively regulated by polypyrimidine tract binding protein. Nucleic Acids Res. 2005; 33: 3095–3108.

Slepenkov SV, Darzynkiewicz E and Rhoads RE. Stopped-flow kinetic analysis of eIF4E and phosphorylated eIF4E binding to cap analogs and capped oligoribonucleotides: evidence for a one-step binding mechanism. J. Biol. Chem. 2006; 281: 14927–14938

Stoneley M. and Willis AE. Cellular internal ribosome entry segments: structures, trans-acting factors and regulation of gene expression. Oncogene 2004; 23: 3200–3207

Stoneley M, Subkhankulova T, Le Quesne JPC, Coldwell MJ, Jopling CL, Belsham GJ and Willis AE. Analysis of the c-myc IRES; a potential role for cell-type specific trans-acting factors and the nuclear compartment. Nucleic Acids Res. 2000; 28: 687–694.

Suehiro T, Shimada M, Matsumata T, Taketomi A, Yamamoto K and Sugimachi K. Thrombomodulin inhibits intrahepatic spread in human hepatocellular carcinoma. Hepatology 1995; 21: 1285–90.

Suzuki K, Nishioka J, Hayashi T and Kosaka Y. Functionally active thrombomodulin is present in human platelets. J. Biochem. 1988; 104: 628-32

Tabata M, Sugihara K, Yonezawa S, Yamashita S. and Maruyama I. An immunohistochemical study of thrombomodulin in oral squamous cell carcinoma and its association with invasive and metastatic potential. J. Oral Pathol. Med. 1997; 26: 258–64.
Taoka Y, Okajima K, Uchiba M and Johno M. Neuroprotection by recombinant thrombomodulin. Thromb. Haemost. 2000; 83: 462–8.

Tezuka Y, Yonezawa S, Maruyama I, Matsushita Y, Shimizu T, Obama H, Sagara M, Shirao K, Kusano C and Natsugoe S. Expression of thrombomodulin in esophageal squamous cell carcinoma and its relationship to lymph node metastasis. Cancer Res. 1995; 55: 4196–200.

Tolkatchev D and Ni F. Calcium binding properties of an epidermal growth factor-like domain from human thrombomodulin. Biochemistry 1998; 37: 9091–100.

Von der Ahe D, Nischan C, Kunz C, Otte J, Knies U, Oderwald H and Wasylyk B. Ets transcription factor binding site is required for positive and TNF alpha-induced negative promoter regulation. Nucleic Acids Res. 1993; 21: 5636-43.

Wang E, Ma WJ, Aghajanian C and Spriggs DR. Posttranscriptional regulation of protein expression in human epithelial carcinoma cells by adenine-uridine-rich elements in the 3’-untranslated region of tumor necrosis factor-alpha messenger RNA. Cancer Res. 1997; 57: 5426–33.

Wang L, Tran ND, Kittaka M, Fisher MJ, Schreiber SS and Zlokovic BV. Thrombomodulin expression in bovine brain capillaries. Anticoagulant function of the blood–brain barrier, regional differences, and regulatory mechanisms. Arterioscler. Thromb. Vasc. Biol. 1997; 17: 3139–46.

Wang W, Furneaux H, Cheng H, Caldwell MC, Hutter D and Liu Y. HuR regulates p21 mRNA stabilizationby UV light. Mol. Cell. Biol. 2000; 20: 760–769

Wang W, Caldwell MC, Lin S, Furneaux H and Gorospe M. HuR regulates cyclin A and cyclin B1 mRNA stability during cell proliferation. EMBO J. 2000; 19: 1–12

Wong VL, Hofman FM, Ishii H and Fisher M. Regional distribution of thrombomodulin in human brain. Brain Res. 1991; 556: 1–5.

Xu JEC. Endothelial cell protein C receptor (EPCR) constitutively translocates into the nucleus and also mediates activated protein C, but not protein C, nuclear translocation. Thromb. Haemost. 1999; 82

Zheng M, Peter HK, L. BN, Nateka LJ, Chen1 CY, Emanuel1 PD, and Blume1 SW. The ELAV RNA-stability factor HuR binds the 5’-untranslated region of the human IGF-IR transcript and differentially represses cap-dependent and IRES-mediated translation. Nucleic Acids Res. 2005; 33: 2962–2979

Zhang Y, Weiler-Guettler H, Chen J, Wilhelm O, Deng Y, Qiu F, Nakagawa K, Klevesath M, Wilhelm S, Bohrer H, Nakagawa M, Graeff H, Martin E, Stern DM, Rosenberg RD, Ziegler R and Nawroth PP. Thrombomodulin modulates growth of tumor cells independent of its anticoagulant activity. J. Clin. Invest. 1998; 101: 1301–9.

Zushi M, Gomi K, Honda G, Kondo S, Yamamoto S, Hayashi T and Suzuki K. Aspartic acid 349 in the fourth epidermal growth factor-like structure of human thrombomodulin plays a role in its Calcium- mediated binding to protein C. J. Biol. Chem. 1991; 266: 19886–9.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2107-07-24起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2107-07-24起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw